

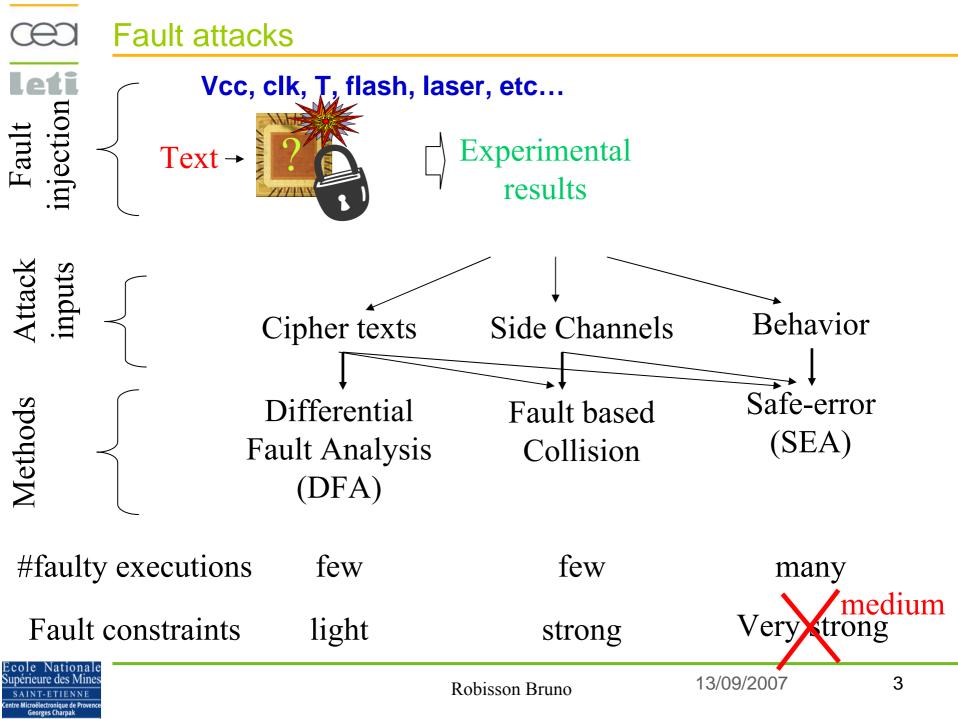
« Differential Behavioral Analysis»

Bruno ROBISSON Pascal MANET

CEA-LETI

SESAM Laboratory (joint R&D team CEA-LETI/EMSE), Centre Microélectronique de Provence Avenue des Anémones, 13541 Gardanne, France

Schedule


leti Introduction

Differential Behavioral Analysis Hypothesis Description Result interpretation Simple case study on AES-128

Relaxing fault hypothesis Minimum number of faulty text Wrong injection Fault multiplicity

Comparison with existing fault attacks

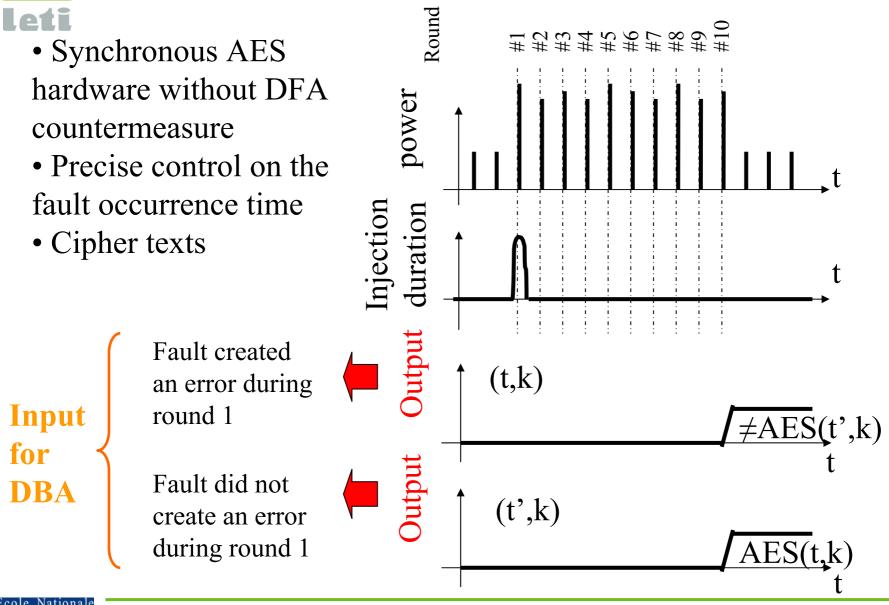
CECI DBA principles

leti

+

Safe-error	Key bits leak only through the information whether the device has a normal behavior or not in presence of fault
DPA	Correlating a power model parameterized by the value of a small number of bits of the key (the partial key) to power measurments
Differential Behavioral Analysis	Correlating a functional model parameterized by the value of a partial key to behaviors of the device in presence of faults

