International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Rina Zeitoun

Publications

Year
Venue
Title
2023
TCHES
High-order masking of NTRU
The main protection against side-channel attacks consists in computing every function with multiple shares via the masking countermeasure. While the masking countermeasure was originally developed for securing block-ciphers such as AES, the protection of lattice-based cryptosystems is often more challenging, because of the diversity of the underlying algorithms. In this paper, we introduce new gadgets for the high-order masking of the NTRU cryptosystem, with security proofs in the classical ISW probing model. We then describe the first fully masked implementation of the NTRU Key Encapsulation Mechanism submitted to NIST, including the key generation. To assess the practicality of our countermeasures, we provide a concrete implementation on ARM Cortex-M3 architecture, and eventually a t-test leakage evaluation.
2023
TCHES
Improved Gadgets for the High-Order Masking of Dilithium
We present novel and improved high-order masking gadgets for Dilithium, a post-quantum signature scheme that has been standardized by the National Institute of Standards and Technologies (NIST). Our proposed gadgets include the ShiftMod gadget, which is used for efficient arithmetic shifts and serves as a component in other masking gadgets. Additionally, we propose a new algorithm for Boolean-to-arithmetic masking conversion of a μ-bit integer x modulo any integer q, with a complexity that is independent of both μ and q. This algorithm is used in Dilithium to mask the generation of the random variable y modulo q. Moreover, we describe improved techniques for masking the Decompose function in Dilithium. Our new gadgets are proven to be secure in the t-probing model.We demonstrate the effectiveness of our countermeasures by presenting a complete high-order masked implementation of Dilithium that utilizes the improved gadgets described above. We provide practical results obtained from a C implementation and compare the performance improvements provided by our new gadgets with those of previous work.
2022
TCHES
High-order Table-based Conversion Algorithms and Masking Lattice-based Encryption
Masking is the main countermeasure against side-channel attacks on embedded devices. For cryptographic algorithms that combine Boolean and arithmetic masking, one must therefore convert between the two types of masking, without leaking additional information to the attacker. In this paper we describe a new high-order conversion algorithm between Boolean and arithmetic masking, based on table recomputation, and provably secure in the ISW probing model. We show that our technique is particularly efficient for masking structured LWE encryption schemes such as Kyber and Saber. In particular, for Kyber IND-CPA decryption, we obtain an order of magnitude improvement compared to existing techniques.
2022
TCHES
High-order Polynomial Comparison and Masking Lattice-based Encryption
The main protection against side-channel attacks consists in computing every function with multiple shares via the masking countermeasure. For IND-CCA secure lattice-based encryption schemes, the masking of the decryption algorithm requires the high-order computation of a polynomial comparison. In this paper, we describe and evaluate a number of different techniques for such high-order comparison, always with a security proof in the ISW probing model. As an application, we describe the full high-order masking of the NIST standard Kyber, with a concrete implementation on ARM Cortex M architecture, and a t-test evaluation.
2020
EUROCRYPT
Side-channel Masking with Pseudo-Random Generator 📺
High-order masking countermeasures against side-channel attacks usually require plenty of randomness during their execution. For security against t probes, the classical ISW countermeasure requires O(t^2 s) random bits, where s is the circuit size. However running a True Random Number Generator (TRNG) can be costly in practice and become a bottleneck on embedded devices. In [IKL+13] the authors introduced the notion of robust pseudo-random number generator (PRG), which must remain secure even against an adversary who can probe at most t wires. They showed that when embedding a robust PRG within a private circuit, the number of random bits can be reduced to O(t^4), that is independent of the circuit size s (up to a logarithmic factor). Using bipartite expander graphs, this can be further reduced to O(t^(3+eps)); however the resulting construction is unpractical. In this paper we describe a practical construction where the number of random bits is only O(t^2) for security against t probes, without expander graphs; moreover the running time of each pseudo-random generation goes down from O(t^4) to O(t). Our technique consists in using multiple independent PRGs instead of a single one. We show that for ISW circuits, the robustness property of the PRG is not required anymore, which leads to simple and efficient constructions. For example, for AES we only need 48 bytes of randomness to get second-order security (t=2), instead of 2880 in the original Rivain-Prouff countermeasure; when implemented on an ARM-based embedded device with a relatively slow TRNG, we obtain a 50% speed-up compared to Rivain-Prouff.
2018
TCHES
High Order Masking of Look-up Tables with Common Shares 📺
Masking is an effective countermeasure against side-channel attacks. In this paper, we improve the efficiency of the high-order masking of look-up tables countermeasure introduced at Eurocrypt 2014, based on a combination of three techniques, and still with a proof of security in the Ishai-Sahai-Wagner (ISW) probing model. The first technique consists in proving security under the stronger t-SNI definition, which enables to use n = t+1 shares instead of n = 2t+1 against t-th order attacks. The second technique consists in progressively incrementing the number of shares within the countermeasure, from a single share to n, thereby reducing the complexity of the countermeasure. The third technique consists in adapting the common shares approach introduced by Coron et al. at CHES 2016, so that half of a randomized look-up table can be pre-computed for multiple SBoxes. We show that our techniques perform well in practice. In theory, the combination of the three techniques should lead to a factor 10.7 improvement in efficiency, for a large number of shares. For a practical implementation with a reasonable number of shares, we get a 4.8 speed-up factor for AES.
2018
TCHES
Improved High-Order Conversion From Boolean to Arithmetic Masking 📺
Masking is a very common countermeasure against side channel attacks. When combining Boolean and arithmetic masking, one must be able to convert between the two types of masking, and the conversion algorithm itself must be secure against side-channel attacks. An efficient high-order Boolean to arithmetic conversion scheme was recently described at CHES 2017, with complexity independent of the register size. In this paper we describe a simplified variant with fewer mask refreshing, and still with a proof of security in the ISW probing model. In practical implementations, our variant is roughly 25% faster.
2016
CHES
2016
CHES
2014
PKC
2013
PKC

Program Committees

CHES 2018