CRYPTOGRAPHIC MODULE VALIDATION PROGRAM

Random Number Generators

Randall J. Easter

NIST

Computer Security Division

August 2002

Philosophy

- Strong commercially available cryptographic products are needed
- Government must work with the commercial sector and the cryptographic community for:
 - security,
 - interoperability, and
 - assurance

Cryptographic Module Validation Program (CMVP)

- Established by NIST and the Communications Security Establishment (CSE) in 1995
- Original FIPS 140-1 requirements and updated FIPS 140-2 requirements developed with industry input
- Six NVLAP-accredited testing laboratories
 - True independent 3rd party accredited testing laboratories
 - Cannot test and provide design assistance

- U.S. Federal organizations must use validated cryptographic modules
 - Set of hardware, and/or software, and/or firmware
 - Implements a cryptographic algorithm
 - Contained within a defined boundary
- Government of Canada departments are recommended by CSE to use validated cryptographic modules
- International recognition

CMVP Accredited Laboratories

Sixth CMT laboratory added in 2001

... Making a Difference

164 Cryptographic Modules Surveyed (during testing)

- 80 (48.8%) Security Flaws discovered
- 158 (96.3%) FIPS Interpretation and Documentation Errors
- 332 Algorithm Validations (during testing)
 (DES, Triple-DES, DSA and SHA-1)
 - 88 (26.5%) Security Flaws
 - 216 (65.1%) FIPS Interpretation and Documentation Errors

Areas of Greatest Difficulty

- Physical Security
- Self Tests
- Random Number Generation
- Key Management

... Making a Difference

Web Access

- November 2001 125,000 hits
- Monthly average 80,000 hits

www.nist.gov/cmvp csrc.nist.gov

CMVP Status

(August 2002)

- Continued record growth in the number of cryptographic modules validated
 - Over 240 Validations representing nearly 280 modules
- All four security levels of FIPS 140-1 represented on the Validated Modules List
- Over sixty participating vendors

FIPS 140-2 Security Levels

Security Spectrum

- Level 1 is the lowest, Level 4 most stringent
- Requirements are primarily cumulative by level
- Overall rating is lowest rating in all sections

Flow of a FIPS 140-2 Validation

Vendor

Designs and Produces

Cryptographic Module and Algorithm

CMT Lab

Tests for Conformance

Cryptographic Module and Algorithm

CMVP

Validates

Test Results and Signs Certificate

User

Specifies and Purchases

Security and Assurance

FIPS 140-2 Security Areas

- Cryptographic Module Specification
- Cryptographic Module Ports and Interfaces
- Roles, Services, and Authentication
- Finite State Model
- Physical Security
- Operational Environment
- Cryptographic Key Management
- EMI/EMC requirements
- Self Tests
- Design Assurance
- Mitigation of Other Attacks

FIPS 140-2 - Testing Begins

- FIPS 140-2 testing officially began November 15, 2001
- FIPS 140-1 testing ends May 25, 2002
- Testing laboratories may submit FIPS 140-1 validation test reports until May 25, 2002
- After May 25, 2002 <u>all</u> validations and revalidations must be done against FIPS 140-2
- Agencies may continue to purchase, retain and use FIPS 140-1 validated products after May 25, 2002

CMVP Testing Process

- Purpose of CMVP
 - Conformance testing of cryptographic modules using the DTR
 - Not evaluation of cryptographic modules. Not required are:
 - Vulnerability assessment
 - Design analysis, etc.
- Laboratories
 - Test submitted cryptographic modules
- NIST/CSE
 - Validate tested cryptographic modules

FIPS140-2 Primary Activities

- Documentation Review (e.g., Security Policy, Finite State Model, Key Management Document)
- Source code Analysis
 - Annotated Source Code
 - Link with Finite State Model
- Testing
 - Physical Testing
 - FCC EMI/EMC conformance
 - Operational Testing
 - Algorithms and RNG Testing

Derived Test Requirements Traceability

FIPS 140-1 and FIPS 140-2 Validations by Year and Level

Participating Vendors

(January 15, 2002)

Λ	1	ca	+	1
\boldsymbol{H}	л	Ca	Lt	-1

Algorithmic Research, Ltd.

Ascom Hasler Mailing Systems

Attachmate Corp.

Avaya, Inc.

Baltimore Technologies (UK)
Ltd.

Blue Ridge Networks

Certicom Corp.

Chrysalis-ITS Inc.

Cisco Systems, Inc.

Cryptek Security

Communications, LLC

CTAM, Inc.

Cylink Corporation

Dallas Semiconductor, Inc.

Datakey, Inc.

Ensuredmail, Inc.

Entrust Technologies Limited

Eracom Technologies Group, Eracom Technologies

Australia, Pty. Ltd.

F-Secure Corporation

Fortress Technologies

Francotyp-Postalia

GTE Internetworking

IBM

Intel Network Systems, Inc.

IRE, Inc.

Kasten Chase Applied Research

L-3 Communication Systems

Litronic, Inc.

M/A Com Wireless Systems

Microsoft Corporation.

Motorola, Inc.

Mykotronx. Inc

National Semiconductor Corp.

nCipher Corporation Ltd.

Neopost

Neopost Industrie

Neopost Ltd.

Neopost Online

Netscape Communications Corp.

