

Power and EM Attacks on Passive 13.56 MHz RFID Devices

Michael Hutter¹, Stefan Mangard², Martin Feldhofer¹

CHES 2007

¹Institute for Applied Information Processing and Communications (IAIK), Graz University of Technology

²Infineon Technologies AG, Security Innovation

TU Graz/Computer Science/IAIK/VLSI/SCA

Vienna, 2007

CHES 2007

Presentation Outline

- Introduction
- RFID prototype devices
- Measurement setups
- Results
- Conclusions and future work

Introduction

- RFID (Radio Frequency Identification)
- Air interface
 - Power supply
 - Communication
 - Clock signal

Secret key informationleakage from EM radiation

Side-Channel Attacks on RFID

- Conventional DPA
 - Problem: No power supply contacts available
- EM analysis
 - Problem: Strong RF field of the reader superposes all interesting chip emissions
- Challenge:
 - Circumvent the interfering reader signal through filtering or signal-cancellation techniques

Side-Channel Analysis

- Side-channel analysis of two different RFID prototype devices
 - Prototype with a microcontroller (software AES)
 - Prototype with an AES coprocessor (hardware AES)

RFID Prototype with a Microcontroller

- Passive RFID tag
- Low-power design
- ISO-15693
- Software AES is used in a challengeresponse protocol

Block Diagram

Antenna

ISO-7810, four windings

Analog front-end

RFID Prototype with AES Coprocessor

- Small AES hardware implementation
 - 0.25 mm² chip die-size
 - 0.35 µm CMOS process
- Low power
 - ~3 µA of current @ 100 kHz
- 8-bit microcontroller interface
- Controlled via an FPGA board
- Passively powered using an additional RFID antenna

RFID Prototype vs. Single-Chip Tag

- Larger parasitic antennas
- Analog front-end and digital chip on the same die
- Low-power consumption
- Clock synchronization
- Trigger signal

Measurement Setups Overview

Resistor

EM probes

EM probes and a receiver

Helmholtz arrangement

Power Measurement Setups (1)

Resistor

- Traditional power measurement
- Placed between the analog front-end and the digital circuit
- Used as a reference attack

EM probes

- Bandwidth: 0 50 MHz and 30 3000 MHz
- Positioning: directly upon the chip (parallel to the chip layer)

Power Measurement Setups (2)

EM probe and a receiver

- Spectrum analyzer (ESPI R&S)
- Connected to the oscilloscope

Used to filter and amplify emitted frequency bands

Helmholtz arrangement

- Specified in the ISO-10373-6 standard
- Normally used for compliance testing
- Reader coil and two sense coils
- Carrier attenuation of 40dB

Filtering Data-Dependent Emissions

- Find the highest data-dependent frequency in the EM spectrum
- Apply the filter inside the reader field

- Filter bandwidths of 10 MHz, 3 MHz, 1 MHz and 1 kHz used
- 1000 traces have been captured on each frequency band

Side-Channel Leakage across the EM Spectrum of the RFID Prototype with a Microcontroller

TU Graz/Computer Science/IAIK/VLSI/SCA

CHES 2007

Zoom into the Spectrum

Side-Channel Leakage across the EM Spectrum of the RFID Prototype with an AES Coprocessor

CHES 2007

Performed Attacks

- Power and EM
- Helmholtz arrangement
- Attacking Scenarios
 - Actively and passively powered
 - Placed inside and outside the RF field of the reader
- 10,000 traces have been recorded
- Hamming-weight model
- Target: first S-box output in round one of AES

Results

	DPA		DEMA		Helmholtz
	Actively powered	Passively powered	Actively powered	Passively powered	Passively powered
	Outside	Inside	Outside	Inside	Inside
Micro- controller	0.64 (~50)	0.67 (~45)	0.73 (~35)	0.19 (~770)	0.06 (~7700)
AES coprocessor	0.39 (~170)	0.17 (~970)	0.34 (~225)	0.15 (~1200)	N/A

Conclusions and Future Work

- Contact-less devices are as vulnerable as contactbased devices
- Attacks can be further improved
 - Increasing the SNR of the measurement setup
 - Advanced filtering
 - Improved reader-field cancellation techniques
- Characterization of data-dependent frequency emissions

Side-Channel Analysis Lab

Michael.Hutter@iaik.tugraz.at Stefan.Mangard@infineon.com Martin.Feldhofer@iaik.tugraz.at

http://www.iaik.tugraz.at/research/sca-lab