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Our Contributions

1. Using a simple statistical technique, we can break 
single-bit masked secure logic styles including
1. RSL [Suzuki 2004]
2. MDPL [Popp 2005]
3. DRSL [Chen 2006]

2. Side channel resistance obtained by combining 
masking and dual-rail logic is not routing-
independent



Preliminaries: Masked Hardware Signals
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Preliminaries: Masked Logic
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Preliminaries: Random Switching Logic
e r [Suzuki 2004]
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Our Experiment: Sbox in RSL
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Power Probability Distribution for SBOX
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Transitions in 970 RSL gates
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Transitions in single RSL gate

r = 0 r = 1

0 0

evalprechg evalprechg

unmasked
value

'0'

0 1'1'

0 1

0 0

masked value

1 toggle

1 toggle



Power Probability Distribution for SBOX

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

465 470 475 480 485 490 495 500 505

r = 0

r = 1

Toggle Count

2
970

n 970 - n



An Attack using the Power PDF
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An Attack using the Power PDF
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After folding the power PDF around the average value, DPA on
Hamming Weight of input succeeds in only 30 power samples.



Preliminaries: Masking and DRP

Transitions in single MDPL gate
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Preliminaries: Masking and DRP

Transitions in single MDPL gate
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Impact of Routing Imbalances

Transitions in single MDPL gate
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Impact of Routing Imbalances

Transitions in single MDPL gate
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Impact of Routing Imbalances

Transitions in single MDPL gate
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Evaluation using Actual Layout Data

KEY
Round

AES
Round

key

in

out

128

128

128

AES-128 using 16K Dual-rail gates in 0.18 μm CMOS

Cycle-based simulation using weighted toggle counts

Weights from layout (no routing constraints)



0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

331 332 333 334

r = 0

r = 1

Estimated Power PDF of AES



For each power sample in the trace ...
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After folding the power PDF around the average value, DPA on
Hamming Weight of input succeeds in only 2000 power samples.



Related Work

In software implementations, masking is attacked by 
combining multiple power samples or by pre-
characterization of the implementation

[Messerges 2000] Second Order DPA
[Peeters 2005] Maximum-likelihood 
[Oswald 2007] Template Attacks

For cases where mask and masked signal cannot be 
observed separately, Waddle proposes the use of 
squared power samples

[Waddle 2004] Zero-Offset DPA

Our technique demonstrates direct observation of the 
mask value, without the need for circuit 
characterization.

We have demonstrated this with known masked circuit styles



Conclusions

Masking and Dual-Rail Logic are not additive for side-
channel resistance

Secure Circuit Styles cannot be developed without 
considering the system-level perspective on security

Effective countermeasures against our attack will need 
to address the following question: "How can we add a 
mask without adding information?"

When a mask is used to hide the PDF of a data signal, the 
masking process itself should not reveal the mask PDF