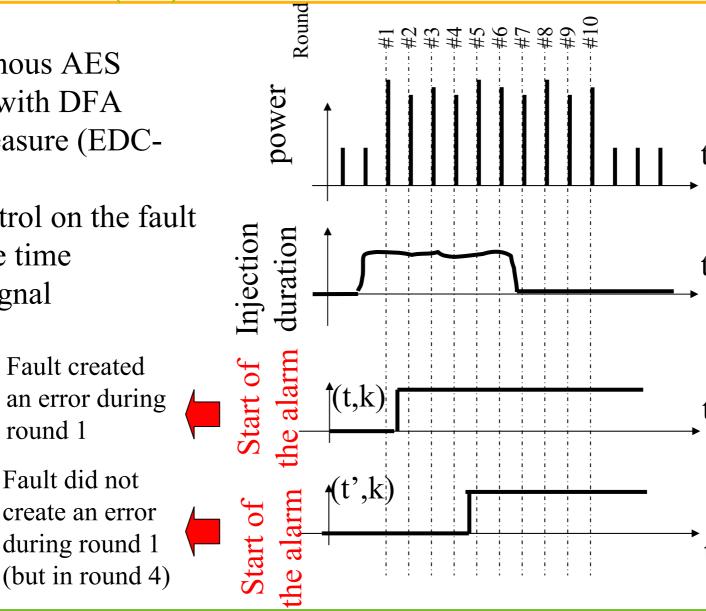
DBA hypothesis


leti

- ➢DPA-like hypothesis
 - Known cryptographic algorithms,
 - Known plain texts (or cipher texts)
 - There must exist intermediate variables (attack bits) that can be expressed as functions depending on the plain texts and on only a small number of key bits
- ≻Fault injection
 - Location : On nodes and instants corresponding to the computation of the attack bits
 - Type : « Stuck-at » possibly of unknown value but identical for each impacted bits
 - Focalization: Must impact only small number of bits (typically less than 8)
 - Repetitivity : Same error for different plaintexts

➢ Distinguish faults which create an error during round one or during another round

Behavior


CCOLE Nationale upérieure des Mines SAINT-ETIENNE nhre Microélectronique de Provence Georges Charpak

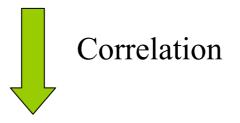
Behavior (bis)

leti

- Synchronous AES hardware with DFA countermeasure (EDCbased)
- Raw control on the fault occurrence time
- Alarm signal

Nationa ctronique de Prov Georges Charpak

Behavior (ter)


Georges Charpak

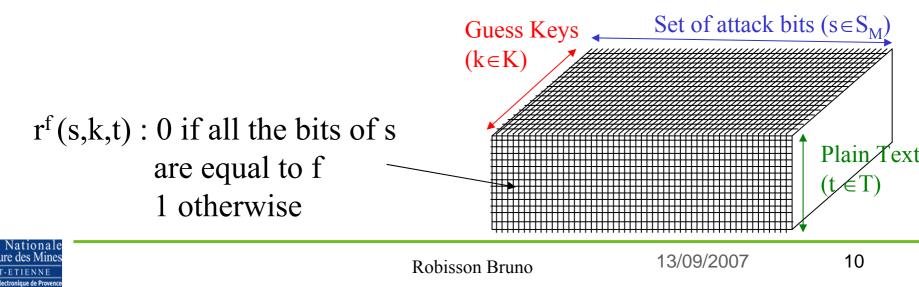
Round leti • Asynchronous AES hardware power • Raw control on the fault occurrence time • Power consumption Injection duration (t,k)Fault created Power an error during round 1 Input for Fault did not (t',k)DBA Power create an error during round 1 (but in round 2) icole Nationa upérieure des Mir 13/09/2007 8 **Robisson Bruno** ectronique de Prove

