Evaluation of the Masked Logic Style MDPL on a Prototype Chip

Thomas Popp, Mario Kirschbaum, Thomas Zefferer

Graz University of Technology Institute for Applied Information Processing and Communications (IAIK) Side-Channel Analysis Lab

Stefan Mangard

Infineon Technologies AG Munich Security Innovation

Presentation Outline

Introduction

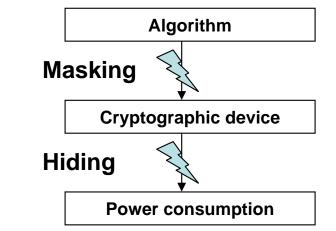
SCARD Chip Analysis

MDPL Problem Analysis

Improvements of MDPL: iMDPL

Conclusions

Thomas.Popp@iaik.tugraz.at


Introduction (1/3)

DPA Countermeasures

- Hiding, Masking (v_m = v * m)
- Levels: Protocol, Architecture, Cell

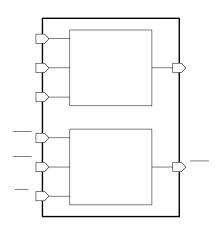
Cell-level countermeasures

- Typically a significant increase in area and power consumption
- Cells from scratch/based on common standard cells
- Suitability for semi-custom design? (constraints)
- Various limiting factors, e.g.:
 - Timing constraints enable signals
 - Balancing of complementary wires
 - Glitches
 - Early propagation

Introduction (2/3)

The early propagation effect (EPE)

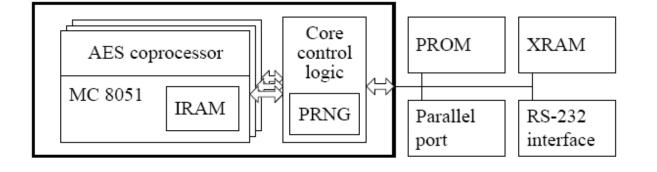
- Generating the output "as soon as possible" and not until all input signals are "valid"
 - E.g.: OR gate with one input = 1
- Moment of switching (power consumption) becomes datadependent
- Affects both hiding and masked logic styles
 - Cells based on common standard cells
- Suzuki and Saeki analyzed the EPE for MDPL
 - Practical verification on FPGA

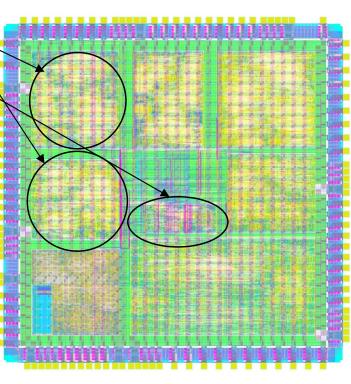

We confirmed the findings for an MDPL-ASIC

Introduction (3/3)

MDPL

- Masked: for DPA resistance
 - one mask m for all signals: $d = d_m \oplus m$
- Dual-rail pre-charged: to avoid glitches
- Mask switches encoding on complementary wires
 - No need for perfect balancing


Line no.	a_m	b_m	m	q_{m}	$\overline{a_m}$	$\overline{b_m}$	\overline{m}	$\overline{q_m}$
1	0	0	0	0	1	1	1	1
2	0	0	1	0	1	1	0	1
3	0	1	0	0	1	0	1	1
4	0	1	1	1	1	0	0	0
5	1	0	0	0	0	1	1	1
6	1	0	1	1	0	1	0	0
7	1	1	0	1	0	0	1	0
8	1	1	1	1	0	0	0	0



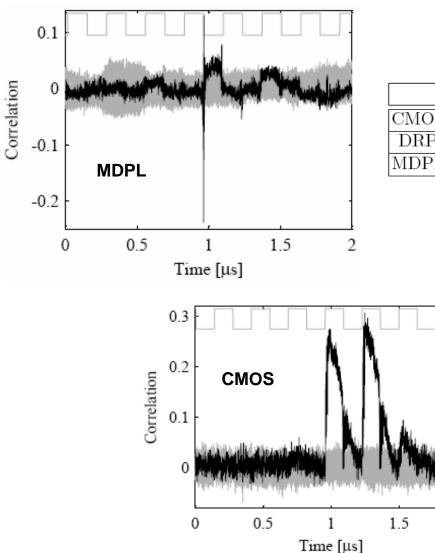
SCARD Chip Analysis (1/3)

