Marc Joye

Sung-Ming Yen*

Gemplus Card InternationalLCIS, National Central UniversityGémenos, FranceChung-Li, Taiwanmarc.joye@gemplus.comyensm@csie.ncu.edu.twhttp://www.geocities.com/MarcJoye/http://www.csie.ncu.edu.tw/~yensm/

CHES 2002, San Francisco Bay, August 13–15, 2002

http://www.gemplus.com/smart/

Agenda

- Montgomery Powering Ladder
- Efficiency Analysis
- Security Analysis
- Conclusion

Agenda

- Efficiency Analysis
- Security Analysis
- Conclusion

Goal: given $k = \sum_{i=0}^{t-1} k_i 2^i$, compute $y = g^k$ in \mathbb{G}

Goal: given $k = \sum_{i=0}^{t-1} k_i 2^i$, compute $y = g^k$ in \mathbb{G} Key observation

• define $L_j = \sum_{i=j}^{t-1} k_i 2^{i-j}$ and $H_j = L_j + 1$ • $L_j = 2L_{j+1} + k_j = L_{j+1} + H_{j+1} + k_j - 1$

Goal: given $k = \sum_{i=0}^{t-1} k_i 2^i$, compute $y = g^k$ in \mathbb{G}

Key observation

• define $L_j = \sum_{i=j}^{t-1} k_i 2^{i-j}$ and $H_j = L_j + 1$

• $L_j = 2L_{j+1} + k_j = L_{j+1} + H_{j+1} + k_j - 1$

Montgomery powering ladder: $k = L_0$

Goal: given
$$k = \sum_{i=0}^{t-1} k_i 2^i$$
, compute $y = g^k$ in G
Key observation
define $L_j = \sum_{i=j}^{t-1} k_i 2^{i-j}$ and $H_j = L_j + 1$
 $k_j = 2L_{j+1} + k_j = L_{j+1} + H_{j+1} + k_j - 1$
Montgomery powering ladder: $k = L_0$
 $(L_j, H_j) = \begin{cases} (2L_{j+1}, L_{j+1} + H_{j+1}) & \text{if } k_j = 0 \\ (L_{j+1} + H_{j+1}, 2H_{j+1}) & \text{if } k_j = 1 \end{cases}$

Goal: given
$$k = \sum_{i=0}^{t-1} k_i 2^i$$
, compute $y = g^k$ in G
Key observation
 \diamond define $L_j = \sum_{i=j}^{t-1} k_i 2^{i-j}$ and $H_j = L_j + 1$
 $\diamond L_j = 2L_{j+1} + k_j = L_{j+1} + H_{j+1} + k_j - 1$
Montgomery powering ladder: $k = L_0$
 $\diamond (L_j, H_j) = \begin{cases} (2L_{j+1}, L_{j+1} + H_{j+1}) & \text{if } k_j = 0\\ (L_{j+1} + H_{j+1}, 2H_{j+1}) & \text{if } k_j = 1 \end{cases}$

Goal: given
$$k = \sum_{i=0}^{t-1} k_i 2^i$$
, compute $y = g^k$ in G
Key observation
 \diamond define $L_j = \sum_{i=j}^{t-1} k_i 2^{i-j}$ and $H_j = L_j + 1$
 $\diamond L_j = 2L_{j+1} + k_j = L_{j+1} + H_{j+1} + k_j - 1$
Montgomery powering ladder: $k = L_0$
 $\diamond (L_j, H_j) = \begin{cases} (2L_{j+1}, L_{j+1} + H_{j+1}) & \text{if } k_j = 0\\ (L_{j+1} + H_{j+1}, 2H_{j+1}) & \text{if } k_j = 1 \end{cases}$

Goal: given
$$k = \sum_{i=0}^{t-1} k_i 2^i$$
, compute $y = g^k$ in G
Key observation
define $L_j = \sum_{i=j}^{t-1} k_i 2^{i-j}$ and $H_j = L_j + 1$
 $L_j = 2L_{j+1} + k_j = L_{j+1} + H_{j+1} + k_j - 1$
Montgomery powering ladder: $k = L_0$
 $(L_j, H_j) = \begin{cases} (2L_{j+1}, L_{j+1} + H_{j+1}) & \text{if } k_j = 0 \\ (L_{j+1} + H_{j+1}, 2H_{j+1}) & \text{if } k_j = 1 \end{cases}$
 $(g^{L_j}, g^{H_j}) = \begin{cases} ((g^{L_{j+1}})^2, g^{L_{j+1}} \cdot g^{H_{j+1}}) & \text{if } k_j = 0 \\ (g^{L_{j+1}} \cdot g^{H_{j+1}}, (g^{H_{j+1}})^2) & \text{if } k_j = 1 \end{cases}$

