

Sandro Coretti (New York University)

Juan Garay (Yahoo Research)

Martin Hirt (ETH Zurich)
Vassilis Zikas (RPI)

Constant-Round Asynchronous

Mult i -Party Computat ion Based on

One-Way Funct ions

2 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Secure Multi-Party Computation (MPC)
[Yao82, GMW87, BGW88, CCD88, RB89,…]

3 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Secure Multi-Party Computation (MPC)
[Yao82, GMW87, BGW88, CCD88, RB89,…]

Mutually distrustful parties wish to

evaluate function of their inputs

4 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Secure Multi-Party Computation (MPC) (2)
[GMW87, C00, C01,…]

5 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Secure Multi-Party Computation (MPC) (2)
[GMW87, C00, C01,…]

MPC protocol should emulate a

trusted third party

6 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Secure Multi-Party Computation (MPC) (3)

7 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Secure Multi-Party Computation (MPC) (3)

Simulation-based

security definition in

the Universal

Composability (UC)

framework [C01]

8 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Synchronous Communication Network

 Each pair of parties connected by secure channels

 Protocol proceeds in rounds

 Messages sent in particular round guaranteed to arrive by

beginning of next round

9 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Synchronous Communication Network

 Each pair of parties connected by secure channels

 Protocol proceeds in rounds

 Messages sent in particular round guaranteed to arrive by

beginning of next round

 “Plain” UC framework is inherently asynchronous

• Adversary has full control over message delivery; may choose to delete

messages sent between honest parties

• “Synchronous” UC using clock functionality and bounded-delay

channels [KMTZ13]

10 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Asynchronous Communication Network

 Synchronous network: great for analysis

• (Partially) Synchronized clocks + bounded network latency → “timeouts” (T)

• Round length typically (much) higher than average transmission time

11 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Asynchronous Communication Network

 Synchronous network: great for analysis

• (Partially) Synchronized clocks + bounded network latency → “timeouts” (T)

• Round length typically (much) higher than average transmission time

 UC asynchrony: overly pessimistic

12 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Asynchronous Communication Network

 Synchronous network: great for analysis

• (Partially) Synchronized clocks + bounded network latency → “timeouts” (T)

• Round length typically (much) higher than average transmission time

 UC asynchrony: overly pessimistic

“It takes advantage of the nature of information being easy to

spread but hard to stifle.”

13 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Asynchronous Communication Network

 Synchronous network: great for analysis

• (Partially) Synchronized clocks + bounded network latency → “timeouts” (T)

• Round length typically (much) higher than average transmission time

 UC asynchrony: overly pessimistic

“It takes advantage of the nature of information being easy to

spread but hard to stifle.”

 Satoshi Nakamoto

14 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Asynchronous Communication Network (2)

 Each pair of parties connected by secure channels

 Messages sent guaranteed to arrive only eventually

 Adversary may:

• Delay message delivery by arbitrary finite amount of time

• Reorder messages

• Note: No deletions! (Unlike UC)

 Model considered early on in fault-tolerant distributed computing (e.g.,

[FLP83]) and asynchronous MPC [BCG93,…]

15 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Asynchronous Communication Network (2)

 Each pair of parties connected by secure channels

 Messages sent guaranteed to arrive only eventually

 Adversary may:

• Delay message delivery by arbitrary finite amount of time

• Reorder messages

• Note: No deletions! (Unlike UC)

 Model considered early on in fault-tolerant distributed computing (e.g.,

[FLP83]) and asynchronous MPC [BCG93,…]

 “Opportunistic”: protocols terminate as quickly as the network allows

16 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Asynchronous Communication Network (2)

 Each pair of parties connected by secure channels

 Messages sent guaranteed to arrive only eventually

 Adversary may:

• Delay message delivery by arbitrary finite amount of time

• Reorder messages

• Note: No deletions! (Unlike UC)

 Model considered early on in fault-tolerant distributed computing (e.g.,

[FLP83]) and asynchronous MPC [BCG93,…]

 “Opportunistic”: protocols terminate as quickly as the network allows

 To date: Asynchronous MPC with eventual delivery not modeled in UC

17 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

This Work

 Formalize asynchronous model with eventual delivery in the UC

framework

• Asynchronous round complexity

• Basic communication resources: async. secure channel (A-SMT) and

async. Byzantine agreement (A-BA)

18 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

This Work

 Formalize asynchronous model with eventual delivery in the UC

framework

• Asynchronous round complexity

• Basic communication resources: async. secure channel (A-SMT) and

async. Byzantine agreement (A-BA)

 Constant-round MPC protocol

• I.e., round complexity independent of circuit’s multiplicative depth

• Based on standard assumptions (PRFs)

• Tolerates t < n/3 corruptions

• Adaptive adversary

19 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Prior Work: Constant-Round MPC Protocols

 Synchronous model:

• Based on circuit garbling [Yao86, BMR90, DI05, IPS08]

