Collision Attacks on AES-based MAC: Alpha-MAC

Alex Biryukov¹, **Andrey Bogdanov**², Dmitry Khovratovich¹ and Timo Kasper²

¹University of Luxemburg, Luxemburg {alex.biryukov,dmitry.khovratovich}@uni.lu

²Chair for Communication Security, Horst-Görtz Institute, Ruhr-University Bochum, Germany {abogdanov,tkasper}@crypto.rub.de

CHES'07, Vienna, Austria, 2007

A B K A B K

1 Description of AlphaMAC

- Specification
- Motivation

2 Attacks on AlphaMAC

- Outline of Our Attack
- Basic Collision Attack on AES
- Our Side-Channel Collision Attacks
- Selective Forgery Attack

< 🗇 🕨

A B K A B K

3

Description of AlphaMAC

Attacks on AlphaMAC Conclusion Specification Motivation

AlphaMAC Specification and Notation

A. Biryukov, A. Bogdanov, D. Khovratovich, T. Kasper Collision Attacks on AES-based MAC: Alpha-MAC

Description of AlphaMAC

Attacks on AlphaMAC Conclusion Specification Motivation

Attack Motivation

Practical Motivation

- \sim 2.5 times faster than e.g. CBC-MAC (4 + 20/t instead of 10 rounds)
- ⇒ AlphaMAC can be efficiently applied in embedded systems
- ⇒ Interesting target for side-channel analysis

Theoretical Motivation

- Improve traditional side-channel collision attacks
- Exploit the existence of collisions in AlphaMAC for selective forgery
- Show that the internal state has to be protected against SCA as well

< ロ > < 同 > < 臣 > < 臣 > -

3

Outline of Our Attack Basic Collision Attack on AES Our Side-Channel Collision Attacks Selective Forgery Attack

General Assumptions and Attack Outline

Assumptions

- Keyed AES rounds are perfectly protected against side-channel attacks
- Unkeyed message injection AES rounds are not protected

Two Basic Attack Steps

- Obtain the 16-byte state *I*¹ by side-channel collision attacks
- Mount a selective forgery attack using collisions in AlphaMAC

Outline of Our Attack Basic Collision Attack on AES Our Side-Channel Collision Attacks Selective Forgery Attack

イロト イポト イヨト イヨト 三星

Basic Collision Attack on AES: Outline

Attack Outline (Schramm et al)

- Generate random plaintexts of a special form
- Perform N measurements and detect simple collisions
- 16 simple collisions needed (construct 16 nonlinear equations)
- Solve the equations using pre-computed tables and test key candidates using a plaintext-ciphertext pair

Outline of Our Attack Basic Collision Attack on AES Our Side-Channel Collision Attacks Selective Forgery Attack

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Basic Attack on AES: Notation

$B = MIXCOLUMN(A), A = SHIFTROWS(SUBBYTES(P \oplus K))$

b_{00}

If $P = (p_{ij})$ is plaintext and $K = (k_{ij})$ is subkey, then

 $\begin{array}{lll} b_{00} & = & 02 \cdot a_{00} \oplus 03 \cdot a_{10} \oplus 01 \cdot a_{20} \oplus 01 \cdot a_{30} = \\ & = & 02 \cdot S(p_{00} \oplus k_{00}) \oplus 03 \cdot S(p_{11} \oplus k_{11}) \\ & \oplus & 01 \cdot S(p_{22} \oplus k_{22}) \oplus 01 \cdot S(p_{33} \oplus k_{33}). \end{array}$

Outline of Our Attack Basic Collision Attack on AES Our Side-Channel Collision Attacks Selective Forgery Attack

イロト イポト イヨト イヨト 三連

Basic Attack on AES: Simple Collisions

$$b_{00} = b_{00}'$$

Second round: $S(b_{00} \oplus k_{00}) = S(b'_{00} \oplus k_{00})$ detected \Rightarrow $b_{00} \oplus k_{00} = b'_{00} \oplus k_{00} \Rightarrow$ $b_{00} = b'_{00}$

