New Algorithm for Classical Modular Inverse

Róbert Lórencz

CTU in Prague

CR

CHES 2002

9/8/2002

Introduction - Modular Inverse

- Inseparable part of cryptographic algorithms.
- Always needed classical modular inverse (CMI).
- Computation CMI over GF(p) is based mainly on algorithms derived from Euclidean algorithm.
- Efficiency of computing CMI for large integers depends on adaptability of the algorithm to the architecture.

Algorithms solving CMI suitable for HW implementation

- Penk's binary algorithm (right-shift)
- Algorithm based on the Montgomery algorithm (right-shift)
- Proposed left-shift algorithm

All algorithms are based on solving gcd with extended Euclidean algorithm.

Algorithm computing CMI Euclidean Algorithm

p and a positive integer, gcd(p,a) = 1, p > a > 0

$$r_{0} = p$$

$$r_{1} = a$$

$$g_{i} = \lfloor r_{i-2} / r_{i-1} \rfloor$$
Starting conditions, guarding conditions, and recurrent equations for computing CMI.
$$r_{i} = r_{i-2} - q_{i}r_{i-1}$$

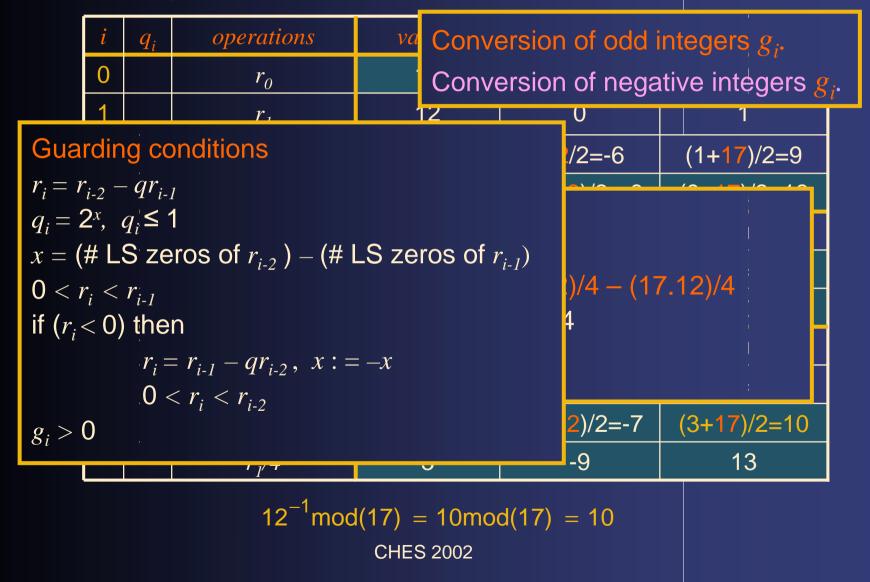
$$0 < r_{i} < r_{i-1}$$

$$f_{i} = f_{i-2} - q_{i}f_{i-1}$$

$$g_{i} = g_{i-2} - q_{i}g_{i-1}$$

$$a^{-1} \operatorname{mod}(p) = g_{n} \operatorname{mod}(p)$$

Penk's Algorithm for CMI Description



Montgomery Algorithm for CMI Description

 $r_{2} = r_{0} - q_{2}r_{1}$ $r_{2} = 17 - 1/4[12] = 14$ $(q_{2}^{-1})r_{2} = r_{0}(q_{2}^{-1}) - r_{1}$ (4)14 = 17(4) - 12(1)

I. phase of the Montgomery Algorithm computes $2^k a^{-1} \mod (p)$, where *k* is the number of deferred halvings.

Guarding conditions

 $r_i = r_{i-2} - q_i r_{i-1}$ $q_i = 2^{x_i}, q_i \leq 1$ This condition is $x = (\# LS \text{ zeros of } r_{i-2}) - (\# LS \text{ zeros of } r_{i-2})$ eliminated by multiplying equation $r_i = r_{i-2} - q_i r_{i-1}$ $0 < r_i < r_{i-1}$ with q_i in each iteration. if $(r_i < 0)$ then Then we obtain **Diophantine equations** $r_i = r_{i-1} - q_i r_{i-2}, \quad x := -x$ $q_1^{-1}q_2^{-1}...q_i^{-1}r_i = pf_i + ag_i$ $0 < r_i < r_{i-2}$ where $q_1^{-1}q_2^{-1}\dots q_i^{-1}$ induce deferred halvings. 128 = -17(8) + 12(5 + 17) $2^{7}12^{-1} \mod (17) = 22 \mod (17) = 5$

Drawbacks of previous algorithms

Both algorithms convert odd integers, and test conditions for performing operations $+/-(r_i > 0)$.

Penk's Algorithm:

- conversions of odd and negative values (includes testing) ⇒ more +/- operations,
- conversions are carried out simultaneously with computing remainders ⇒ less shifts.

Montgomery Algorithm for CMI:

- computation without negative numbers ⇒ no conversions and testing ⇒ less +/- operations,
- computing *a*⁻¹mod *p* in 2nd phase ⇒ conversion of odd integers (deferred halvings) in *k* iterations ⇒ more shifts steps.