The algorithm

Input: $q, k = (k_{t-1}, ..., k_0)_2$ Output: $y = q^k$ $R_0 \leftarrow 1; R_1 \leftarrow g$ $g^{L_j} = q^{L_{j+1}} \cdot q^{H_{j+1}}$ for j = t - 1 downto 0 do $[R_0 \leftarrow R_0 R_1]$ if $(k_i = 0)$ then $g^{H_j} = (q^{H_{j+1}})^2$ $R_1 \leftarrow R_0 R_1$; $R_0 \leftarrow (R_0)^2$ $[R_1 \leftarrow (R_1)^2]$ else [if $(k_i = 1)$] $R_0 \leftarrow R_0 R_1; R_1 \leftarrow (R_1)^2$

return R_0

The algorithm

Input: $q, k = (k_{t-1}, ..., k_0)_2$ Output: $y = q^k$ $R_0 \leftarrow 1; R_1 \leftarrow g$ $q^{L_j} = (q^{L_{j+1}})^2$ for j = t - 1 downto 0 do $[R_0 \leftarrow (R_0)^2]$ if $(k_i = 0)$ then $q^{H_j} = q^{L_{j+1}} \cdot q^{H_{j+1}}$ $R_1 \leftarrow R_0 R_1$; $R_0 \leftarrow (R_0)^2$ $[R_1 \leftarrow R_0 R_1]$ else [if $(k_i = 1)$] $R_0 \leftarrow R_0 R_1$; $R_1 \leftarrow (R_1)^2$

return R_0

Agenda

- Efficiency Analysis
- Security Analysis
- Conclusion

Lucas chains structure

Lucas chains structure

• R_1/R_0 is invariant $[R_1/R_0 = g]$

Lucas chains structure R_1/R_0 is invariant $[R_1/R_0 = g]$

 $\begin{array}{ll} R_0 \leftarrow 1; \ R_1 \leftarrow g \\ \text{for } j = t - 1 \ \text{downto } 0 \ \text{do} \\ & \text{if } (k_j = 0) \ \text{then} \\ \hline R_1 \leftarrow R_0 R_1; \ R_0 \leftarrow (R_0)^2 \\ & \text{else [if } (k_j = 1)] \\ \hline R_0 \leftarrow R_0 R_1; \ R_1 \leftarrow (R_1)^2 \end{array} \qquad \begin{array}{l} \frac{R_1}{R_0} \leftarrow \frac{R_0 R_1}{(R_0)^2} = \frac{R_1}{R_0} \\ \end{array}$

Lucas chains structure R_1/R_0 is invariant $[R_1/R_0 = g]$

$$\begin{array}{ll} R_0 \leftarrow 1; \ R_1 \leftarrow g \\ \text{for } j = t - 1 \ \text{downto } 0 \ \text{do} \\ \text{if } (k_j = 0) \ \text{then} \\ R_1 \leftarrow R_0 R_1; \ R_0 \leftarrow (R_0)^2 \\ \text{else [if } (k_j = 1)] \\ \hline R_0 \leftarrow R_0 R_1; \ R_1 \leftarrow (R_1)^2 \end{array} \qquad \begin{array}{ll} \frac{R_1}{R_0} \leftarrow \frac{(R_1)^2}{R_0 R_1} = \frac{R_1}{R_0} \\ \end{array}$$

- R_1/R_0 is invariant $[R_1/R_0 = g]$
- $\bullet \mathbb{G} =$ elliptic curve over a field \mathbb{K}

- R_1/R_0 is invariant $[R_1/R_0 = g]$
- $\bullet \mathbb{G} =$ elliptic curve over a field \mathbb{K}
 - computations can be carried out with
 x-coordinate only

- R_1/R_0 is invariant $[R_1/R_0 = g]$
- $\bullet \mathbb{G} =$ elliptic curve over a field \mathbb{K}
 - computations can be carried out with x-coordinate only
 - \checkmark the *y*-coordinates need not to be handled
 - \cdot a lot of multiplications (in \mathbb{K}) are saved
 - \cdot fewer memory is required

- R_1/R_0 is invariant $[R_1/R_0 = g]$
- $\bullet \mathbb{G} =$ elliptic curve over a field \mathbb{K}
 - computations can be carried out with x-coordinate only
 - \checkmark the y-coordinates need not to be handled
 - \cdot a lot of multiplications (in \mathbb{K}) are saved
 - · fewer memory is required
- similarly for "full" Lucas sequences
 computations can be carried out with the V-sequence only

