
1

DeKaRT: DeKaRT: A New Paradigm for
Key-Dependent Reversible Circuits

Jovan Goliæ
System on Chip, Telecom Italia Lab, Italy

CHES 2003, Cologne, Germany

2

OverviewOverview

1. Introduction

2. Probing Attacks and Data Scrambling

3. DeKaRT Method

4. Application for Block Ciphers

5. Power Analysis and Masking

6. DeKaRT Construction with Masking

7. Conclusions

3

1. Introduction1. Introduction

• Main motivation: resistance to side-channel attacks
• Side-channel attacks on microelectronic data-processing

devices implementing cryptographic functions aim at
recovering secret information through various
measurements, without changing the functionality
(passive)
– Probing attacks (physically invasive)
– Timing attacks
– Power analysis attacks
– Electromagnetic radiation attacks

4

• Countermeasures
– Algorithmic: changes in hardware and/or software

implementations of algorithm
– Physical: passivation layers, shielding, detectors, sensors,

filters, glue logic, ...

• Algorithmic countermeasures against probing attacks
– Encryption or data scrambling of internal links and

memories

• Algorithmic countermeasures against power analysis
attacks
– Masking with random masks: on software or hardware

level

5

2. Probing Attacks and Data Scrambling2. Probing Attacks and Data Scrambling

• Probing attacks are invasive techniques consisting in
introducing conductor microprobes into certain
points of a tamper-resistant chip to measure
electrical signals

• Cryptographic function need not remain secure if
intermediate data dependent on secret key is revealed

• Vulnerable points
– Links and memories with regular structure: RAM, bus

between CPU and RAM, bus between CPU and
cryptoprocessor

• Countermeasures
– Encryption or data scrambling (simplified encryption)

6

• Encryption has to be done on hardware level,
typically in only one CPU cycle (transparency)

• For memories, encryption can depend on the address,
and address can be encrypted too

• Code instructions can also be encrypted

• For buses, encryption can be achieved by bitwise
XOR and a centralized (pseudo)random number
generator implemented in hardware

• This solution is not satisfactory for memories, as only
one known pair of original and encrypted data yields
the encryption key for a given memory location

7

• Usual block ciphers are too complex (gate count,
speed, and power consumption)

• Restricted cryptanalytic scenario
– Partially known ciphertext

• Small and variable data block sizes (e.g., 8, 16, 32)
• For small block sizes,

– one can simplify block ciphers, by reducing block size and
number of rounds, and additionally use key-controlled bit
permutations between rounds, in order to increase key size

– however, security level is poor

• For very small block sizes,
– key size is too small to resist meet-in-the-middle attacks

8

• For small block sizes,
– inherent vulnerability to dictionary attack in known or

chosen plaintext scenario; not realistic and does not
recover secret key

– criterion: secret key reconstruction attacks should be
impractical, as the same key can be used for different
scrambling functions

• Secret key for scrambling should be innovated for
each new execution of cryptographic function
– should be stored in a protected register, not RAM

– can be generated by a (pseudo)random number
generator

9

• Main objective:
In an iterated construction, each layer should
– implement a key-dependent reversible

transformation

– incorporate a relatively large number of key bits
(impossible in usual costructions, for small block
sizes)

– have small logical depth and small size (gate
count)

10

3. DeKaRT Method3. DeKaRT Method

• Iterated and granular construction, in which each
layer consists of a number of elementary building
blocks, each block implementing a key-dependent
reversible transformation

• A generic building block acts on a small number of
input data bits, divided into two groups of control
and transformed bits
– Control bits, which are taken intact to the output, choose

key bits, which then choose a key-dependent reversible
transformation acting on transformed bits which has to be
easily implementable by a logical circuit

11

Generic DeKaRT Building BlockGeneric DeKaRT Building Block

•• Underlying design paradigmUnderlying design paradigm: D=>K=>RT
– Data-chooses-Key-chooses-Reversible_Transformation

MUXkR

km2

L

n m

mn

k m

12

• The problem is thus reduced to designing key-
dependent reversible transformations acting on
a smaller block size, with a difference that they do
not have to depend on a relatively large number of
key bits

• For example, such transformations can be
implemented by a logical circuit composed of XORs
and (controlled) SWITCHes
– For each XOR, one input is a key bit
– For each SWITCH, control bit is a key bit

• For cryptographic security, certain additional
properties regarding the choice of reversible
transformations can be imposed

kR

kR

13

An Elementary DeKaRT Building BlockAn Elementary DeKaRT Building Block

MUX

3x 4x
key

3 3 33

1x 2x

1y 2y 3y 4y

Size = 13 MUXes, Depth = 4 MUX levels, Key = 12 bits

14

Generic DeKaRT NetworkGeneric DeKaRT Network

15

• Layers are connected by fixed bit permutations
satisfying the basic diffusion properties
– Control bits in each layer are used as transformed bits in

the next layer

– In each building block, both control bits and transformed
bits are extracted from maximal possible number of
building blocks in preceding layer

• For data scrambling, a relatively small number of
layers may suffice, e.g., 3 to 5

16

4. Application for Block Ciphers4. Application for Block Ciphers

• Block size is larger, e.g., 128

• To increase cryptographic security, a larger number
of layers is needed, e.g., 32 or larger

