Information Theoretic Evaluation of Side-Channel Resistant Logic Styles

F. Macé , F.-X. Standaert , J.-J. Quisquater

UCL Crypto Group Microelectronics Laboratory Catholic University of Louvain - UCL Belgium

CHES 2007

▲□▶ ▲□▶ ▲□▶ ▲□▶ = □ - つへで

Outline

1 Context & Motivations

Side-Channel Attacks & Countermeasures

- Abstraction Levels
- Motivations
- 2 Proposed Methodology
 - Principles
 - Mutual Information Computation
- 3 Evaluation Results
 - Simulation Environment
 - Experimental Results

4 Conclusions

Side Channel Attacks

Side-Channel Attacks

Information gained from the physical implementation of a cryptosystem.

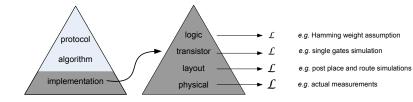
- On a great variety of algorithms
- On a great variety of platforms
- Using different information sources (timing, power, EM,...)

SCA Countermeasures

Existence of SW or HW based countermeasures

SW

- frequently based on time/data randomization
- easy to implement
- extensively studied


ΗW

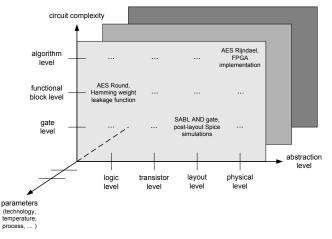
 \sim modification of the physical structure, e.g at gate level :

- asynchronous designs
- dual-rail precharge (DRP) logic styles
- masked logic styles
- mix of DRP and masking
- \rightarrow associated cost to design & test (i.e. for security)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Abstraction Layers

Circuit abstraction levels \Leftrightarrow useful for a simulation based approach


Limit due to : Going deeper in the abstraction levels \Rightarrow different amount of information due to more realistic scenarios.

Physical level is better but simulation approach not meaningless.

Motivations

- Security evaluation methodology
- Unified evaluation metrics
- 1st step : simulation based analysis, transistor level, single gates.

$\begin{array}{l} {\sf Methodology} \ - \ 1 \\ {\sf Assessment \ is \ multidimensional \ problem} \end{array}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Interest for a bottom - up approach.

$\frac{Methodology - 2}{Combination of security and information theoretic metrics [Stand06-IACR eprint]}$

Security Metrics

Strength of the adversary (Success rate)

Information Theoretic Metric

- Amount of leaked information (Mutual Information)
- Corresponds to the asymptotic success rate of a Bayesian adversary ⇒ focus on it in this preliminary step

This Work $\rightarrow 1^{st}$ Step

• discriminating different implementation \Rightarrow Information

Notations

- S_g random variable denoting the correct target signal
- **L** $_{s_g}^q$ a random vector containing q side-channel observations generated by s_g
- Mutual Information : $I(S_g; \mathbf{L}_{s_g}^q) = H[S_g] H[S_g|\mathbf{L}_{s_g}^q]$ where $H[S_g]$ is the entropy of the key class S_g

 $\operatorname{H}[S_g | \mathbf{L}_{s_g}^q]$ is dependant on the behavior of the implementation/countermeasure

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Practical Aspects - 2 : Mutual Information Computation

DRP with no mask \rightarrow direct link to key

$$\mathbf{H}[S_g|\mathbf{L}_{s_g}^q] = -\sum_{s_g} \Pr[s_g] \int \Pr[\mathbf{I}^q|s_g] \cdot \log_2 \frac{\Pr[\mathbf{I}^q|s_g]}{\sum_s \Pr[\mathbf{I}^q|s]} \, dI$$

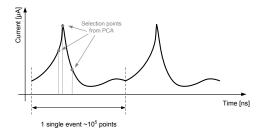
No pre-charge/no mask \rightarrow key + transition (known)

$$H[S_g|\mathsf{L}^q_{s_g}] = -\sum_{s_g} \Pr[s_g] \sum_t \Pr[t] \int \Pr[\mathsf{I}^q|s_g, t] \cdot \log_2 \Pr[\mathsf{I}^q|s_g, t] \ dt$$

Pre-charge and mask \rightarrow key + mask (unknown)

$$H[S_g|\mathbf{L}_{s_g}^q] = -\sum_{s_g} \Pr[s_g] \sum_m \Pr[m] \int \Pr[\mathbf{I}^q|s_g, m] \cdot \log_2 \sum_m \Pr[\mathbf{I}^q|s, m] \cdot \Pr[m] \, dl,$$

*= * = * 2 < C</p>


Practical Aspects - 3 : Leakage exploitation

 \neq Abstraction level $\leftrightarrow \neq$ leakages generated (toggle count, power traces, ...)

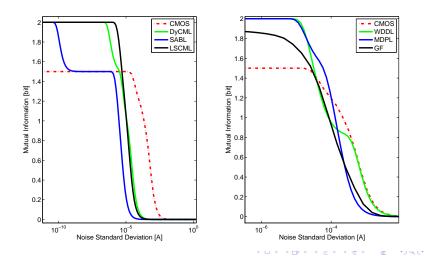
Power Traces

- $I^q_{s_{\sigma}} \rightarrow \text{high dimension data} (> 10^5 \text{ points})$
- Principal Component Analysis (PCA) \rightarrow reduce the high dimensionality [Arch06]

- Statistical tool for dimensionality reduction
- Preserves inter-class variance
- Good results in practice

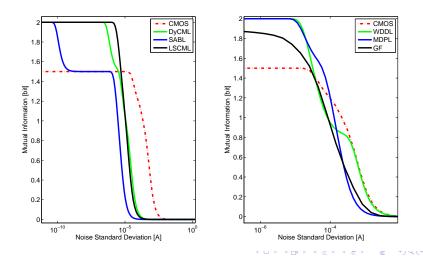
Simulation Environment

Setup

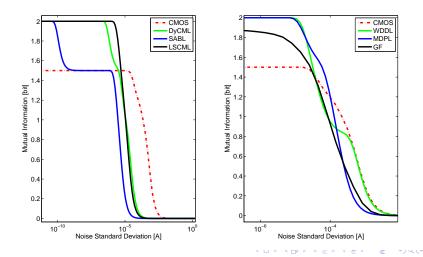

- 0.13µm Bulk CMOS Technology (1.2V)
- BSIM3 model from measurements.
- Simulation on ELDO
- Time resolution 10⁻⁴ ns
- DRP logic styles, masks, full-custom, Std cell based

Evaluated functions

```
AN2, OR2, AN3, OR3, XOR2, MAJ
```


Illustration - 1 Existence of undistinguishable leakages

AN2 Gate


Illustration - 2 Comparison results dependant on the noise variance Masked vs DRP \rightarrow variance based comparison is meaningless

AN2 Gate

Illustration- 3 Full custom logic allows quicker reduction of information

AN2 Gate

Conclusions

Black Box Analysis

Methodology bridges the gap between algorithmic design issues and physical origins of the leakages

Unified Methodology

Applicable to any working principle of the countermeasures, at any circuit level or complexity, for any side-channel

Limitations

Methodology not limited by its own principle but by the extent to which the statistical tool correctly extracts leakage points

Further Work

- Explore different circuit complexity
- Apply the methodology to different abstraction levels
- Determine the impact of other parameters (temperature, technology, ...)
- Existence of a better statistical tool?
- Evaluate the link between information metrics and security metrics