

Template attacks

Suresh Chari, Josyula R. Rao, Pankaj Rohatgi IBM Research

Side channel attacks

- Lots of sources: Power, EM, timing
- Problem one of signal classification
 - Which possible value of key bit/byte/nibble does signal correspond to?
- Many types of attacks(SPA/DPA & variants)
 - Use coarse statistical methods
 - Collect lots of samples to eliminate noise
 - Differentiate based on expected signal.

Signal classification

- Technique relies on precise modeling of noise (inherent statistical variations + other ambient noise) AND expected signal
 - Requires experimentation(offline)
- Technique based on Signal Detection and estimation theory
 - Powerful statistical methods
 - Tools to classify a single sample.

Template attacks: overview

- Need single target sample from device under test
- Need programmable identical device.
- Build precise model of noise AND expected signal for all possible values of first portion of key
- Use statistical characterization to restrict first portion to small subset of possible values.
- Iterate to retain small number of possible values for entire key.
- Strong statistical methods extract ALL information from each target sample.

- Test case: RC4
- Noise Modeling
- Classification Technique
 - Variants
 - Empirical Results
- Related work

Test case-RC4

- Implementation: RC4 on smart card.
 - Representative example for template attacks.
 - Single sample of initialization with key.
 - State changes on each invocation.
 - Similar approach for most crypto algorithms.
- Other cases: hardware based DES, EM on SSL accelerators.

RC4- Initialization with key

```
i= j = 0;
For(ctr=0, ctr < 256, ctr++)
{
    j = key[i] + state[ctr] + j;
    SwapByte(state[ctr],
    state[j]);
    i=i+1;
}</pre>
```

Simple implementation with no key dependent code (No SPA)

No DPA possible due to single sample.

Ideal for template attacks: Key byte independently affects iteration. Sample

Methodology

- Collect single sample of key initialization from device under test.
- With experimental device, collect large number(100s) of samples with all values of first key byte.
- Identify points on samples of first iteration directly affected by first key byte.
- For each distribution compute precise statistical characterization
- Use to classify target sample

Model

- Assumption: Gaussian model for noise.
- Noise characterization: Given L-point samples for a particular value of key compute
 - Averages L point average A
 - M Noise correlation matrix (L x L)
 - M[i,j] = covariance(T[i]-A[i], T[j]-A[j]) for samples T
- Compute characterization for each of K values of the key byte.
- Probability of observing noise vector n for a sample from this distribution is inverse exponential in

Maximum likelihood

- Classification: Among K distributions, classify target sample S as belonging to distribution predicting highest probability for noise vector
- "Best" classifier in information theoretic sense.
- For binary hypotheses case, with same noise covariance error is inverse exponential in

$$sqrt((A_1 - A_2)^T N^{-1}(A_1 - A_2))$$

Classification

Univariate Statistics

- Assume sample at points is independent
- Good results when keys are very different
- Not good if keys are close.

Multivariate statistics:

- Assume points are correlated.
- Very low classification errors.
- Error of not identifying correct hypothesis is less than 5-6 %

Empirical result

Key byte	0xFE	0xEE	0xDE	0xBE	0x7E	0xFD	0xFB	0xF7	0xED	0xEB
	98.62	98.34	99.16	98.14	99.58	99.70	99.64	100	99.76	99.94

Correct Classification percentage improves dramatically

Keys chosen to be very close

Improvement

- Maximum Likelihood: Retain hypothesis predicting max probability for observed noise (P_{max})
- Approximation: Retain ALL hypotheses predicting probability at least (P_{max}/c), c constant.
 - Retain more than 1 hypothesis for each byte.
 - Tradeoff between number of hypothesis retained and correctness.

Empirical Results

	Size c=1	Size c=e ⁶	Size c=e ¹²	Size c=e ²⁴
Success probability	95.02	98.67	99.37	99.65
Avg. number of hypothesis retained	1	1.29	2.11	6.89

Iteration: Extend and prune

- For each remaining possible value of first byte
 - For each value of second byte
 - Build template independently ONLY for second iteration (less accurate)
 - OR Build template for first 2 iterations together (twice as large)
 - Classify using new template to reduce choices for first 2 bytes

Iteration: Empirical Result

- Using templates independently in each stage reduces entropy in RC4 case to about (1.5) k for k bytes of key
- Substantially better when templates include sample for all iterations upto now
 - Error rates of not retaining correct hypothesis is almost same as single byte case.
 - Number of retained hypothesis is smaller
 - Able to correct previous bytes: After 2 iterations of attack no hypothesis with wrong first byte.

Related work

- [Messerges, Dabbish, Sloan] [Walter] Use signal based iterative method based to extract exponent of device implementing RSA.
- [Fahn, Pearson] Use profiling of experimental device before attack on device-under-test.
- Signal based classification methods.

Countermeasures

- Use randomness as much as possible.
 - Blinding/masking of data
- Templates can be built for masked data values
 - Not feasible if lots of entropy.
 - Caveat: Vulnerable if attacker has control of random source in experimental device.

- Formalized new type of attack.
 - Powerful methodology
 - Works with single/few samples
 - Requires extensive work with experimental device
- Experimental results
 - Works where SPA/DPA are not feasible

BACKUP

Averaging 5 samples

Univariate approximation

- Assume that the sample at each point is independent of other points
- Simplifies probability of observing noise
 - Inverse exponential in

```
n^T M ^{-1} (which is just sum of squares)
```

- Classification: Use maximum likelihood with simplified characterization
- Classification error is high in some cases but can distinguish very different keys.

Empirical Results

	11111110	11101110	11011110	10111110	00010000
11111110	0.86	0.04	0.07	0.03	0
11101110	0.06	0.65	0.10	0.19	0
11011110	0.08	0.16	0.68	0.09	0
10111110	0.10	0.11	0.08	0.71	0
00010000	0	0	0	0	1.00

Cross Classification probability.

- Low error if key bytes have very different Hamming weights.
- Possibility of high error in other cases.

- Samples and expected signals can be viewed as points in some L dimensional space.
- Approximation: Starting from received signal point keep all hypothesis falling in ball around received samples
- For binary case, classification error proportional to sqrt(1/c).

Other cases

- Template attacks verified in other cases
 - EM emanations from hardware SSL accelerators
 - Single sample noisy analogue of earlier work.
 - Hardware based DES
 - Attacking key checksum verification steps
- Other cases under investigation