• Based on FHE [AJLTVW12]

• t < n/2 corruptions

• Assume broadcast channel (cf. [FL82, BE03, CCGZ16])

20 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Prior Work: Constant-Round MPC Protocols

 Synchronous model:

• Based on circuit garbling [Yao86, BMR90, DI05, IPS08]

• Based on FHE [AJLTVW12]

• t < n/2 corruptions

• Assume broadcast channel (cf. [FL82, BE03, CCGZ16])

 Asynchronous model (recall: eventual delivery):

• Based on FHE [Coh16]

• t < n/3 corruptions

• Static security

• Assume A-BA

• (Other known protocols are GMW-based → circuit depth)

21 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

This Work

 Formalize asynchronous model with eventual delivery in the UC

framework

• Asynchronous round complexity

• Basic communication resources: async. secure channel (A-SMT) and

async. Byzantine agreement (A-BA)

 Constant-round MPC protocol

• I.e., round complexity independent of circuit’s multiplicative depth

• Based on standard assumptions (PRFs)

• Tolerates t < n/3 corruptions

• Adaptive adversary

22 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Modeling Asynchronous Communication in UC

Sender Receiver

Input messages

• Poll for messages:

T = T-1

• If T = 0, first message

in buffer output

A-SMT Functionality:

• Stores messages in buffer

• Maintains delay T

Adversary

• Reorder messages in buffer

• Increase T, specified in unary

23 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Modeling Asynchronous Communication in UC (2)

 Protocol execution:

• Party either sends message or

• polls A-SMT channels in round-robin fashion

24 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Modeling Asynchronous Communication in UC (2)

 Protocol execution:

• Party either sends message or

• polls A-SMT channels in round-robin fashion

 Round complexity: Maximum number of times any party switches

between sending and polling

25 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Modeling Asynchronous Secure Function Evaluation in UC

Parties P

• Provide input

• Poll for output: T = T-1

• If T = 0, first message in

buffer output

A-SFE Functionality:

• Collects inputs and computes output

• Maintains delay T

Adversary

• Decide on set of n-t input providers

• Increase T, specified in unary

26 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Modeling Asynchronous Byzantine Agreement in UC

Parties P

• Provide input

• Poll for output: T = T-1

• If T = 0, first message in

buffer output

A-BA Functionality:

• Maintains delay T

• Collects inputs and computes output

• If there is agreement in C output

corresponding value

• Otherwise, output a value specified by

attacker

Adversary

• Decide on set C of n-t input providers

• Increase T, specified in unary

27 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

This Work

 Formalize asynchronous model with eventual delivery in the UC

framework

• Asynchronous round complexity

• Basic communication resources: async. secure channel (A-SMT) and async.

Byzantine agreement (A-BA)

 Constant-round MPC protocol

• I.e., round complexity independent of circuit’s multiplicative depth

• Based on standard assumptions (PRFs)

• Tolerates t < n/3 corruptions

• Adaptive adversary

28 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Our Constant-Round Async. MPC Protocol

 UC-realizes A-SFE in (A-SMT, A-BA)-hybrid model

 Function computed specified by Boolean circuit

 Computational security against adversary adaptively corrupting up

to t < n/3 parties (optimal [BCG93, Can95])

 Constant-round

 Black-box from one-way functions

29 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Protocol Overview

 Three phases for computing Boolean circuit C:

I. Compute distributed version of garbled circuit

• Evaluate constant-depth function using asynchronous (unconditionally secure)

MPC protocol by [BKR94] (whose round complexity depends on depth of

evaluated circuit)

II. With output from Phase I, complete circuit garbling

III. Locally evaluate garbled circuit

30 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Circuit Garbling [Yao86,BMR90]

 Idea: Associated with every wire w of Boolean circuit C:

• mask mw (to hide actual value on wire) and

• two keys kw,0, kw,1

 Evaluate circuit on masked values while maintaining invariant:

If masked value is z, kw,z is known and kw,1-z is secret

31 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Circuit Garbling [Yao86,BMR90] (2)

z1 z2 Masked Output Bit z Garbled Entry

0 0 ((0 + ma) NAND (0 + mb)) + mc E(ka,0,kb,0, z || kc,z)

0 1 ((0 + ma) NAND (1 + mb)) + mc E(ka,0,kb,1, z || kc,z)

1 0 ((1 + ma) NAND (0 + mb)) + mc E(ka,1,kb,0, z || kc,z)

1 1 ((1 + ma) NAND (1 + mb)) + mc E(ka,1,kb,1, z || kc,z)

To evaluate garbled circuit, use:

• Masked values on input wires and
corresponding keys

• Masks of output wires

NAND

a b

c

32 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Issue 1

 Evaluating encryption function in MPC → non-black-box

33 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Issue 1

 Evaluating encryption function in MPC → non-black-box

 Solution: “Distributed encryption” [DI05]

