Collision Search for Elliptic Curve Discrete Logarithm over GF(2^m) with FPGA

Workshop on Cryptographic Hardware and Embedded Systems (CHES 2007) September 2007

> **Guerric Meurice de Dormale***, Philippe Bulens, Jean-Jacques Quisquater

Université catholique de Louvain UCL/DICE Crypto Group Belgium

Outline

- Motivations
- The attack
- Arithmetic choices & architecture
- Results & cost assessment
- Conclusion

Basics

- Cryptography
- Public-key schemes
- Elliptic Curve Cryptography (ECC)
- Underlying hard problem: ECDLP Given P and Q = $k \cdot P$, find k

Why attacking systems?

• Feasibility

Cost reachable for a given adversary?

- Security of a given set of parameters
- Forecast

How long data will remain secure?

• Means

UCL Crypto Group

- Hardware-based cost assessment (FPGA)

- Cost-effective algorithms and architectures

Solving ECDLP

- - Find a collision by random walks
 - Keep track of points in P,Q basis

$$P = k \cdot Q$$

$$c_i P + d_i Q = c_j P + d_j Q$$

$$\Rightarrow k = (c_j - c_i) / (d_i - d_j) \mod \#P$$

UCL Crypto Group

Pollard p improvements

- Parallelized ρ + distinguished points
- More partitions & adding walks

UCL Crypto Group

ECDLP over GF(2m) with FPGA

Point coordinates

- Point addition in high-speed domain
 - High-speed division: expensive!
 - \rightarrow Projective coordinates: less expensive
- Parallelized ρ + DP: need invariant!
 - Check DP criteria
 - Apply pseudo-random mapping
 - $-P(x,y) \rightarrow P(X,Y,Z)$ with x = X/Z and y = Y/Z
 - → Cheapest coordinates: affine

Proposals

- Previous works
 - Software (Certicom's challenges)
 - Hardware for GF(*p*) curves
 - Rough ASIC extrapolation for (small) GF(2^m)
- Our work

UCL Crypto Group

- Real FPGA results
- Recommended polynomials (NIST, SECG)
- Polynomial basis

 $p(z) = z^{163} + z^7 + z^6 + z^3 + 1$

Whole system

9 炎

ECDLP over GF(2m) with FPGA

UCL Crypto Group

Microelectronics Laboratory

Modular arithmetic

- Squarer 1000101000001000101
 - Recommended $p(z) \rightarrow$ very cheap
- Multiplier
 - Digit-serial by parallel (moderate throughput)
 - Parallel using Karatsuba (high throughput)
- Inverter divider
 - Euclidean divider
 - Nice for low throughput
 - Impractical for high throughput

Modular arithmetic

- Inverter divider
 - Euclidean Montgomery inverter
 - More expensive for low & high throughput
 - Fermat's little inverter ($a^{-1} = a^{2^{m-2}} \mod p(z)$)
 - Few multiplications with IT \rightarrow nice for high throughput
- Mult/inverter trade-offs with Montgomery trick

a⁻¹, b⁻¹?
$$\rightarrow$$
 (a × b)⁻¹ × a = b⁻¹
(a × b)⁻¹ × b = a⁻¹

4 strategies

- Tiny
 - 1 ALU for all operations
- Small
 - 1 serial multiplier, 1 serial divider
- Medium

1 parallel multiplier, dedicated repeated squarers

• Large

Fully unrolled Fermat inverter and multipliers

Medium processor

ECDLP over GF(2m) with FPGA

Medium processor

UCL Crypto Group

Computation: $M = Mb \times R1$ S = 5 Sqr(M) $M = Mb \times S$ S = 10 Sqr(M)

. . .

Sqr() i times i=0,1,2,5,10,20,40,81 i'=0,1,2,5,10,40,41

ECDLP over GF(2m) with FPGA

Medium: results

Freq = 100 Mhz, elec price = 0.1 US\$/kWh

m	113	131	163
FPGA	S3E1600-5	S3E1200-4	S3E1600-5
Area [kSlices]	13.9 (95%)	7.9 (90%)	10.9 (75%)
Area [bRAMs]	18 (50%)	21 (75%)	25 (70%)
Throughput [PA/s]	2 × 10 ⁷	10 ⁷	9 .10 ⁶
Thr./cost [PA/s\$]	6.10 ⁵	4.8 .10 ⁵	2.7 .10 ⁵
Consumption [W]	4.2	3.2	3.8
Elec. price [\$/1 year]	3.7	2.8	3.3

Cost assessment

- Attack on *m*=163 in 1 year
 - Spartan3E-1600 COPACOBANA (10k\$, 1.2 kW)
 - 125 .10⁶ devices → \$1.4 10¹²
 - 1/10th is for power!
- Rough 90 nm ASIC extrapolation m=163
 - Area: 20, speed: 3.5, consumption: 14
 - Die size Spartan3E-1600: 2.5 × 2.5 *mm*
 - 300 *mm* wafer cost: 2 × 30k\$ → \$2.2 10⁹
 - Half is for power!

Cost assessment

- Attack on *m*=113 (SECG) in 1 year
 2 COPACOBANA → \$22,000
- Comparison with GF(2¹⁰⁹) in software

 Computer price: \$150, consumption: 250W
 Purchase price: 35, consumption: 500
- Comparison with GF(p) 160-bit (Guneysu et al. fpga'07)
 - ➔ Throughput ratio: 50

Further work

- Launch a real attack on COPACOBANA
- Montgomery trick for medium architecture
- Use of *negation* and *Frobenius* map
- Attack GF(p) curves using FPGA Mult.

Conclusion

- Attacks against 163-bit GF(2^m) curves seems impractical
- Attacks against 113-bit GF(2^m) curves is feasible (\$22,000 / 1 year)
- Confirm that:
 - HW more efficient than SW (power!)
 - $GF(2^m)$ faster than GF(p)

Questions ?

http://www.dice.ucl.ac.be/crypto