Collision equation

For two plaintexts *P* and *P'* with $p_{00} = p_{11} = p_{22} = p_{33} = \delta$ and $p'_{00} = p'_{11} = p'_{22} = p'_{33} = \epsilon$, $\delta \neq \epsilon$, one obtains the following, provided $b_{00} = b'_{00}$: $02 \cdot S(k_{00} \oplus \delta) \oplus 03 \cdot S(k_{11} \oplus \delta) \oplus 01 \cdot S(k_{22} \oplus \delta) \oplus 01 \cdot S(k_{33} \oplus \delta)$ $= 02 \cdot S(k_{00} \oplus \epsilon) \oplus 03 \cdot S(k_{11} \oplus \epsilon) \oplus 01 \cdot S(k_{22} \oplus \epsilon) \oplus 01 \cdot S(k_{33} \oplus \epsilon)$

Outline of Our Attack Basic Collision Attack on AES Our Side-Channel Collision Attacks Selective Forgery Attack

イロン イヨン イヨン イヨン

Basic Attack on AES: Attack Complexity

Collision probability

The probability that after *N* executions at least one collision $b_{00} = b'_{00}$ occurs in a single byte is:

$$p_N = 1 - \prod_{l=0}^{N-1} (1 - l/2^8)$$

Complexity

- The attacker needs at least 16 collisions, 4 for each column of *B*, so $p_N^{16} \ge 1/2$ and $N \approx 40$
- About 540 MByte pre-computed tables
- Chosen-plaintext possibility needed

Outline of Our Attack Basic Collision Attack on AES Our Side-Channel Collision Attacks Selective Forgery Attack

< ロ > < 同 > < 臣 > < 臣 > -

3

Our Modifications to the Standard Collision Attacks

What We Do

- Several byte collisions:
 - Consider them as nonlinear equations over *GF*(2⁸)
 - Solve these systems by brute-force
 - $\blacksquare \Rightarrow$ No precomputations and only negligible memory
- Look for collisions in 3 injection rounds:
 - Instead of working with only a single round
 - Possible due to the fact that no entropy is introduced in the injection rounds
 - A lower number of measurements needed

Outline of Our Attack Basic Collision Attack on AES Our Side-Channel Collision Attacks Selective Forgery Attack

Collisions in the Second Round

2nd Injection Round

After MIXCOLUMNS & message addition in the 2nd injection round:

 $02 \cdot S(i_{00}^{1} + m_{00}^{1}) + S(i_{22}^{1} + m_{22}^{1}) + m_{00}^{2} = 02 \cdot S(i_{00}^{1} + z_{00}^{1}) + S(i_{22}^{1} + z_{22}^{1}) + z_{00}^{2},$

 M^1 , Z^1 , M^2 , Z^2 = some message blocks

After a further collision in another byte of the 0th column:

- Two nonlinear equations over $GF(2^8)$ with variables $i_{00}^1, i_{22}^1 \in GF(2^8)$.
- Solve them by brute-force $\Rightarrow i_{00}^1$ and i_{22}^1

Do the same for i_{02}^1 and $i_{20}^1 \Rightarrow i_{02}^1$ and i_{20}^1

Outline of Our Attack Basic Collision Attack on AES Our Side-Channel Collision Attacks Selective Forgery Attack

3

イロト イヨト イヨト イヨト

Collisions in the Third Round

3rd Injection Round

• A collision detected in $i_{00}^3 + k_{00}^3$, the following relation holds: $02 \cdot S(03 \cdot S(i_{11}^1) + S(i_{33}^1) + c_1 + m_{00}^2)$ $+S(S(i_{13}^1)+03 \cdot S(i_{31}^1)+c_2+m_{22}^2)+m_{00}^3=$ $02 \cdot S(03 \cdot S(i_{11}^1) + S(i_{33}^1) + c_1' + z_{00}^2)$ $+S(S(i_{13}^{1})+03 \cdot S(i_{31}^{1})+c_{2}'+z_{22}^{2})+z_{00}^{3}$ Z^2 , M^2 , Z^3 , M^3 = some injected message blocks c_1, c_2, c'_1, c'_2 = some known constants 2 collisions in two bytes of the 0th column $\Rightarrow 03 \cdot S(j_{11}^1) + S(j_{22}^1)$ and $S(j_{12}^1) + 03 \cdot S(j_{21}^1)$ 2 further collisions in the 2rd column $\Rightarrow 03 \cdot S(i_{13}^1) + S(i_{31}^1)$ and $S(i_{11}^1) + 03 \cdot S(i_{33}^1)$ These 4 relations $\Rightarrow i_{11}^1, i_{33}^1, i_{13}^1$ and i_{31}^1