34 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Issue 1

 Evaluating encryption function in MPC → non-black-box

 Solution: “Distributed encryption” [DI05]

Regular encryption: E(k,m)

35 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Issue 1

 Evaluating encryption function in MPC → non-black-box

 Solution: “Distributed encryption” [DI05]

Regular encryption: E(k,m)

Distributed encryption:  Use sub-keys k1,…,kn instead of k

 Secret-share m

 Give ith share mi and ki to party Pi

 Pi computes E(ki,mi) and sends to all

36 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Circuit Garbling with Distributed Encryption

 Idea: Associated with every wire w of circuit C:

• mask mw (to hide actual value on wire) and

• two key sets kw,0, kw,1, each consisting of n subkeys

 Evaluate circuit on masked values while maintaining invariant:

If masked value is z, kw,z is known and kw,1-z is secret.

37 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Circuit Garbling without Distributed Encryption

z1 z2 Masked Output Bit z Garbled Entry

0 0 ((0 + ma) NAND (0 + mb)) + mc E(ka,0,kb,0, z || kc,z)

0 1 ((0 + ma) NAND (1 + mb)) + mc E(ka,0,kb,1, z || kc,z)

1 0 ((1 + ma) NAND (0 + mb)) + mc E(ka,1,kb,0, z || kc,z)

1 1 ((1 + ma) NAND (1 + mb)) + mc E(ka,1,kb,1, z || kc,z)

NAND

a b

c

38 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Circuit Garbling with Distributed Encryption

z1 z2 Masked Output Bit z Garbled Entry

0 0 ((0 + ma) NAND (0 + mb)) + mc [z , kc,z]

0 1 ((0 + ma) NAND (1 + mb)) + mc [z , kc,z]

1 0 ((1 + ma) NAND (0 + mb)) + mc [z , kc,z]

1 1 ((1 + ma) NAND (1 + mb)) + mc [z , kc,z]

NAND

a b

c

Instead of encrypting garbled entry, compute

secret-sharing of (each component of) it

39 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Phase I: Setting the Stage for Garbling with Distributed

Encryption

Phase I: Described by (randomized) constant-depth function that

 Randomly chooses masks and subkeys

 Computes masked inputs and corresponding subkeys based on player

inputs and masks

 Computes shared function tables (can be done in parallel)

 Outputs to Pi:

• Masked inputs and corresponding subkeys

• ith shares of all shared function tables

• Masks of output wires

40 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Phase I: Setting the Stage for Garbling with Distributed

Encryption (2)

 Actual Phase I: Evaluate Phase I function using [BKR94] protocol

 Round complexity of [BKR94] depends on depth of evaluated

circuit

 But: Phase I function is constant-depth!

41 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Issue 2

 [BKR94] protocol evaluates arithmetic circuits

 Phase I function described by Boolean circuit

 → Conversion to circuit over extension field of GF(2)

• Replace each NAND gate with inputs x,y by a computation of 1−xy

 Ensure that all inputs are 0,1 as follows:

• After input phase, for every input x, jointly open x – x2 [BGN05]

• If result is 0, accept x, otherwise replace by 0

42 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Protocol Overview

 Three phases for computing Boolean circuit C:

I. Compute distributed version of garbled circuit

• Evaluate constant-depth function using asynchronous (unconditionally secure)

MPC protocol by [BKR94] (whose round complexity depends on depth of

evaluated circuit)

II. With output from Phase I, complete circuit garbling

III. Locally evaluate garbled circuit

43 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Phases II + III: Encrypting and Evaluating

 Phase II: Compute encryption of garbled entries

• Each party Pi locally encrypts its shares with the appropriate subkeys and

sends resulting ciphertexts to all

44 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Phases II + III: Encrypting and Evaluating

 Phase II: Compute encryption of garbled entries

• Each party Pi locally encrypts its shares with the appropriate subkeys and

sends resulting ciphertexts to all

 Phase III: Locally evaluate garbled circuit

• Decryption of a function table entry with decryption subkeys k1,…,kn:

o Upon receiving encrypted share from Pi, decrypt it with ki

o Wait until 2t+1 shares on degree-t polynomial received and interpolate

45 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions

Recap: Constant-Round Async. MPC Protocol

 UC-realizes A-SFE in (A-SMT, A-BA)-hybrid model

 Function computed specified by Boolean circuit

 Computationally secure against adversary adaptively corrupting up

to t < n/3 parties (optimal [BCG93, Can95])

 Constant-round

 Black-box from one-way functions

 S. Coretti, J. Garay, M. Hirt and V. Zikas, “Constant-Round Asynchronous

Multi-Party Computation Based on One-Way Functions.” Cryptology

ePrint Archive Report 2016/208

 http://eprint.iacr.org/2016/208

46 The Bitcoin Backbone Protocol: Analysis and Applications

Full Version

Thanks!

