Masking and Dual-rail Logic Don't Add Up

Patrick Schaumont schaum@vt.edu

Secure Embedded Systems Group ECE Department

Kris Tiri kris.tiri@intel.com

Digital Enterprise Group Intel Corporation

Our Contributions

- 1. Using a simple *statistical* technique, we can break single-bit masked secure logic styles including
 - 1. RSL [Suzuki 2004]
 - 2. MDPL [Popp 2005]
 - 3. DRSL [Chen 2006]
- 2. Side channel resistance obtained by combining masking and dual-rail logic is not routing-independent

Preliminaries: Masked Hardware Signals

Preliminaries: Masked Logic

Preliminaries: Random Switching Logic

Our Experiment: Sbox in RSL

- Gate-level DUT Implementation 970 RSL gates
- Cycle-based simulation, abstracting all timing effects
- Power Model = toggle counting on DUT gate outputs

Power Probability Distribution for SBOX 0.09 *r* = 1 0.08 ł ٨ r = 00.07 total 0.06 0.05 0.04 0.03 0.02 0.01 0 **465** 475 **495** 505 470 480 485 500 490 **Toggle Count**

Explaining the Cause of Symmetry

unmasked value	masked value	
	$\mathbf{r} = 0$	r = 1
	prechg eval	prechg eval
Transitions in single RSL gate		
' O '		1 toggle
'1'	1 toggle	
Transitions in 970 RSL gates		
970 - n '0'		(970 -n) toggle
n '1'	n toggle	

0.09 r = 10.08 r = 00.07 0.06 970 0.05 2 970 - n n 0.04 0.03 0.02 0.01 0 **465** 475 480 485 **490 495** 505 500 470 **Toggle Count**

Power Probability Distribution for SBOX

An Attack using the Power PDF

Preliminaries: Masking and DRP

- Dual-Rail Precharge Logic encodes each value as a complementary signal pair
- In combination with masking: MDPL [Popp 2005]

unmasked value	masked value	
	$\mathbf{r} = 0$ prechg eval	r = 1 prechg eval
Transitions in single MDPL gate '0'	$\begin{array}{ccc} \overline{q} & 0 \longrightarrow 1 \\ q & 0 \longrightarrow 0 \end{array}$	$\begin{array}{ccc} \overline{q} & 0 \longrightarrow 0 \\ q & 0 \longrightarrow 1 \end{array}$
'1'	$\begin{array}{ccc} \overline{q} & 0 \longrightarrow 0 \\ q & 0 \longrightarrow 1 \end{array}$	$\begin{array}{ccc} \overline{q} & 0 \longrightarrow 1 \\ q & 0 \longrightarrow 0 \end{array}$

Preliminaries: Masking and DRP

- Dual-Rail Precharge Logic encodes each value as a complementary signal pair
- In combination with masking: MDPL [Popp 2005]

unmasked value	masked value	
	$\mathbf{r} = 0$ prechg eval	r = 1 prechg eval
Transitions in single MDPL gate '0'	q toggle	q toggle
'1'	q toggle	q toggle

Impact of Routing Imbalances

Impact of Routing Imbalances

Impact of Routing Imbalances

Evaluation using Actual Layout Data

- AES-128 using 16K Dual-rail gates in 0.18 μm CMOS
- Cycle-based simulation using weighted toggle counts
- Weights from layout (no routing constraints)

Estimated Power PDF of AES

Masking Constant Signals: Binary Effect

Masking Varying Signals: Gaussian Effect

An attack on the AES Power PDF

Related Work

- In software implementations, masking is attacked by combining multiple power samples or by precharacterization of the implementation
 - [Messerges 2000] Second Order DPA
 - [Peeters 2005] Maximum-likelihood
 - [Oswald 2007] Template Attacks
- For cases where mask and masked signal cannot be observed separately, Waddle proposes the use of squared power samples
 - [Waddle 2004] Zero-Offset DPA
- Our technique demonstrates direct observation of the mask value, without the need for circuit characterization.
 - We have demonstrated this with known masked circuit styles

Conclusions

- Masking and Dual-Rail Logic are not additive for sidechannel resistance
- Secure Circuit Styles *cannot* be developed without considering the system-level perspective on security
- Effective countermeasures against our attack will need to address the following question: "How can we add a mask without adding information?"
 - When a mask is used to hide the PDF of a data signal, the masking process itself should not reveal the mask PDF