• Between layers, in addition to bit permutations, use
simple linear functions, e.g.,
– XOR every transformed data bit at the input to each layer

with a different transformed data bit from preceding layer

• XOR additional keys with input and output bits

17

• DeKaRT construction can also be used for key
expansion algorithm
– Linearly expand the secret key to fit the round key size

(avoid small subsets of expanded key bits to be linearly
dependent)

– Use expanded key as input to another DeKaRT network,
with possibly simplified building blocks, which is defined
by a fixed key

– Take intermediate outputs as round keys

– Desirable property: round keys are connected together by
reversible transformations

18

5. Power Analysis and Masking5. Power Analysis and Masking
• Differential power analysis (DPA) Kocher et al. 99 is

a powerful technique which
– reconstructs the secret key in a divide-and-conquer manner,

by partitioning the power curves measured in the known or
chosen plaintext scenario

– uses simple mathematical tools and
– is practically independent of particular implementation
– works if power consumption depends on the values being

computed

•• Fundamental algorithmic hypothesis for DPAFundamental algorithmic hypothesis for DPA
– In the secret key algorithm, there exist intermediate variables

correlated to functions of a small number of key bits and
known input or output data

19

Masking on Hardware LevelMasking on Hardware Level

• XOR input bits with random masking bits

• Modify logical circuit implementing cryptographic
function: masked circuit acts on masked data bits
and on (input, output, and auxiliary) masking bits

• Masking bits should preferably be produced by a
random number generatorrandom number generator, each time the
cryptographic function is executed

•• Secure computation assumption:Secure computation assumption: To prevent DPA, To prevent DPA,
the output value of each logical gate in masked the output value of each logical gate in masked
circuit should be statistically independent of secret circuit should be statistically independent of secret
key and input information key and input information

• XOR output bits with random masking bits

20

• The whole logical circuit can be masked by
masking individual logical gates

• Consider a logical gate implementing a Boolean
function f (X)

• Let R be a binary vectorial input mask and r a
binary output mask

• Masked gate is a logical circuit implementing the
function f’(X’, R, r) = f (X’ R) r

• If X’=X R, then f’(X’, R, r) = f(X) r

•• Problem:Problem: how to compute how to compute f’(X’, R, r) securely?securely?

⊕⊕

⊕ ⊕

21

• The computation is secure if each gate has an
independent output masking bit; this requires a lot of
memory to store the masking bits

• Alternatively, one can repeat the same masking bits
– e.g., the output masking bit for a logical gate can be the

same as one of the input masking bits, but secure
computation assumption has to be satisfied

• More sophisticated power analysis attacks, such as
higher-order DPA, may be applicable if the total
number of masking bits is too small

• Masking on logical gate level is more secure than
masking on software level, as ALL (elementary)
computations are secure

22

6. DeKaRT Construction with Masking6. DeKaRT Construction with Masking

• The m-bit control MUX block can be masked by
masking the constituent individual 1-bit control
MUXes

• Logical circuit for implementing reversible
transformations, composed of SWITCHes and
XORs only, can be masked by masking the
constituent SWITCHes
– XORs are not masked; they change the masking bits only

• Masking bits should be assigned to individual gates
so as to satisfy secure computation assumption

23

Masking MUX gateMasking MUX gate

• Messerges et al. US patent, Sept. 2001
• Mask a MUX by a cascade of a SWITCH and a MUX,

where the SWITCH is controlled by the control
masking bit and the MUX is controlled by the masked
control bit

3

r
MUX rc ⊕

0ry ⊕0rx ⊕

0),,(MUX rcyx ⊕

Masked MUX

)(0r)(0r

rc ⊕

r
0rx ⊕ 0ry ⊕

Masked SWITCH

24

• Messerges et al. US patent, Sept. 2001, can directly
be applied to a tree of MUXes implementing a
lookup table for a given Boolean function (in fact,
one can show that only 2 masking bits suffice)

• Alternatively, it can be applied to any logical circuit
consisting of MUXes, but the masking assignment
should be such that for every MUX
– 2 input masking bits are the same; this can be achieved by

using additional XORs to adapt the masks

– control masking bit is independent of input masking bit

25

A Masked DeKaRT Building BlockA Masked DeKaRT Building Block

)(r)(r)(r)(r

)(0r

)(0r

)(0rr ⊕)(0rr ⊕

)(0r)(0r)(0r)(0r

3 3 3 3

MUX MUX

3

3

r

MUX

r

)(0rr ⊕

)(0r

)(0rr ⊕

0r
)(0rr ⊕)(0rr ⊕

0r 0r

26

7. Conclusions7. Conclusions

• DeKaRT is a new general method for
– encryption of internal links and memories in data-processing

devices against probing (and power analysis) attacks
– hardware-oriented block ciphers

• Masked DeKaRT construction provides security
against power analysis and other side-channel attacks on
logical gate level

•• Masking on logical gate level is more secure than Masking on logical gate level is more secure than
masking on software levelmasking on software level

• Analyzing cryptographic security of DeKaRT networks,
in chosen plaintext and possibly partially known
ciphertext scenario, is an interesting research problem