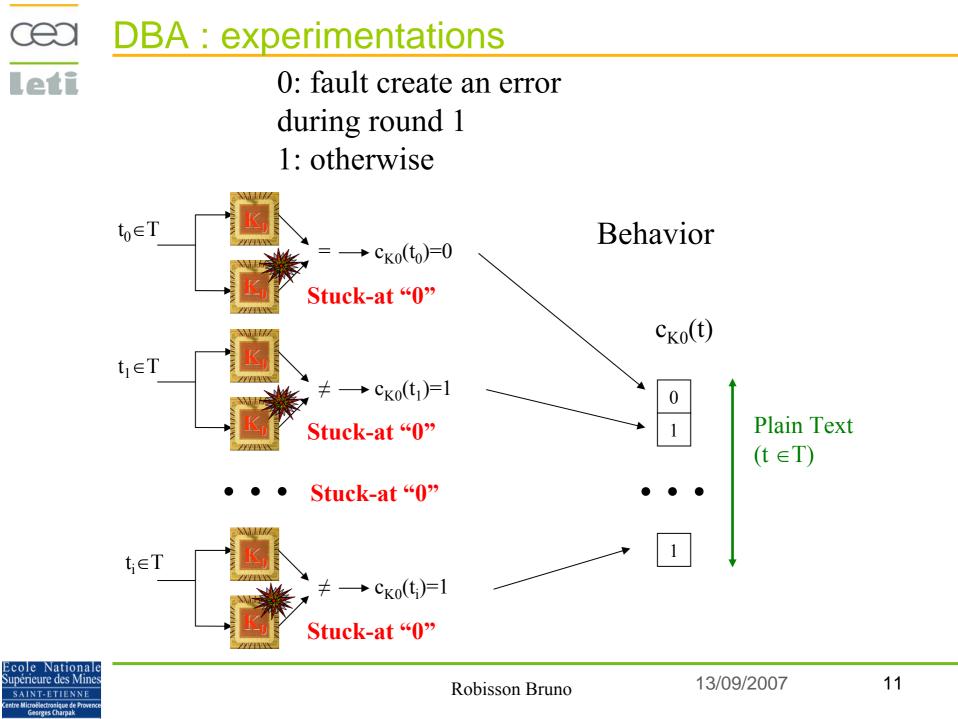
 DBA algorithm : overview

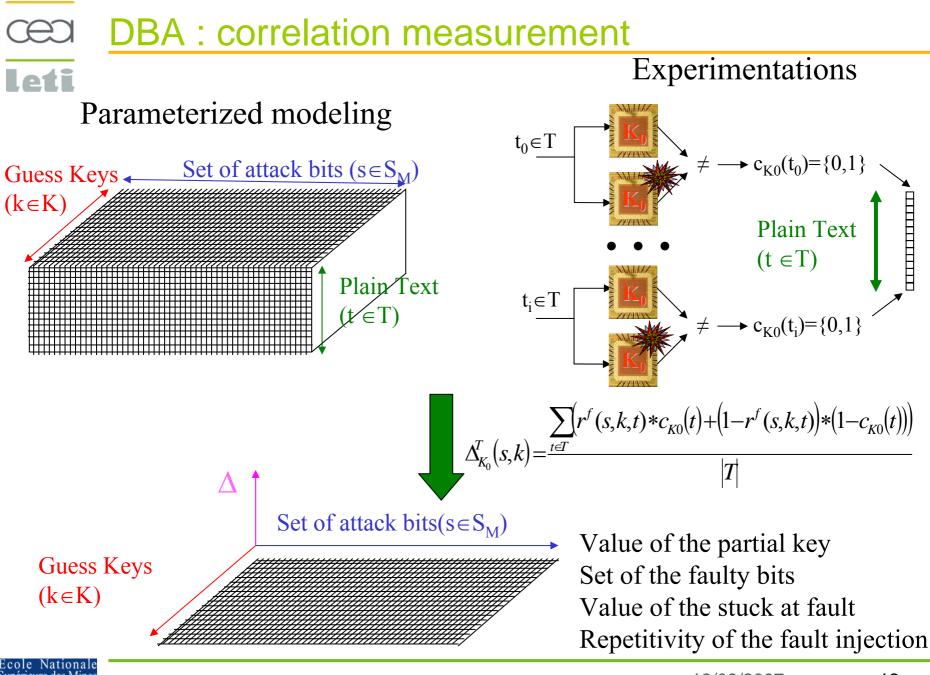
 Leti

Modeling (predicting the value of the attack bits for different guess keys) Experimentations

