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Secure Multi-Party Computation (MPC)                         
[Yao82, GMW87, BGW88, CCD88, RB89,…] 
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Secure Multi-Party Computation (MPC)                         
[Yao82, GMW87, BGW88, CCD88, RB89,…] 

Mutually distrustful parties wish to 

evaluate function of their inputs 
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Secure Multi-Party Computation (MPC) (2)                   
[GMW87, C00, C01,…] 

 



5 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions  

Secure Multi-Party Computation (MPC) (2)                   
[GMW87, C00, C01,…] 

MPC protocol should emulate a 

trusted third party 
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Secure Multi-Party Computation (MPC) (3) 
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Secure Multi-Party Computation (MPC) (3) 

Simulation-based 

security definition in 

the Universal 

Composability (UC) 

framework  [C01] 
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Synchronous Communication Network 

 Each pair of parties connected by secure channels 

 Protocol proceeds in rounds 

 Messages sent in particular round guaranteed to arrive by 

beginning of next round 
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Synchronous Communication Network 

 Each pair of parties connected by secure channels 

 Protocol proceeds in rounds 

 Messages sent in particular round guaranteed to arrive by 

beginning of next round 

 “Plain” UC framework is inherently asynchronous 

• Adversary has full control over message delivery; may choose to delete 

messages sent between honest parties 

• “Synchronous” UC using clock functionality and bounded-delay 

channels [KMTZ13] 

 

 



10 Constant-Round Asynchronous Multi-Party Computation Based on One-Way Functions  

Asynchronous Communication Network 

 Synchronous network: great for analysis 

• (Partially) Synchronized clocks + bounded network latency → “timeouts” (T) 

• Round length typically (much) higher than average transmission time 
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Asynchronous Communication Network 

 Synchronous network: great for analysis 

• (Partially) Synchronized clocks + bounded network latency → “timeouts” (T) 

• Round length typically (much) higher than average transmission time 

 UC asynchrony: overly pessimistic 

“It takes advantage of the nature of information being easy to 

spread but hard to stifle.” 
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Asynchronous Communication Network 

 Synchronous network: great for analysis 

• (Partially) Synchronized clocks + bounded network latency → “timeouts” (T) 

• Round length typically (much) higher than average transmission time 

 UC asynchrony: overly pessimistic 

“It takes advantage of the nature of information being easy to 

spread but hard to stifle.” 

                                                        Satoshi Nakamoto 
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Asynchronous Communication Network (2) 

 Each pair of parties connected by secure channels 

 Messages sent guaranteed to arrive only eventually 

 Adversary may: 

• Delay message delivery by arbitrary finite amount of time 

• Reorder messages 

• Note: No deletions! (Unlike UC) 

 Model considered early on in fault-tolerant distributed computing (e.g., 

[FLP83]) and asynchronous MPC [BCG93,…] 
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Asynchronous Communication Network (2) 

 Each pair of parties connected by secure channels 

 Messages sent guaranteed to arrive only eventually 

 Adversary may: 

• Delay message delivery by arbitrary finite amount of time 

• Reorder messages 

• Note: No deletions! (Unlike UC) 

 Model considered early on in fault-tolerant distributed computing (e.g., 

[FLP83]) and asynchronous MPC [BCG93,…] 

 “Opportunistic”: protocols terminate as quickly as the network allows 
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Asynchronous Communication Network (2) 

 Each pair of parties connected by secure channels 

 Messages sent guaranteed to arrive only eventually 

 Adversary may: 

• Delay message delivery by arbitrary finite amount of time 

• Reorder messages 

• Note: No deletions! (Unlike UC) 

 Model considered early on in fault-tolerant distributed computing (e.g., 

[FLP83]) and asynchronous MPC [BCG93,…] 

 “Opportunistic”: protocols terminate as quickly as the network allows 

 To date: Asynchronous MPC with eventual delivery not modeled in UC 
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This Work 

 Formalize asynchronous model with eventual delivery in the UC 

framework 

• Asynchronous round complexity 

• Basic communication resources: async. secure channel (A-SMT) and  

async. Byzantine agreement (A-BA) 
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This Work 

 Formalize asynchronous model with eventual delivery in the UC 

framework 

• Asynchronous round complexity 

• Basic communication resources: async. secure channel (A-SMT) and  

async. Byzantine agreement (A-BA) 

 Constant-round MPC protocol  

• I.e., round complexity independent of circuit’s multiplicative depth 

• Based on standard assumptions (PRFs) 

• Tolerates t < n/3 corruptions 

• Adaptive adversary 
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Prior Work: Constant-Round MPC Protocols 

 Synchronous model: 

• Based on circuit garbling [Yao86, BMR90, DI05, IPS08] 

• Based on FHE [AJLTVW12] 

• t < n/2 corruptions 

• Assume broadcast channel (cf. [FL82, BE03, CCGZ16]) 
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Prior Work: Constant-Round MPC Protocols 

 Synchronous model: 

• Based on circuit garbling [Yao86, BMR90, DI05, IPS08] 

• Based on FHE [AJLTVW12] 

• t < n/2 corruptions 

• Assume broadcast channel (cf. [FL82, BE03, CCGZ16]) 

 Asynchronous model (recall: eventual delivery): 

• Based on FHE [Coh16] 