New Left-shift (LS) Algorithm for CMI Description

- It computes efficiently CMI without redundancies of arithmetical operations in extended Euclidean Algorithm.
- Left-shifting approach needs no conversions of odd or negative values.
- 2's complementary code allows to work with negative integers and choose easily operations +/- in computing CMI.

New LS Algorithm for CMI

Description

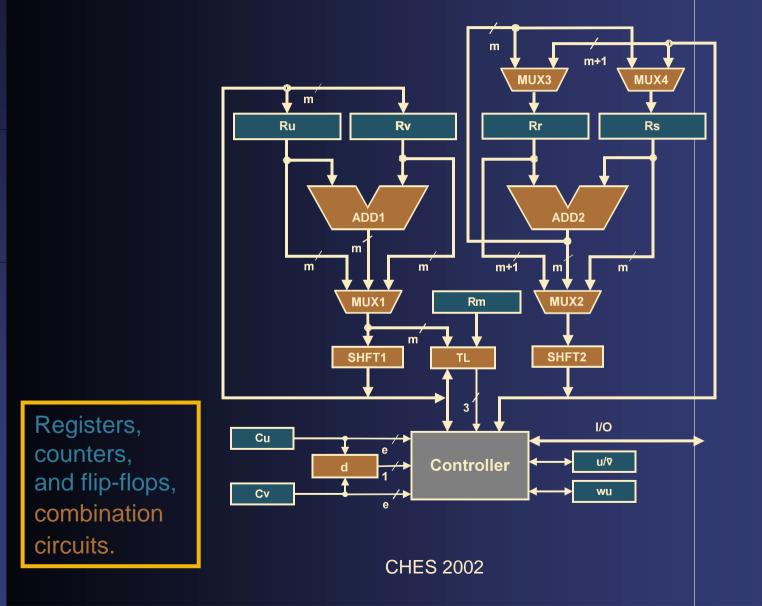
 $r_2 = r_0 - q_2 r_1$ $r_2 = 17 - 2[12] = -7$ $r_i = r_{i-2} \pm q_i r_{i-1}$ -7 = 17(1) - 12(2) $r_2 = pf_2 + ag_2$ $r_3 = r_1 + q_3 r_2$ -2 = 17(2) - 12(3) $r_{4} = r_{2} - q_{4}r_{3}$ -3 = -17(3) + 12(4) operands.

Guarding conditions $q_i = 2^x, q_i \ge 1$ $x = (\# needed bits of r_{i-2}) - (\# needed bits of r_{i-1})$ $0 < |r_i| < |r_{i-1}| \Rightarrow$ negative integers r_i $r_3 = 12 + 2[17(1) - 12]$ if $(q_i < 0)$ then \Rightarrow simple bit test $r_i = r_{i-1} \pm qr_{i-2}, x := -x$ $0 < |r_i| < |r_{i-2}|$ $r_4 = 17(1) - 12(2) - 2$ Operation +/- is chosen according to sign bits of

$$\begin{aligned} r_5 &= r_4 - q_4 r_3 \\ r_5 &= -17(3) + 12(4) - 2[17(2) - 12(3)] = -1 \\ -1 &= -17(5) + 12(7) \end{aligned}$$

 a^{-1} mod(p) = (-g_5)mod(p) = (-7)mod(17) = 10

A circuit implementation of LS Algorithm



Performance analysis and comparison Simulation for $p < 2^{14}$

Simulation of computation of CMI v More than 14.10⁶ inverses was compy y each argonthm.

Algorithm	+/-		5 5		+/- & tests		
	min, max	av.	mir max	av.	min,	max	av.
LS	2-21	9.9	2-26	23.3	2-	21	9.9
Montgomery	4-40	21.1	6-54	38.2	5-	45	26.2
Penk's	6-53	27.1	2-26	18.1	9-	80	40.4

- LS Algorithm is optimized for reducing the # of +/- operations.
- The +/- operations are critical in integer arithmetic due to carry propagation in long words.
- The table does not include tests v > 0 (this is essentially $v \neq 0$).

Performance analysis and comparison LS Algorithm for 3 cryptographic primes

Primes	n	+/-		shifts		inverses	
		min, max	av.	min, max	av.		
$2^{192} - 2^{64} - 1$	192	64-182	133	343-382	380	3,929,880	
2 ²²⁴ – 2 ⁹⁶ + 1	224	81-213	155	408-446	441	4,782,054	
2 ⁵²¹ – 1	521	18-472	388	999-1040	1029	4,311,179	

- The average # of +/- operations approximately grows linearly with n. The multiplicative coefficient is ≈ 0.7 for all 3 primes.
- The average # of shifts is nearly 2*n*.
- Similar results hold for primes $p < 2^{14}$.

Performance analysis and comparison Summary

- Time complexity of a +/- operations increases approximately with log₂(# of bits of a word), shift complexity remains constant.
- In case of >160 bit words the coefficient is >7 ⇒ LS Algorithm is:
 - 2x faster than Mongomery Algorithm and
 - 2.7x faster than Penk's Algorithm.

Conclusion

- The new algorithm is always faster and in case of larger word lengths, it is at least 2x faster.
- \Rightarrow it is suitable for cryptographic systems.
- It was designed with the aim to allow easy and efficient HW implementation.
- The future work will concentrate on embedding into FPGA or ASIC circuitry used in cryptographic coprocessors, accelerators,etc.