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Coprocessors on smart cards have been designed to speed up RSA

Examples:

Infineon SLE66 ACE 1024 Bit modular multiplication

Hitachi/Renesas AE4 1024 Bit modular
Montgomery multiplication

Philips P5/P8 FAME-X           modular multiplication, 
max bit length depending on memory

Coprocessors on Smart Cards



The focus of coprocessor design is speedup of modular 
multiplication.
This is very good for the RSA algorithm with the intended key size.

Efficient implementation becomes tricky in the following cases:

- Operations with a greater modulus than supported by hardware
( Paillier, 1999  ;  Fischer , Seifert,  CHES 2002 )  

- Elliptic curve Cryptography   
Here the costs for other operations than modular multiplication,
especially modular inversion,  are non-negligible.

This talk deals with modular inversion 

Coprocessors on Smart Cards



Inversion needs much more CPU interaction than modular multiplication

- Inversion can be up to 100 times slower than multiplication
on a smart card with coprocessor.

- Less inversions are necessary when using projective co-ordinates
( e.g. Jacobian or López-Dahab co-ordinates)

- Even with these optimisations, inversion may take about 20% of
the run time of an ECDSA signing procedure with 192 bit keys.  

- On the other hand, coprocessor registers have been designed
for much longer keys (i.e moduli), as used in RSA cryptography.   

Modular Inversions in ECC



The standard tool for inversion is the extended Euclidean algorithm

To invert  u mod v,  it computes numbers
u0=u, u1, u2 ,..., un and v0=v, v1, v2 ,..., vn =gcd(u,v),  

with ui = vi -1 and  vi = ui -1 mod  vi -1 .

It also computes numbers λi , λ’i with λi u= ui , λ’i u= vi  (mod  v) ,
so that λ’n  is the requested inverse of u mod v in case gcd(u,v) = 1.
(We can start with  λ0 =1 , λ’0 =0) .

Our modular inversion algorithm comes from the following idea :
Since coprocessors registers are much longer than needed for ECC,
we may put each of the pairs  (ui , λi )  and (vi , λ’i )  into a single
coprocessor register.

The Extended Euclidean Algorithm



The above idea leads to a very simple modular inversion algorithm

Algorithm NINV

Input:  Integers u,v > 0,  extension factor f > 2v .
Output: Modular inverse x=u-1 (mod v) or error if u not invertible.

[1] Put U = fu + 1, V = fv .
[2] While V ≥ f + v do

{ T = V ,  V = U mod V ,  U = T } .

[3] If V > f - v then  return V - f and stop ,
else return “error” and stop .

Modular inversion with a non-extended Euclidean Algorithm



Step 2 of the algorithm performs the Euclidean process on
U = fu + 1  and  V = fv  for a suitable f,  (roughly) until 
the current remainder Vi in step [2] has the same  size as  f. 

U and V  have about twice the bit length of  u and v .
So for typical ECC bit lengths they fit well into 1024--bit registers.
This may save a lot of instructions on some coprocessors.

The values U, V in the i-th iteration of step [2]  can be  con-
sidered as representations of (ui , λi )  and (vi , λ’i ) , respectively.

However, the Euclidean process on  U and V might not lead to the 
same Euclidean quotients as the corresponding process on  u and  v .

The proof of correctness of Algorithm NINV is not trivial !

Observations on Algorithm NINV



Let  V=V0 , V1 ,..., Vi , ...  be the value of V after i iterations of step [2] . 

The correctness of Algorithm NINV follows from

Theorem
In case gcd(u,v) = 1 there is a Vi with  Vi-1 > 2f - v ,  f + v > Vi > f - v,
and (Vi - f ) u = 1   ( mod v ).
Otherwise there is no  Vi    with 2f ≥ Vi > v/2.

The proof of the theorem uses continued fractions
and is given in the paper. 

Correctness of Algorithm NINV



Algorithm NINV has been implemented on the Infineon SLE66CX322P.
Its coprocessor “ACE” operates on 560 or 1120-bit integers.

Since the Euclidean quotients are usually quite small, it is best to use
the fast shift and add/subtract operations on that coprocessor.  
Run times obtained on this  SLE66CX322P:    

Implementation

Algorithm 160 bit 192 bit 256 bit 320 bit
Extended  Euclidean 4.80 ms 5.73 ms 7.46 ms 9.16 ms

NINV 2.09 ms 2.43 ms 3.16 ms 4.45 ms

So we have more than doubled the speed of the implementation 
(compared to the standard extended Euclidean algorithm).
This leads to a significant speedup of the ECDSA signing procedure.



More on Implementation
The implementation is based on very simple coprocessor instructions,
such as additions/subtractions and shifts.

These instructions are not much more expensive than some glue 
instructions such as register switching, loop control etc. 
Using less variables in Algorithm NINV than in the standard algorithm
saves a lot of glue instructions. 

Comparison of V with f + v in the main loop costs an extra subtraction.
Since the CPU has to keep track of the bit length of V anyway
(due to the architecture of the coprocessor), we may check the bit 
length of V instead, if we choose f = 3 ·2k  for a  k with   k ≥ log2(v) - 1 .
Then by Thm. 1,  a (unique) value  V with  2k+2 > v+f > V > f - v > 2k+1

exists if and only if   u is invertible modulo v.



Most papers on optimisation of the GCD calculation and modular 
inversion algorithm deal with different situations:

Improving the calculation of the GCD of long integers on
a CPU with fixed size (e.g 32 bit)
Lehmer 1938, Jebelean 1993

Optimisation of a GCD hardware circuit 
Lórencz,  CHES  2002 

In contrast to these objectives,
we try to make good use of an oversized arithmetic unit
(designed for RSA cryptography) in EC cryptography,
when computing a modular inverse.

Comparison to other GCD implementations



Thank you
for listening!
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