

A Stochastic Model for Differential Side Channel Cryptanalysis

Werner Schindler¹, Kerstin Lemke², Christof Paar²

- ¹ Bundesamt für Sicherheit in der Informationstechnik (BSI)
 53175 Bonn, Germany
- ² Horst Görtz Institute
 Ruhr University Bochum
 44780 Bochum, Germany

Edinburgh, August 30, 2005

Introduction

A new stochastic approach

Fundamental ideas and benefits

Experimental results

- Comparison with other attacks
- Generalizations

Conclusion

Method	Profiling Step (Training Device)	Key Extraction Step (Target Device)
DPA/DEMA	no	yes
Template Attack	yes	yes
New Stochastic Approach	YES (, but can be skipped)	yes

 engineer's insight (Which properties / features of the physical device have (significant) impact on the side-channel signal? (qualitative assessment))
 with efficient stochastic methods (exploiting this information in an optimal way)

Profiling: much more efficient than template attacks
Key Extraction: The efficiency is
determined by the engineer's skills
limited by the efficiency of template attacks

target algorithm: block cipher (no masking) $x \in \{0,1\}^p$ (known) part or the plaintext or ciphertext $\mathbf{k} \in \{0,1\}^{s}$ subkey time t $I_{t}(x,k) = h_{t}(x,k) + R_{t}$ deterministic part Random variable Random variable (depends on x and k) (depends on x and k) $E(R_{t}) = 0$ quantifies the random-Noise ness of the side-channel signal at time t

■ Task: Estimate the function h_t for all $t \in \{ t_1, t_2, ..., t_m \}$ (measurement times)

■ Naïve Approach: Estimate $h_t(x,k) = E(I_t(x,k))$ independently for each $(x,k) \in \{0,1\}^p \times \{0,1\}^s$

Drawback: Giantic number of measurements

- **The unknown function** h_t is interpreted as an element in a real vector space F.
- \Box Approximate h_t by its orthogonal projection h_t^* onto a suitably chosen low-dimensional vector subspace $F_{u:t}$

geometric

visualization

für Sicherheit in der Informationstechnik

The subspace

$$\mathcal{F}_{u;t} := \{h' \colon \{0,1\}^p imes \{0,1\}^s o \mathrm{I\!R} \mid \sum_{\mathrm{j}=0}^{\mathrm{u}-1} eta'_{\mathrm{j}} \mathrm{g}_{\mathrm{j}\mathrm{t}} ext{ with } eta'_{\mathrm{j}} \in \mathrm{I\!R} \}$$

is spanned by known functions $g_{it}: \{0,1\}^p \times \{0,1\}^s \rightarrow IR$

Select functions $g_{0t}, \dots, g_{(u-1)t}$ under consideration of the attacked device.

The projection h_t^* is the best approximator of h_t in $F_{u;t}$ (= nearest element of $F_{u;t}$).

Theorem: The image h^{*}_t of h_t under the orthogonal projection meets a minimum property: For each subkey k and random plaintext X the expectation

$$E((I_t(X,k) - h'(X,k))^2)$$

attains its minimum on $F_{u;t}$ for h'=h^{*}_t

Note: The image under the orthogonal projection, $h_t^* \in F_{u;t}$, can be determined **without the knowledge of h**_t !

In other words:

The estimation of h_t^* can completely be moved to the low-dimensional subspace $F_{u:t}$.

 $\hfill \hfill here: x$, $k \in$ { 0,1 } 8

- □ $h_t(x,k)$ depends only on the sum $x \oplus k$
- **\square (R)** It is sufficient to determine $h_t(x,k)$ for any single subkey k.

Reasonable candidates for the functions $g_{it}(x,k)$: $g_{0t}(x,k) = 1$ $g_{jt}(x,k) = j^{th}$ bit of $S(x \oplus k)$ for $1 \le j \le 8$ interpreted as a real-valued function $\{0,1\}^8 \rightarrow IR$ $F_{9;t} = \langle g_{0t}, g_{1t}, \dots, g_{8t} \rangle$ vector subspace generated by g_{0t} , g_{1t} ,..., g_{8t} Note: dim($F_{9;t}$) = 9 while dim (F) = 256 no information on h_t

Profiling, Step 1: Approximating the Deterministic Part

■ Task: Estimate the coefficients $\beta^*_{0t}, ..., \beta^*_{(u-1)t}$ of h^*_t with respect to the base $g_{0t}, ..., g_{(u-1)t}$ for each $t \in \{t_1, ..., t_m\}$ measurement times