Parallel computing

Parallel computing simplified presentation

$$\begin{array}{ll} R_0 \leftarrow 1; \ R_1 \leftarrow g \\ \text{for } j = t - 1 \ \text{downto } 0 \ \text{do} \\ \text{if } (k_j = 0) \ \text{then} \\ \hline R_1 \leftarrow R_0 R_1 ; \ R_0 \leftarrow (R_0)^2 \\ \text{else [if } (k_j = 1)] \\ \hline R_0 \leftarrow R_0 R_1 ; \ R_1 \leftarrow (R_1)^2 \\ \text{return } R_0 \end{array}$$

Parallel computing simplified presentation

$$\begin{array}{ll} R_0 \leftarrow 1; \ R_1 \leftarrow g \\ \text{for } j = t - 1 \text{ downto } 0 \text{ do} \\ \text{if } (k_j = 0) \text{ then } & R_{k_j} \leftarrow (R_{k_j})^2 \\ R_1 \leftarrow R_0 R_1; \ R_0 \leftarrow (R_0)^2 \\ \text{else [if } (k_j = 1)] \\ R_0 \leftarrow R_0 R_1; \ R_1 \leftarrow (R_1)^2 \\ \text{return } R_0 \end{array}$$

Parallel computing
 simplified presentation

 $R_0 \leftarrow 1; \ R_1 \leftarrow g$ for j = t - 1 downto 0 do $R_{\neg k_j} \leftarrow R_0 R_1$ $R_{k_j} \leftarrow (R_{k_j})^2$ return R_0

Parallel computing
 simplified presentation

$$R_0 \leftarrow 1; \ R_1 \leftarrow g$$

for $j = t - 1$ downto 0 do
 $R_{\neg k_j} \leftarrow R_0 R_1$
 $R_{k_j} \leftarrow (R_{k_j})^2$
return R_0

the 2 multiplications are independent

Parallel computing
 parallel Montgomery ladder

$$\begin{array}{ll} R_0 \leftarrow 1; \ R_1 \leftarrow g \\ \\ \text{for } j = t - 1 \ \text{downto } 0 \ \text{do} \\ \\ R_{\neg k_j} \leftarrow R_0 R_1 & / * \ \text{Processor } 1 & * / \\ \\ R_{k_j} \leftarrow (R_{k_j})^2 & / * \ \text{Processor } 2 & * / \\ \\ \\ \text{return } R_0 \end{array}$$

Parallel computing
 parallel Montgomery ladder

Common-multiplicand property

Common-multiplicand property R_0 (resp. R_1) is common to the 2 multiplications

$$R_0 \leftarrow 1; R_1 \leftarrow g$$

for $j = t - 1$ downto 0 do
if $(k_j = 0)$ then
 $R_1 \leftarrow R_0 R_1; R_0 \leftarrow R_0 R_0$
else [if $(k_j = 1)$]
 $R_0 \leftarrow R_0 R_1; R_1 \leftarrow R_1 R_1$
return R_0

Common-multiplicand property R_0 (resp. R_1) is common to the 2 multiplications

$$\begin{array}{l} R_0 \leftarrow 1; \ R_1 \leftarrow g \\ \\ \text{for } j = t - 1 \ \text{downto } 0 \ \text{do} \\ \\ \text{if } (k_j = 0) \ \text{then} \\ \\ R_1 \leftarrow R_0 R_1; \ R_0 \leftarrow R_0 R_0 \\ \\ \text{else [if } (k_j = 1)] \\ \\ \hline R_0 \leftarrow R_0 R_1; \ R_1 \leftarrow R_1 R_1 \\ \\ \\ \text{return } R_0 \end{array}$$

Common-multiplicand property

- \mathbf{O} (resp. R_1) is common to the 2 multiplications
- $\blacklozenge \mathbb{G} = \mathbb{Z}_N$
 - ✓ the CM-multiplication by Yen is applicable

Common-multiplicand property

- \blacklozenge R_0 (resp. R_1) is common to the 2 multiplications
- $\blacklozenge \mathbb{G} = \mathbb{Z}_N$
 - ✓ the CM-multiplication by Yen is applicable
- similar savings for more "complicated" groups
 ✓ e.g., when G = elliptic curve over K, several multiplications (in K) are identical

Agenda

- Montgomery Powering Ladder
- Efficiency Analysis
- Security Analysis
- Conclusion

Security Analysis

Side-channel attacks

Security Analysis

- Side-channel attacks
 - SPA-like attacks
 - Montgomery ladder behaves regularly whatever the scanned bit, k_j

Side-channel attacks

- SPA-like attacks
 - Montgomery ladder behaves regularly whatever the scanned bit, k_j

$$R_0 \leftarrow 1; \ R_1 \leftarrow g$$

for $j = t - 1$ downto 0 do
 $R_{\neg k_j} \leftarrow R_0 R_1; \ R_{k_j} \leftarrow (R_{k_j})^2$
return R_0