Value of the partial key


CECI DBA : parameterized modeling


- **Leti** K : set of guess keys
 - T : set of plaintexts
 - **B** : set of attack bits


M : number of bits in B which are supposed to be faulty (M<|B|) S_M : all the possible partial sets from B with at most M elements and at least one

f (optional) : value of the "stuck-at" fault (in {0;1})

Given M and f, compute $r^{f}(s,k,t)$ for all $k \in K$, $t \in T$ and $s \in S_{M}$

Robisson Bruno

rges Charpa

leti

Parameterized modeling

- T : set of the 256 plain texts which exhaust the S-box 0 entries

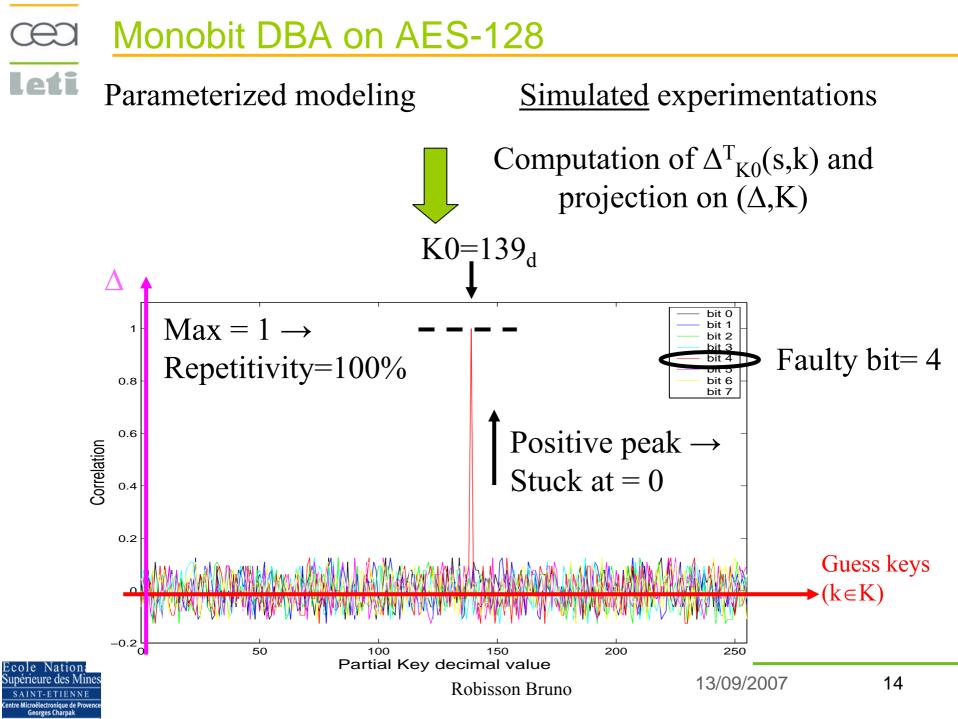
- K : set of the 256 guess keys which exhaust the S-box 0 entries

- B : the 8 bits at the output of S-box 0 during first round

```
- M=1 (so
S<sub>1</sub>={{SB<sub>0</sub>(t\oplusk)},{SB<sub>1</sub>(t\oplusk)},...,{SB<sub>7</sub>(t\oplusk)
}})
```