NetScreen Technologies, Inc.

Network Associates, Inc.

Nortel Networks

Novell, Inc.

Oracle Corporation

Pitney Bowes, Inc.

PrivyLink Pte Ltd

PSI Systems, Inc.

Rainbow Technologies

RedCreek Communications

Research In Motion

RSA Data Security, Inc.

SchlumbergerSema

Spyrus, Inc.

Stamps.com

Technical Communications Corp.

Thales e-Security

TimeStep Corporation

Transcrypt International

Tumbleweed Communications

Corp.

V-ONE Corporation, Inc.

Go Communicator Help Edit View

Module Validation Cryptographic

Program

Standards and Their Related Documents:

- FIPS 140-1
- AES, Triple-DES, FIPS 140-2
- DSA, RSA, ECDSA DES, Slapjack
 - SHA-1
- -MAC X9 17

Анночисетент Updated 05/29/2002 and Notices

Validation Lists

Testing Laboratories

Updated 06/14/2002 FAOs

Восиментатіон Helpful

Contacts

Computer Security Clearing house Resource

Computer Security Division

Document: Done Þ

学

Cryptographic Module Validation (CMV Program

Agencies may continue to purchase, retain and use FIPS 140-1 validated products after May 25, 2002.

As of May 26, 2002, NIST and CSE will only accept validation test reports for cryptographic modules against FIPS 140-2 and All CMT Laboratories test cryptographic modules to FIPS 140-2. the FIPS 140-2 DTR. The Computer Security Division at MIST maintains a number of cryptographic standards, and coordinates validation programs for many of those standards. The Cryptographic Module Validation (CMV) Program encompasses validation testing for cryptographic modules and algorithms:

Cryptographic Modules

- FPS 140-1: Security Requirements for Cryptographic Modules, January 4, 1994.
- FDS 140-2. Security Requirements for Cryptographic Modules, May 25, 2001. Change Notice 1: 10/10/2001

Cryptographic Algorithms

- FPS 197. Advanced Encryption Standard (AES). FPS 197 specifies the AES algorithm.
- FPS 46-3 and FPS 81; Data Encryption Standard (DES) and DES Modes of Operation. FPS 46-3 specifies the DES and Triple DES algorithms.
- FDS 186-2 and FDS 180-1. Digital Signature Standard (DSS) and Secure Hash Standard (SHS), which specify the DSA, RSA, ECDSA, and SHA-1 algorithms
- FIPS 185: Escrowed Encryption Standard (EES), which specifies the Skipjack algorithm

Pre-validation Status List

- Pre-validation phases
 - Implementation Under Test (IUT)
 - The crypto module and documentation are resident at the CMT lab
 - The vendor has a viable contract with the CMT lab
 - Validation Review Pending
 - Testing documentation submitted to NIST and CSE
 - Validation Review
 - Comments developed by NIST and CSE
 - Combined comments sent to CMT lab

Pre-validation Status List

(concluded)

Pre-validation phases

- Validation Coordination (process may be iterative)
 - Testing documents revised
 - Additional documentation (if required)
 - Additional testing performed (if required)
 - Resubmission to NIST and CSE

Validation Finalization

- Final resolution of validation review comments
- Certificate number assigned
- Certificate printing and signature process initiated

Random Number Generators

- A Cryptographic Module may employ random number generators (RNGs)
 - Approved RNG Output
 - Generation of cryptographic keys
 - Non-Approved RNG Output
 - Input seed and/or seed key for Approved RNG
 - Generate IV's
- Self-Tests
 - Continuous RNG Test
 - Statistical tests
 - Levels 3 and 4
 - All levels CMT Lab Testing

Approved Random Number Generators (RNGs) FIPS 140-2 Annex C

Deterministic Random Number Generators

- NIST, Digital Signature Standard (DSS), FIPS Pub 186-2, January 27, 2000 –
 Appendix 3.1.
- 2. NIST, Digital Signature Standard (DSS), FIPS Pub 186-2, January 27, 2000 Appendix 3.2.
- 3. ABA, Digital Signatures Using Reversible Public Key Cryptography for the Financial Services Industry (rDSA), ANSI X9.31-1998 Appendix A.
- 4. ABA, Public Key Cryptography for the Financial Services Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA), ANSI X9.62-1998 Annex A.4.

Nondeterministic Random Number Generators

There are no FIPS Approved nondeterministic random number generators.

RNG Self-Tests - FIPS 140-2

- Power Up Statistical Tests (20k bits)
 - Levels 3 and 4
 - All Levels CMT Lab Testing
 - The monobit test
 - The poker test
 - The runs test
 - The long runs test
- Continuous RNG Test

RNG Tests – Revised

- Statistical Tests
 - CMT Lab Algorithm Testing Suite (CAVS)
 - All Levels
 - No longer required within module (Levels 3 and 4)
- Deterministic Known Answer Test
 - All levels
- Continuous RNG Test

Buyer Beware!

- Does the product do what is claimed?
- Does it conform to standards?
- Was it independently tested?
- Is the product secure?

http://www.nist.gov/cmvp

- FIPS 140-1 and FIPS 140-2
- Derived Test Requirements (DTR)
- Annexes to FIPS 140-2
- Implementation Guidance
- Points of Contact
- Laboratory Information
- Validated Modules List
- Special Publication 800-23