The SCARD chip

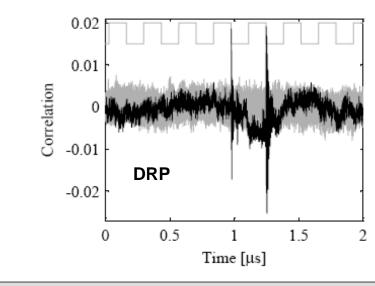
- 8051-compatible MC with AES-128 coprocessor
- Implemented in CMOS, MDPL, DRP-variant (custom cells, parallel routing, no EPE)
- PRNG provides mask bit
- Used clock: 3.686 MHz

SCARD Chip Analysis (2/3)

MDPL 8051-microcontroller shows significant DPA weaknesses


- suffers from EPE
- MDPL AES coprocessor still not broken
 - Up to 3 million measurements
 - Needs further investigations

DPA Attack


- MOV byte in registers (destination cleared beforehand)
- H = HW(moved_byte)
- Digital sampling oscilloscope
 - 1 GHz bandwidth, 4 GS sampling rate
 - Differential probe in V_{DD} line over 10 Ω resistor

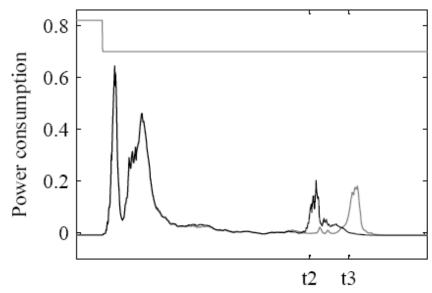
SCARD Chip Analysis (3/3)

2

	Used power traces	Highest absolute correlation peak	Required power traces
CMOS	5000	0.3068	279
DRP	300000	0.0253	43201
MDPL	5000	0.2385	471

Thomas.Popp@iaik.tugraz.at

CHES 2007, Vienna

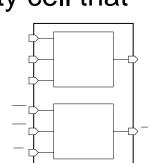

MDPL Problem Analysis (1/4)

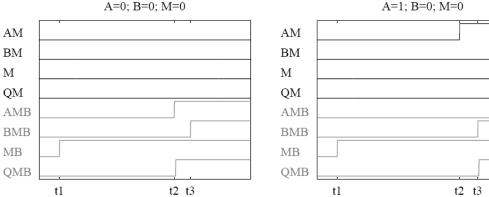
Find Reason for MDPL DPA-leakage

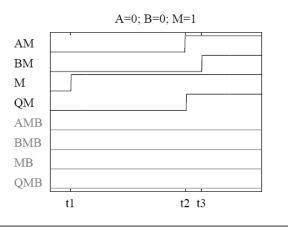
- Transistor-level simulations (Synopsys Nanosim)
 - No interconnect parasitics
- Parts of the 8051-MC that are involved in the MOV

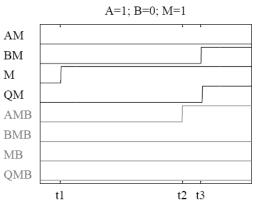
MDPL core simulation

- Moving 0x00 (black) and 0xFF (gray) with mask=0
- Clock cycle in which the correlation peak occurred
- t₃ − t₂ ≈ 1 ns
- Picture for random mask the same! → DPA peak Time




MDPL Problem Analysis (2/4)


What causes $t_3 - t_2 \approx 1$ ns?


- We found many MDPL-AND cells with the following settings in the clock cycle of interest
 A=0; B=0; M=0
 A=1; B=0; M=0
 - M: arrives at t₁
 - A: depends on moved byte, arrives at t₂
 - B: constant 0, arrives at t₃ (longer path)
- Mask changes only the Majority cell that

switches

CHES 2007, Vienna

MDPL Problem Analysis (3/4)

Suzuki and Saeki showed the occurrence of leakage for a more general case

Input B can also be variable

Many MDPL cells behave in the same way

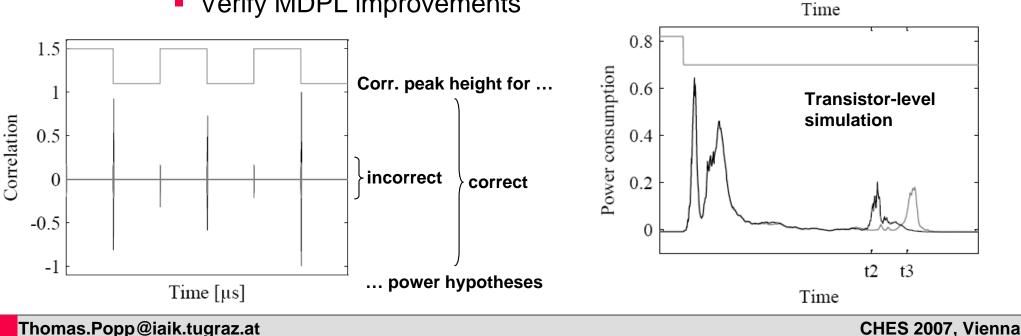
- Other 7 bits
- Other MDPL-AND cells in a similar setting
- Other MDPL cells are fed with the data-dependently delayed signals
- Hundreds of MDPL cells behave in a data-dependent manner