- f=0

orges Charnal


Simulated experimentations

- Standardized algorithmic description of the AES_{128}

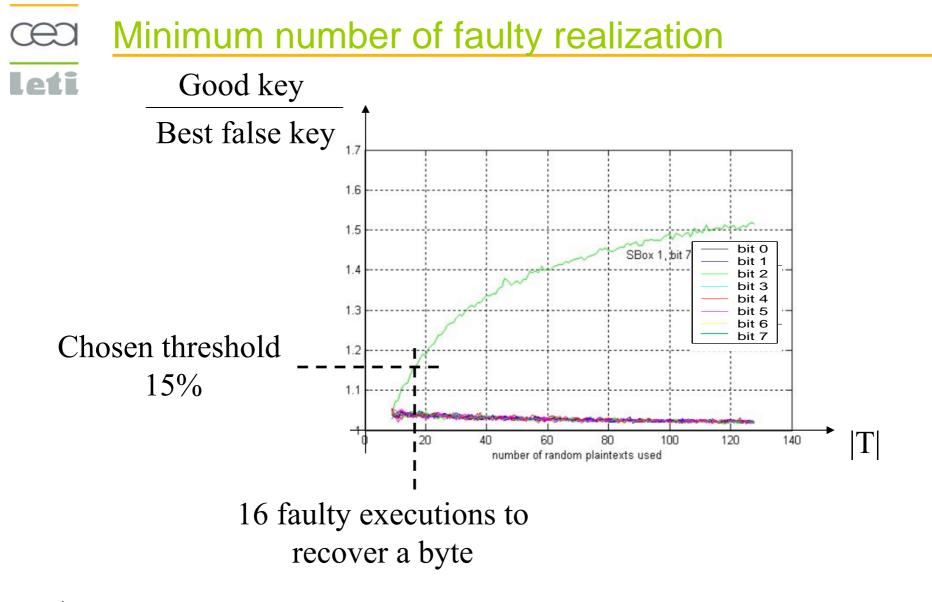
- Modified algorithmic description of the $AES_{128} \rightarrow Stuck-at$ zero, during first round, on **one** bit at the output of S-box 0

- Encryption of each element of T with the unknown key K0 with AES_{128} and with the modified one AES'_{128}

$$\stackrel{\bullet}{\Longrightarrow} r^0(s,k,t) \forall (s \in S_1, t \in T, k \in K)$$

Schedule

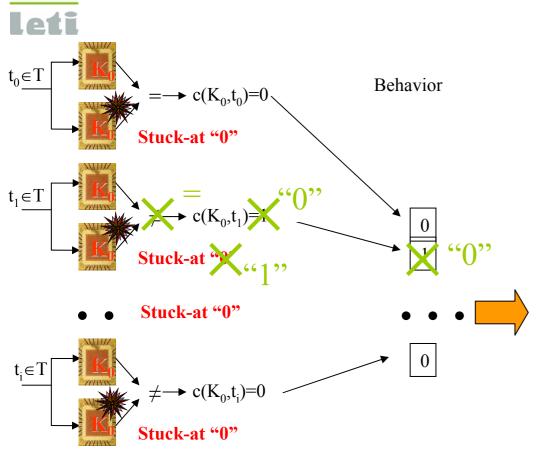
Leti Introduction


Differential Behavioral Analysis Hypothesis Description Result interpretation Simple case study on AES-128

Relaxing fault hypothesis

Minimum number of faulty text Wrong injection Fault multiplicity

Comparison with previous works



The more faulty realizations, the best S/N

Ecole National Supérieure des Mine

> icroélectronique de Proven Georges Charpak

Wrong injection

DBA still successful for low wrong fault injection (WFI) rate

But need for more faulty experiments : 16 with perfect injection ~ 25 with 10% WFI ~ 60 with 20% WFI

