A DPA Attack Against the Modular Reduction within a CRT Implementation of RSA

Bert den Boer, Kerstin Lemke, Guntram Wicke T-Systems ISS GmbH

Presentation at CHES 2002

DPA Attack against a CRT Implementation of RSA Contents

- RSA Cryptosystem
- DPA Attack against a non-CRT Implementation
- DPA Attack against a CRT Implementation
 - General Approach
 - Results
 - Practical Efficiency
 - Limitations and Countermeasures
- Conclusion

DPA against a CRT Implementation of RSA RSA Cryptosystem

- Secret Primes p and q
- Public Modulus N with N = pq
- Public Exponent e
- Secret Exponent d with $e d \equiv 1 \pmod{(p 1, q 1)}$
- Decryption (RSA Decryption, RSA Signing):

$$y = x^d \mod N$$

Encryption

 $x=y^e \bmod N$

=====!"§==Systems=

DPA against a non-CRT Implementation of RSA Square Multiply Algorithm

• 'Top-down Square Multiply' Algorithm to perform $c = a^b \mod m \ \mathrm{in} \ \mathbb{Z}_m$ $b = [b_{n-1}b_{n-2}\cdots b_1b_0]$

```
c := 1
for k := n-1 down to 0 do {
    c := c*c mod m
    if b[k]=1 then c := c*a mod m
}
return c
```

=====!"§==Systems=

DPA against a non-CRT Implementation of RSA Approach for DPA Attack against the Exponent

- Key hypotheses H(j)
 - Guesses on next exponent bits or
 - Guesses on next modular operations
- Selection Functions d(x,j)
 - n-bit Hamming weight W(x) of predicted intermediate data x for each key hypothesis H(j):

d(x,j) = W(x,j) - E(n)

- Correlation between $d(x_i, j)$ and Power Consumption $P(x_i, t)$
 - Absolute maximum of correlation coefficient identifies the correct key value j

DPA against a CRT Implementation of RSA CRT Algorithm (Garner)

Split exponent

$$d_p = d \mod (p-1) \qquad d_q = d \mod (q-1)$$

Perform 2 exponentiations:

$$v_1 = x^{d_p} \mod p$$
 $v_2 = x^{d_q} \mod q$

• Using
$$P_q = p^{-1} \mod q$$

Calculate

u := (v2-v1)*Pq mod q y := v1+u*p return y

=====!"§==Systems=

DPA Attack against a CRT Implementation of RSA Main Idea

The remainder r₀ of an input value x₀ modulo a secret prime q is successively attacked by DPA

$r_0 = x_0 \bmod q$

The gcd of (x_0-r_0) and the public RSA modulus N = p q gives the prime q

$$q = gcd(x_0 - r_0, N)$$

DPA Attack against a CRT Implementation of RSA General Approach

MRED: <u>Modular Reduction on Equidistant Data</u>

Use of equidistant input data x_i at each k measurement series:

$$x_i = x_0 - i \cdot (256)^k$$

• Each measurement series k compromises the k-th byte of the remainder r_0 (k=0: least significant byte of r_0)

$$F_k = r_0 \mod (256)^k$$
$$F_k = \sum_{i=0}^{k-1} f_i \cdot (256)^i$$

=====!"§==Systems=

DPA Attack against a CRT Implementation of RSA Hypotheses on the Remainder

 H_{ji} is $\{(r_i \mod (256)^{k+1}) \dim (256^k) = (j-i) \mod 256\}.$

H_{ji}	x_0	x_1	$ x_2 $	x_3	x_4		x_i
H_{0i}	0	255	254	253	252	• • •	$-i \mod 256$
H_{1i}	1	0	255	254	253	• • •	$(1-i) \mod 256$
H_{2i}	2	1	0	255	254		$(2 - i) \mod 256$
H_{255i}	255	254	253	252	251	9 - 694	$(255 - i) \mod 256$

=====!"§==Systems=

DPA Attack against a CRT Implementation of RSA Selection Function

• The selection function d(x,j) is based on 8 bit Hamming weight.

d_{ji}	x_0	x_1	x_2	x_3	x_4		x_i
d_{0i}	0	8	7	7	6		$W(H_{0i})$
d_{1i}	1	0	8	7	7		$W(H_{1i})$
d_{2i}	1	1	0	8	7		$W(H_{2i})$
	1999) 1997 - Santa S		(494).	363 (3203	
d_{255i}	8	7	7	6	7		$W(H_{255i})$

=====!"§==Systems=

DPA Attack against a CRT Implementation of RSA Successive Approximation

Check for each measurement series k that

$$gcd(x_0 - F_k - i \cdot (256)^k, N) \stackrel{!}{=} 1.$$

If the gcd is 1

= Run DPA on measurement series k to compromise f_k

else

=> The modulus N is factorized by the gcd (end criterion).

DPA Attack against a CRT Implementation of RSA Results using simulated measurement data 1/3

Fig. 1. Graphical representation of the absolute correlation coefficients on the base of 256 single measurements. Correlations coefficients c(j,t) < |0.2| are neglected in this trace for clarity reasons.

=====!"§==Systems=

DPA Attack against a CRT Implementation of RSA Results using simulated measurement data 2/3

	100000 10010
+1.000000	66
+0.750000	194
+0.625000	2
+0.625000	130
+0.562500	34
+0.562500	98
+0.531250	50
+0.531250	82
+0.515625	58
+0.515625	74
+0.507812	62
+0.507812	70
+0.503906	64
+0.503906	68
+0.501953	65
+0.501953	67
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Hypothesis Correlation Coefficient Relative Displacement of f_0

=====!"§==Systems=

DPA Attack against a CRT Implementation of RSA Results using simulated measurement data 3/3

Fig. 2. Graphical representation of the correlation coefficients on the base of 256 single measurements. The smaller correlation amplitudes around $f_0 \pm 128$ of Fig. 1 turned out to be mainly of negative sign.

=====!"§==Systems=

DPA Attack against a CRT Implementation of RSA Attack Efforts against 1024 Bit RSA Key

Attack Tasks of MRED

No. of Measurement Series:	60-62
No. of Single Measurements per Serie	es: 500 - 5000
Single Measurement Data Size:	small
Overall Measurement Time:	1 day to 3 weeks
Overall Re-Synchronisation Time:	few hours to 2 days
No. of DPA calculations:	60-62
Overall DPA calculation time:	few hours to 1 day
Overall Time:	2 days to 1 month

Table 3. Summary of the Attack Efforts needed for a 1024 bit RSA key

DPA Attack against a CRT Implementation of RSA Limitations and Countermeasures

- Basic Assumptions for MRED:
 - 1. High number of single measurements
 - 2. Variation of input data is equidistant
 - 3. Equidistant Variation of the input data results in equidistant variation of the remainder

Countermeasures

- 1. Usage counters / Failure Counters (RSA Decryption only)
- 2. Padding Formats (RSA Signing only)
- 3. Destroy

$$(x_0 - i \cdot (256)^k) \mod q = r_0 - i \cdot (256)^k$$

e.g. by multiplicative message blinding

=====!"§==Systems=

DPA Attack against a CRT Implementation of RSA Conclusion

A new DPA attack has been presented that compromises a secret prime at the modular reduction step of a CRT implementation.

The moral is

- to <u>secure the reduction modulo a secret prime</u> and to <u>destroy the basic assumption of MRED</u>:

$$(x_0 - i \cdot (256)^k) \mod q = r_0 - i \cdot (256)^k$$