Outline of Our Attack Basic Collision Attack on AES Our Side-Channel Collision Attacks Selective Forgery Attack

< 17 ×

Collisions in the Fourth Round

4th Injection Round

- By now 8 bytes of I¹ are known
- The collisions equations are more complex ...

$$\begin{array}{l} 02 \cdot S(03 \cdot S(f_2) + S(g_4) + c_{00} + m_{00}^3) + \\ 03 \cdot S(S(f_1) + 03 \cdot S(g_3) + c_{10}) + \\ S(S(g_2) + 03 \cdot S(f_4) + c_{20} + m_{22}^3) + \\ S(S(g_1) + 03 \cdot S(f_3) + c_{30}) + m_{00}^4 \\ \end{array}$$

$$= \\ 02 \cdot S(03 \cdot S(f_2) + S(g_4) + c_{00}' + z_{00}^3) + \\ 03 \cdot S(S(f_1) + 03 \cdot S(g_3) + c_{10}') + \\ S(S(g_2) + 03 \cdot S(f_4) + c_{20}' + z_{22}^3) + \\ S(S(g_1) + 03 \cdot S(f_3) + c_{30}') + z_{00}^4 \end{array}$$
nonetheless allowing to recover the remaining eight l^1 bytes

Outline of Our Attack Basic Collision Attack on AES Our Side-Channel Collision Attacks Selective Forgery Attack

< ロ > < 同 > < 臣 > < 臣 > -

3

Side-Channel Collision Attack Properties

Success Probability, Complexity, Assumptions

- Our side-channel attack works ...
 - ... with a probability of 0.56
 - ... for 29 known random messages (40 chosen plaintexts for AES)
 - ... if one-byte collisions are detectable

Outline of Our Attack Basic Collision Attack on AES Our Side-Channel Collision Attacks Selective Forgery Attack

Measurements (S-box)

Unequal arguments

Equal arguments

A. Biryukov, A. Bogdanov, D. Khovratovich, T. Kasper

Collision Attacks on AES-based MAC: Alpha-MAC

Outline of Our Attack Basic Collision Attack on AES Our Side-Channel Collision Attacks Selective Forgery Attack

Selective Forgery Attack

Lemma 1 [DR05, FSE'05]

Given I^1 , the state value before iteration 1, the map

$$s:(M^1,M^2,M^3,M^4)\to I^5$$

from the sequence of 4 message blocks (M^1, M^2, M^3, M^4) to the state value before iteration 5 is a bijection.

Lemma 2

There exists an algorithm of complexity 2^{11} computing (M^1, M^2, M^3, M^4) from I^5 for a given initial internal state I^1 (inverting *s* is simple!)

Outline of Our Attack Basic Collision Attack on AES Our Side-Channel Collision Attacks Selective Forgery Attack

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Selective Forgery Attack

Attack Steps

- Preliminaries:
 - I¹ is known,
 - (M, σ) is a victim message-tag pair (4-byte M),
 - M' is a message to authenticate (4-byte M')
- Step 1: Compute the intermediate states I for M and I' for M'
- Step 2: Compute the 16-byte suffix $\delta = s^{-1}(I)$ for I'
- **Result:** $(M'||\delta, \sigma)$ is the forged message-tag pair

Conclusions

Conclusions

- New type of side-channel collision attacks (recovery of the AlphaMAC internal state):
 - 29 measurements needed only (instead of 40)
 - Known-message scenario (instead of selected plaintext)
- Internal hash of AlphaMAC is not collision resistant
 - New 4-to-1 collisions
 - Selective forgery attack

Outlook

Apply the improved collision attacks (Andrey Bogdanov, SAC'07)

イロト イヨト イヨト イヨト