And smaller correlation value: 1 with perfect injection ~ 0,90 with 10% WFI

~ 0,80 with 20% WFI

rges Charpa

The more repetitive experimentations are, the best S/N is

CECI Multibit DBA on AES-128

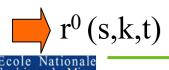
Leti Parameterized modeling

- T : set of the 256 plain texts which exhaust the S-box 0 entries

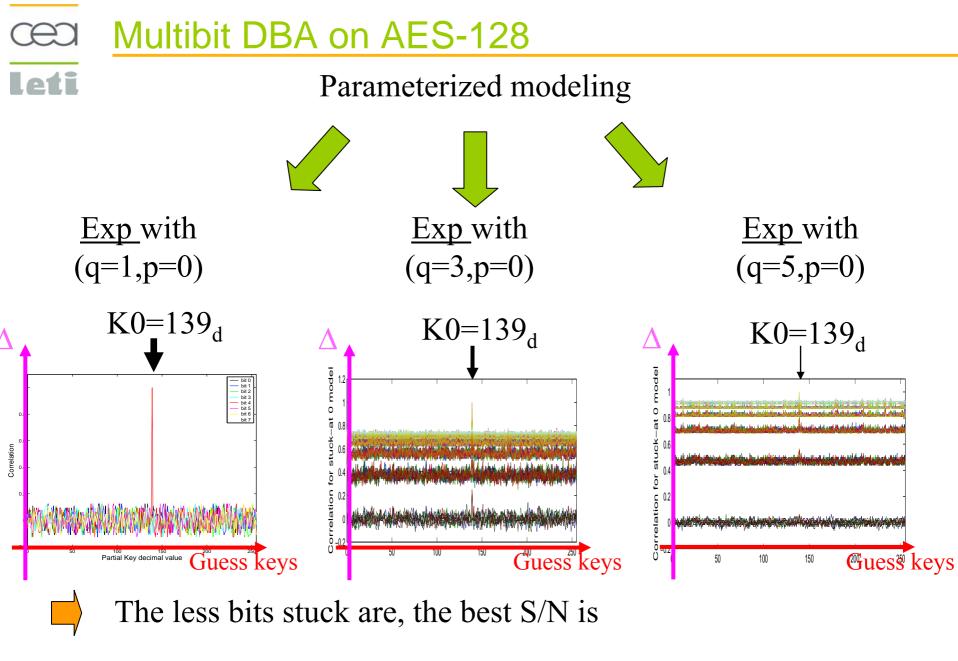
- K : set of the 256 guess keys which exhaust the S-box 0 entries
- B : the 8 bits at the output of S-box 0 during first round

```
- M=8 (S_8 = \{
```

```
\{SB_0\}, \{SB_1\}, \dots, \{SB_7\}, \{SB_0, SB_1\}, \dots, \{SB_6, SB_7\}, \}
```


Simulated experimentations

- Standardized algorithmic description of the AES_{128}
- Modified algorithmic description of the $AES_{128} \rightarrow Stuck-at 0$, during first round, on **q** bits at the output of S-box 0


- Encryption of each element of T with the unknown key K0 with AES_{128} and with the modified one AES'_{128}

```
\{SB_0, SB_1, SB_2, SB_3, SB_4, SB_5, SB_6, SB_7\}, \})
```

- f=0

orges Charpal

Ecole Nationale Supérieure des Mines saint-etienne Georges Charpak

Schedule

Leti Introduction

Differential Behavioral Analysis Hypothesis Description Result interpretation Simple case study on AES-128

Relaxing fault hypothesis Minimum number of faulty text Wrong injection Fault multiplicity

Comparison with previous work

CEC Comparison with previous work

leti

	Attack inputs	Fault hypothesis		•		Fault oriented countermeasure			Side Channel oriented countermeasure		
		Type of	Multiplicity	# distinct	# faulty	Error	Fault	Chip	Path	Data	
		fault		location	realizations	checking	tolerance	sensors	balancing	randomizing	
						+ alarm					
	Cipher text	Random	Byte	4 or 1	"+8 or +2"	X	X	Х			
Collision	Side	Inversion	Bit	16	approx. 32		Х	Х	Х	Х	
SEA	Behavior	Stuck-at	Bit	128	128		Х	Х		x	

Relax fault and experimental constraints

SEA	Behavior	Stuck-at	Bit to Byte	approx. 256 to 4096	X	X	x

N-order DBA?	V

		_	
			_
<u> </u>		~	<u> </u>
	\sim	-	

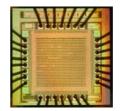
SEA	Behavior	Stuck-at	Bit to Byte	16	approx. 256	Х	Х	
					to 4096			

Efficiency of a new safe-error attack demonstrated on AES and DES algorithms

Realistic attack scenario (robust / EDC and path balancing) but... Define N-order DBA to overcome data-randomizing

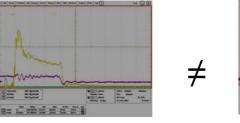
Realistic fault hypothesis (repetitive stuck at on a byte) but... Relax again constraints on fault injection hypothesis

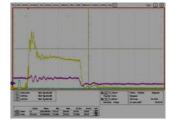
Validated in simulation but...