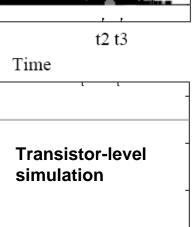
Thomas.Popp@iaik.tugraz.at

MDPL Problem Analysis (4/4)

60

40

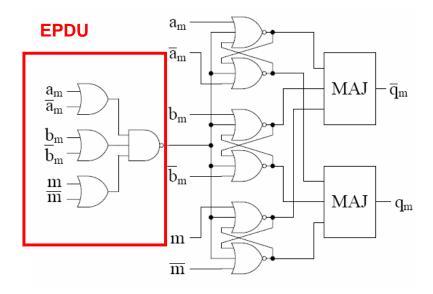

20


0

Transitions

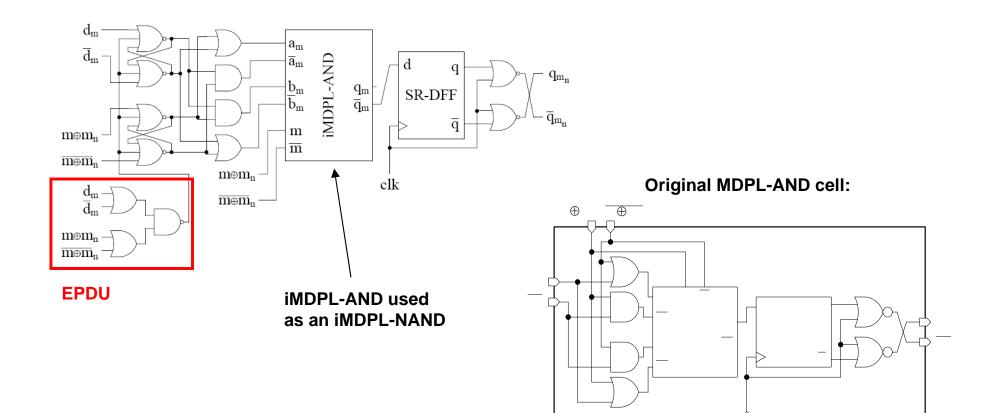
DPA on simulated power traces

- Use logic simulation + transition counting
 - Significant speed-up
 - Verify MDPL improvements


Logic simulation

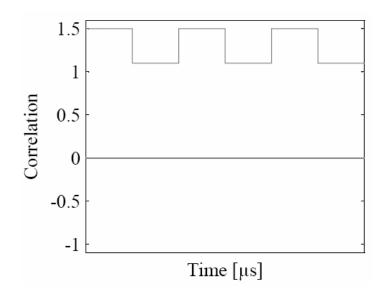
+ trans. counting

Improvements of MDPL: iMDPL (1/3)


Avoid early propagation

- In the precharge and the evaluation phase
- DRSL presented by Chen and Zhou avoids early propagation only in the evaluation phase
- Use SR-latches to stop signals until all have arrived in a differential manner
- Cells of an iMDPL-AND must be connected in a balanced way
 - Only internally

iMDPL-AND:


Improvements of MDPL: iMDPL (2/3) iMDPL-DFF:

Improvements of MDPL: iMDPL (3/3)

DPA on simulated power traces

- iMDPL netlist
- MOV instruction
- Logic simulation + transition counting
- Ideal flat line

iMDPL circuit properties

- Area: ~ 3x MDPL (~15x CMOS)
- Speed: ~1/3x MDPL (~1/6x CMOS)
- Power: ~1.5x MDPL (~ 5x 10x CMOS)

Conclusion and Future Work

Early propagation is another severe problem for DPA-resistant logic styles

MDPL suffers from early propagation

- Verified for ASIC
- But problem seems not to occur always (see AES coprocessor)

iMDPL

- Huge
 - Use it only for critical parts (e.g. non-linear function like S-boxes) that cannot be protected by architectural masking
- Still built from common CMOS standard cells

IAIK Graz University of Technology

The Side-Channel Analysis Lab

http://www.iaik.tugraz.at/research/sca-lab

Side-Channel Analysis Lab