Procedure:

für Sicherheit in der Informationstechnik

- 1. perform N_1 measurements (i.e. observe N_1 encryptions) at the training device
- 2. calculate the least-square-estimator (requires no more than elementary linear algebra)

- Assumption: The random vector (R_{t1}, ..., R_{tm}) is multi-variate normally distributed with covariance matrix C
- □ $h_{t1},...,h_{tm}$ and C yield the conditional density f (· | x,k) for (I_{t1}(x,k), ..., I_{tm}(x,k)).
- □ Profiling, Step 2:
 - Perform N₂ further measurements (i.e., observe N₂ further encryptions at the times t_1, \ldots, t_m)
 - Determine estimators C and f (· | x,k) for C and f (· | x,k)

Key Extraction: Maximum Likelihood Method

- □ The adversary
 - **\square** performs N₃ measurements at the target device
 - substitutes the measured data into the estimated densities f (· | x,k) for each subkey k
 - decides for that subkey k° that maximizes this term (maximum-likelihood principle)

details: paper

- Alternative key extraction strategy: based on a 2nd minimum property
- □ Properties:
 - Key extraction efficiency: smaller than for the maximum-likelihood method
 Profiling: saves Step 2 (modelling the noise)

details: paper

Experimental Results (I)

Power analysis at an unprotected AES implementation on an ATM163 microcontroller

Experimental Results (II)

coefficient $\mathcal{B}_{3,t}$ in $F_{9,t}$ 4 bit3.out з 2 -1 0 - 1 -2 0 1000 3000 4000 5000 6000 2000 coefficient $\beta_{7,t}$ in $F_{9;t}$ 5 bit7.out 4 з 2 -1 0 - 1 -2 õ 1000 2000 3000 4000 5000 6000 Time t

Bundesamt für Sicherheit in der Informationstechnik Empirical probabilities for the correctness of the rank 1-candidate

■ For all instants t we used the vector subspace $F_{9;t} = F_9 := < 1$, jth bit of S(x \oplus k) for $1 \le j \le 8 >$

N ₃	DPA (HW model)	Minimum Pri m=7	nciple (N ₁ =2000) m=21		ihood (N ₁ =1000) m=21(N ₂ =5000)
5	0.82 %	28.47 %	33.40 %	36.30 %	41.43 %
7	1.31 %	48.20 %	53.88 %	61.12 %	68.34 %
10	2.74 %	73.45 %	78.69 %	84.12 %	90.17 %
15	6.04 %	92.92 %	95.15 %	97.97 %	99.25 %
20	9.70 %	98.31 %	98.82 %	99.85 %	99.96 %
30	19.67 %	99.89 %	99.95 %	99.99 %	> 99.99 %

$$F_{2;t} = F_2 := < 1$$
, HW (S(x \oplus k)) >
 $F_{10;t} = F_{10} := < F_9$, most significant 2nd order monomial >
 $F_{16;t} = F_{16} := < F_9$, all consecutive 2nd order monomials >

Key Extraction: Minimum Principle

N ₃	N ₁ = 2000				N ₁ = 5000			
	F ₂	F ₉	F ₁₀	F ₁₆	F ₉	F ₁₀		
10	37.77 %	75.29 %	72.94 %	65.05 %	77.31 %	80.19 %		
\uparrow \uparrow N ₁ is too small								

Example AES

No. of profiling series (exploiting symmetry):

template attack: 256

new stochastic method: 1 - 2

Our approach can be generalized in a natural way

 to masking
 to multi-channel attacks
 (details: paper).

 Profiling:

 usually: known test key.
 also works with unknown test keys (additional computations)

may completely be skipped (reduces the efficiency at key extraction)

Conclusion

We introduced a new methodology for differential side-channel attacks that

- combines engineer's insight with stochastic methods
- enables to determine those properties that have significant impact on the side-channel signal
- enables efficient assessment of the risk potential of a side-channel attack
- profiling: much more efficient than for template attacks
- □ key extraction efficiency: determined by the suitability of the chosen vector subspace $F_{u:t}$

Contact

Werner Schindler Bundesamt für Sicherheit in der Informationstechnik (BSI), Germany Werner.Schindler@bsi.bund.de

Kerstin Lemke Horst Görtz Institute Ruhr University Bochum, Germany Iemke@crypto.rub.de

Christof Paar Horst Görtz Institute Ruhr University Bochum, Germany cpaar@crypto.rub.de