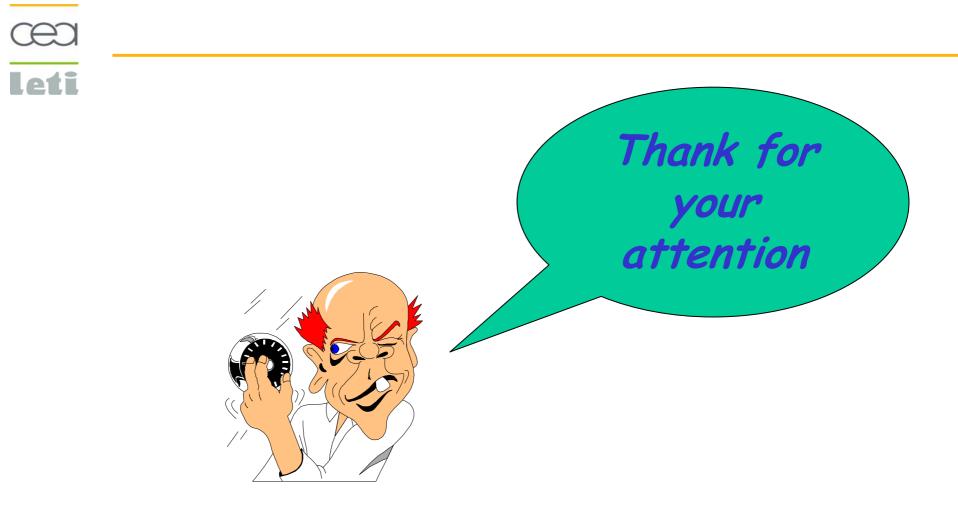
leti

Conclusion


Validation on a real circuit in progress


 \checkmark Choice of the test chips

- \checkmark Choice of the injection method
- ✓ Preparation of the chips


Promissing preliminary results on fault injection on a DES asynchronous circuit

leti

This work has been realized in the frame of the CIMPACA/Micro-PackS BTRS Project cofunded by the "Fonds Social Européen" (FSE) and the "Direction Générale des Entreprises" (DGE).

References

[AES97] Federal Information Processing Standards. Advanced Encryption Standard (AES). FIPS publication 197. **[BIomer03]** J. Blomer and J.-P. Seifert. Fault Based Cryptanalysis of the Advanced Encryption Standard (AES). In Rebecca N. Wright, editor, *Financial Cryptograhy, 7th International Conference, FC 2003, Guadeloupe, January 27-30, 2003*, Lecture Notes in Computer Science, pages 162-181. Springer-Verlag, 2003.

[Chen03] C.-N. Chen and S.-M. Yen. Differential Fault Analysis on AES Key Schedule and Some Countermeasures. In R. Safavi-Naini and J. Seberry, editors, *Information Security and Privacy, 8th Australasian Conference, ACISP 2003, Wollongong, Australia, July 9-11, 2003*, volume 2727 of *Lecture Notes in Computer Science*, pages 118-129. Springer-Verlag, 2003.

[Choukri05] Round Reduction Using Faults Hamid Choukri and Michael Tunstall, In L. Breveglieri and I. Koren, Eds., Workshop on Fault Diagnosis and Tolerance in Cryptography 2005 – FDTC 2005, pp. 13–24, 2005.

[Dusart03] P. Dusart, G. Letourneux, and O. Vivolo. Differential Fault Analysis on A.E.S.In J. Zhou, M. Yung, and Y. Han, editors, *Applied Cryptography and Network Security, First International Conference, ACNS 2003. Kunming, China, October 16-19, 2003*, volume 2846 of *Lecture Notes in Computer Science*, pages 293-306. Springer-Verlag, 2003.

[Giraud03] C. Giraud. DFA on AES. Technical Report 2003/008, IACR eprint archive, 2003. Available at http://eprint.iacr.org/2003/008.ps.

[Monnet06] Yannick Monnet, Marc Renaudin, Regis Leveugle, Christophe Clavier, Pascal Moitrel, *Case study of a fault attack on asynchronous DES crypto-processors*, Workshop on Fault Diagnosis and Tolerance in Cryptography 2006 – FDTC 2006, , LNCS 4236,pp. 88-97

[Piret03] G. Piret and J. J. Quisquater. A differential fault attack technique against SPN structures, with application to the AES and Khazad. Cryptographic Hardware and Embedded Systems Workshop (CHES-2003), pages 77-88, 2003. Lecture Notes in Computer Science No. 2779.

[Blomer06] J. Blömer, V. Krummel, *Fault Based Collision Attacks on AES*, Workshop on Fault Diagnosis and Tolerance in Cryptography 2006 – FDTC 2006, LNCS 4236, pp. 106-120

[Skorobogatov02] S. Skorobogatov and R. Anderson. Optical fault induction attacks. Cryptographic Hardware and Embedded Systems Workshop (CHES-2002), pages 2-12, 2002. Lecture Notes in Computer Science No. 2523.

