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Our new approach combines

r engineer’s insight (Which properties / features of
the physical device have (significant) impact on the
side-channel signal? (qualitative assessment))

r with efficient stochastic methods (exploiting this
information in an optimal way)

Profiling: much more efficient than template attacks

Key Extraction: The efficiency is
r determined by the engineer’s skills

r limited by the efficiency of template attacks
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The Stochastic Model

target algorithm: block cipher (no masking)

x ∈ {0,1}p  (known) part or the plaintext or ciphertext

k ∈ {0,1}s   subkey

t                 time

deterministic part
(depends on x and k)

=  ht(x,k)  +

quantifies the random-
ness of the side-channel
signal at time t

Random variable
(depends on x and k)

It(x,k)

Noise

Random variable

Rt

E(Rt) = 0
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r  Task: Estimate the function ht  for all

      t ∈ { t1,t2,…,tm } (measurement times)

r  Naïve Approach: Estimate ht(x,k) = E (It(x,k))

 independently for each (x,k) ∈ {0,1}p × {0,1}s

r  Drawback: Giantic number of measurements

Profiling, Step 1:
Approximating the Deterministic Part
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ht

Fu;t 

geometric

visualization

r The unknown function ht is interpreted as an
element in a real vector space F.

r Approximate ht by its orthogonal projection h*t

onto a suitably chosen low-dimensional vector
subspace Fu;t

More favourable procedure (I)

ht*
.
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More favourable procedure (II)

The subspace

is spanned by known functions gjt : {0,1}p × {0,1}s → IR

The projection h*t is the best approximator of ht
in Fu;t   (= nearest element of Fu;t ).

Select functions g0t,…,g(u-1)t under consideration of
the attacked device.
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Theorem: The image h*t of ht under the orthogonal
projection meets a minimum property:
For each subkey k and random plaintext X the
expectation

E ( ( It(X,k) – h’(X,k) )2 )

attains its minimum on Fu;t for h’=h*t

1st Minimum Principle (I)
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1st Minimum Principle (II)

In other words:

Note: The image under the orthogonal projection,
  h*t ∈ Fu;t , can be determined without the

 knowledge of ht  !

The estimation of h*t can completely be moved
to the low-dimensional subspace Fu;t .
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Example: AES (I)

r here: x , k ∈ { 0,1 }8

r ht(x,k)  depends only on the sum x ⊕ k

r → It is sufficient to determine ht(x,k) for any single subkey k.

x1, x2,x3,...,x16 : Input (16 Byte)

x1 ⊕ k1,...,x16 ⊕ k16

S(x1 ⊕ k1),..., S(x16 ⊕ k16)

………………

AddRoundKey()

SubBytes()

k1, k2,k3,...,k16 : Key (16 Byte)

S SSS

⊕
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Example: AES (II)

Reasonable candidates for the functions gjt(x,k):
g0t(x,k) = 1
gjt(x,k) = jth bit of S(x ⊕ k)        for 1 ≤ j ≤ 8
….

interpreted as a real-valued function {0,1}8 → IR

vector subspace generated by g0t ,g1t ,…,g8t

F9;t   = < g0t ,g1t ,…,g8t >

Note:  dim(F9;t) = 9  while  dim (F ) = 256

no information on ht
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r Task: Estimate the coefficients β*0t, …,β*(u-1)t  of h*t

               with respect to the base g0t,…,g(u-1)t

        for each t ∈ { t1, ..., tm }

r Procedure:
1. perform N1 measurements (i.e. observe N1

encryptions) at the training device
2. calculate the least-square-estimator (requires no

more than elementary linear algebra)

measurement times

Profiling, Step 1:
Approximating the Deterministic Part
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Profiling, Step 2: Modelling the noise

r Assumption: The random vector (Rt1 , …, Rtm) is
multi-variate normally distributed with covariance
matrix C

r ht1,…,htm and  C  yield the conditional density
     f (. | x,k) for (It1(x,k), …, Itm(x,k)).

r Profiling, Step 2:
r Perform N2 further measurements (i.e., observe N2

further encryptions at the times t1, …, tm)
r Determine estimators C and f (. | x,k)

for C and  f (. | x,k)

~ ~
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Key Extraction: Maximum Likelihood Method

r The adversary
r performs N3 measurements at the target device
r substitutes the measured data into the estimated

densities f (. | x,k) for each subkey k
r decides for that subkey k° that maximizes this

term (maximum-likelihood principle)

details: paper

~
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Key Extraction: Minimum Principle

r Alternative key extraction strategy: based on a
2nd minimum property

r Properties:
r Key extraction efficiency: smaller than for the

maximum-likelihood method
r Profiling: saves Step 2 (modelling the noise)

details: paper
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Experimental Results (I)

Power analysis at an unprotected AES
implementation on an ATM163 microcontroller

x1, x2,x3,...,x16 : Input (16 Byte)

x1 ⊕ k1,...,x16 ⊕ k16

S(x1 ⊕ k1),..., S(x16 ⊕ k16)

………………

AddRoundKey()

SubBytes()

k1, k2,k3,...,k16 : Key (16 Byte)

S SSS

⊕
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Experimental Results (II)

Time tTime t

coefficient ß3,t in F9;t 

coefficient ß7,t in F9;t 
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Empirical probabilities
for the correctness of the rank 1-candidate

r For all instants t we used the vector subspace
F9;t = F9 := <  1, jth bit of S(x ⊕ k) for 1 ≤ j ≤ 8  >

99.99 %             > 99.99 %99.89 %           99.95 % 19.67 %30

99.85 %             99.96 %98.31 %           98.82 %  9.70 %20

97.97 %             99.25 %92.92 %           95.15 %  6.04 %15

84.12 %             90.17 %73.45 %           78.69 %  2.74 %10

61.12 %             68.34 %48.20 %           53.88 %  1.31 %  7

36.30 %             41.43 %28.47 %           33.40 %  0.82 %  5

Maximum-likelihood (N1=1000)

m=7(N2=1000)   m=21(N2=5000)

Minimum Principle (N1=2000)

m=7                 m=21

DPA

(HW model)

N3
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Impact of Different Subspaces

F2;t = F2 := < 1, HW (S(x ⊕ k)) >
F10;t = F10 := < F9, most significant 2nd order monomial > 
F16;t = F16 := < F9, all consecutive 2nd order monomials >

80.19 %

F10

65.05 %75.29 %

F16F9

77.31 %72.94 %37.77 %10

F9F10F2

N1 = 5000N1 = 2000N3

Key Extraction: Minimum Principle

N1 is too small
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Example AES

No. of profiling series (exploiting symmetry):

r template attack: 256

r new stochastic method: 1 - 2



 W. Schindler  August 30, 2005 Slide 22

Generalizations and Remarks

r Our approach can be generalized in a natural way
r to masking
r to multi-channel attacks
(details: paper).

r Profiling:
r usually: known test key.
r also works with unknown test keys (additional

computations)
rmay completely be skipped (reduces the efficiency

at key extraction)
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Conclusion

We introduced a new methodology for differential
side-channel attacks that
r combines engineer’s insight with stochastic

methods
r enables to determine those properties that have

significant impact on the side-channel signal
r enables efficient assessment of the risk potential

of a side-channel attack
r profiling: much more efficient than for template

attacks
r key extraction efficiency: determined by the

suitability of the chosen vector subspace Fu;t
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