Side-channel attacks

- SPA-like attacks
 - Montgomery ladder behaves regularly whatever the scanned bit, k_j
 - ✓ SPA-resistant, provided that
 - writing in R_0 is indistinguishable from writing in R_1
 - \cdot squaring of R_0 is indistinguishable from squaring of R_1

Side-channel attacks

- SPA-like attacks
 - Montgomery ladder behaves regularly whatever the scanned bit, k_j
 - ✓ SPA-resistant, provided that
 - writing in R_0 is indistinguishable from writing in R_1
 - \cdot squaring of R_0 is indistinguishable from squaring of R_1
- DPA-like attacks
 - prevented using standard blinding techniques

Fault attacks

C safe-error attacks

Fault attacks

- C safe-error attacks
 - principle: timely induce a computational fault
 into the ALU for determining whether an
 operation is
 - · dummy (when the final result is correct), or
 - effective (when the final result is incorrect)

Fault attacks

- C safe-error attacks
 - principle: timely induce a computational fault into the ALU for determining whether an operation is
 - dummy (when the final result is correct), or
 effective (when the final result is incorrect)
 - this reveals bit-by-bit the value of exponent k in the classical protected binary ladders:
 - the square-and-multiply *always* algorithm, and
 - · its right-to-left counterpart

Fault attacks

C safe-error attacks

 there are no dummy operations (mult.) in the Montgomery ladder

$$R_0 \leftarrow 1; \ R_1 \leftarrow g$$

for $j = t - 1$ downto 0 do
 $R_{\neg k_j} \leftarrow R_0 R_1; \ R_{k_j} \leftarrow (R_{k_j})^2$
return R_0

Fault attacks

- C safe-error attacks
 - there are no dummy operations (mult.) in the Montgomery ladder
 - ✓ the C safe-error model does not apply

Fault attacks

M safe-error attacks

Fault attacks

- M safe-error attacks
 - \checkmark principle: timely induce a memory fault inside register R_1 during the evaluation of

 $R_b \leftarrow R_0 R_1$

for determining whether the result is written in

- $\cdot R_1$ (when the final result is correct), or
- $\cdot R_0$ (when the final result is incorrect)

Fault attacks

- M safe-error attacks
 - \checkmark principle: timely induce a memory fault inside register R_1 during the evaluation of

 $R_b \leftarrow R_0 R_1$

for determining whether the result is written in *R*₁ (when the final result is correct), or *R*₀ (when the final result is incorrect)
✓ this attack readily applies to Montgomery ladder

Fault attacks

- M safe-error attacks
 - \checkmark principle: timely induce a memory fault inside register R_1 during the evaluation of

 $R_b \leftarrow R_0 R_1$

for determining whether the result is written in

- $\cdot R_1$ (when the final result is correct), or
- $\cdot R_0$ (when the final result is incorrect)
- this attack readily applies to Montgomery ladder
 BUT a slight modification makes the attack inapplicable

Fault attacks

M safe-error attacks

original Montgomery ladder

$$R_0 \leftarrow 1; \ R_1 \leftarrow g$$

for $j = t - 1$ downto 0 do
 $R_{\neg k_j} \leftarrow R_0 R_1; \ R_{k_j} \leftarrow (R_{k_j})^2$
return R_0

Fault attacks

M safe-error attacks

modified Montgomery ladder

$$R_0 \leftarrow 1$$
; $R_1 \leftarrow g$

for j=t-1 downto 0 do

 $R_{\neg k_j} \leftarrow R_{\neg k_j} R_{k_j}; \ R_{k_j} \leftarrow (R_{k_j})^2$

return R_0

Fault attacks

M safe-error attacks

modified Montgomery ladder

$$R_0 \leftarrow 1$$
; $R_1 \leftarrow g$

for j = t - 1 downto 0 do

 $R_{\neg k_j} \leftarrow R_{\neg k_j} R_{k_j}$; $R_{k_j} \leftarrow (R_{k_j})^2$

return R_0

✓ the M safe-error model does no longer apply

Agenda

- Montgomery Powering Ladder
- Efficiency Analysis
- Security Analysis
- Conclusion

Conclusion

Efficiency

- Lucas chains structure
- parallel computing
- common-multiplicand property

Conclusion

Efficiency

- Lucas chains structure
 - parallel computing
 - common-multiplicand property
- Security
 - against SPA-like attacks
 - against C safe-error attacks
 - error attacks
 - after modification

Conclusion

Efficiency

- Lucas chains structure
 - parallel computing
 - common-multiplicand property
- Security
 - e against SPA-like attacks
 - against C safe-error attacks
 - against M safe-error attacks
 after modification
- Montgomery ladder is well suited for efficient and secure exponentiation (in G) in constrained devices