• t < n/3 corruptions 

• Static security 

• Assume A-BA 

• (Other known protocols are GMW-based → circuit depth) 
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This Work 

 Formalize asynchronous model with eventual delivery in the UC 

framework 

• Asynchronous round complexity 

• Basic communication resources: async. secure channel (A-SMT) and  

async. Byzantine agreement (A-BA) 

 Constant-round MPC protocol  

• I.e., round complexity independent of circuit’s multiplicative depth 

• Based on standard assumptions (PRFs) 

• Tolerates t < n/3 corruptions 

• Adaptive adversary 
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Modeling Asynchronous Communication in UC 

Sender Receiver 

Input messages 

• Poll for messages:     

T = T-1 

• If T = 0, first message 

in buffer output 

A-SMT Functionality: 

• Stores messages in buffer 

• Maintains delay T 

Adversary 

• Reorder messages in buffer 

• Increase T, specified in unary 
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Modeling Asynchronous Communication in UC (2) 

 Protocol execution: 

• Party either sends message or 

• polls A-SMT channels in round-robin fashion 
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Modeling Asynchronous Communication in UC (2) 

 Protocol execution: 

• Party either sends message or 

• polls A-SMT channels in round-robin fashion 

 

 Round complexity:  Maximum number of times any party switches 

between sending and polling 
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Modeling Asynchronous Secure Function Evaluation in UC 

Parties P 

• Provide input 

• Poll for output: T = T-1 

• If T = 0, first message in 

buffer output 

 

 

A-SFE Functionality: 

• Collects inputs and computes output 

• Maintains delay T 

Adversary 

• Decide on set of n-t input providers 

• Increase T, specified in unary 
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Modeling Asynchronous Byzantine Agreement in UC 

Parties P 

• Provide input 

• Poll for output: T = T-1 

• If T = 0, first message in 

buffer output 

 

 
A-BA Functionality: 

• Maintains delay T 

• Collects inputs and computes output 

• If there is agreement in C output 

corresponding value 

• Otherwise, output a value specified by 

attacker 

Adversary 

• Decide on set C of n-t input providers 

• Increase T, specified in unary 
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This Work 

 Formalize asynchronous model with eventual delivery in the UC 

framework 

• Asynchronous round complexity 

• Basic communication resources: async. secure channel (A-SMT) and async. 

Byzantine agreement (A-BA) 

 Constant-round MPC protocol  

• I.e., round complexity independent of circuit’s multiplicative depth 

• Based on standard assumptions (PRFs) 

• Tolerates t < n/3 corruptions 

• Adaptive adversary 
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Our Constant-Round Async. MPC Protocol 

 UC-realizes A-SFE in (A-SMT, A-BA)-hybrid model 

 Function computed specified by Boolean circuit 

 Computational security against adversary adaptively corrupting up 

to t < n/3 parties (optimal [BCG93, Can95] ) 

 Constant-round 

 Black-box from one-way functions 
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Protocol Overview 

 Three phases for computing Boolean circuit C: 

I. Compute distributed version of garbled circuit  

• Evaluate constant-depth function using asynchronous (unconditionally secure) 

MPC protocol by [BKR94] (whose round complexity depends on depth of 

evaluated circuit) 

II. With output from Phase I, complete circuit garbling 

III. Locally evaluate garbled circuit 
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Circuit Garbling [Yao86,BMR90] 

 Idea: Associated with every wire w of Boolean circuit C: 

• mask mw (to hide actual value on wire) and 

• two keys kw,0, kw,1 

 

 Evaluate circuit on masked values while maintaining invariant: 

 

If masked value is z, kw,z is known and kw,1-z is secret 
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Circuit Garbling [Yao86,BMR90] (2) 

z1 z2 Masked Output Bit z Garbled Entry 

0 0 ((0 + ma) NAND (0 + mb)) + mc  E(ka,0,kb,0, z || kc,z) 

0 1 ((0 + ma) NAND (1 + mb)) + mc  E(ka,0,kb,1, z || kc,z) 

1 0 ((1 + ma) NAND (0 + mb)) + mc  E(ka,1,kb,0, z || kc,z) 

1 1 ((1 + ma) NAND (1 + mb)) + mc  E(ka,1,kb,1, z || kc,z) 

To evaluate garbled circuit, use: 

• Masked values on input wires and 
corresponding keys 

• Masks of output wires 

NAND 

a b 

c 
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Issue 1 

  Evaluating encryption function in MPC → non-black-box 
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Issue 1 

  Evaluating encryption function in MPC → non-black-box 

  Solution:  “Distributed encryption” [DI05] 

Regular encryption: E(k,m) 

Distributed encryption:  Use sub-keys k1,…,kn instead of k 

 Secret-share m  

 Give ith share mi and ki to party Pi 

 Pi computes E(ki,mi) and sends to all 
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Circuit Garbling with Distributed Encryption 

 Idea: Associated with every wire w of circuit C: 

• mask mw (to hide actual value on wire) and 

• two key sets kw,0, kw,1, each consisting of n subkeys 

 Evaluate circuit on masked values while maintaining invariant: 

 

If masked value is z, kw,z is known and kw,1-z is secret. 
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Circuit Garbling without Distributed Encryption 

z1 z2 Masked Output Bit z Garbled Entry 

0 0 ((0 + ma) NAND (0 + mb)) + mc  E(ka,0,kb,0, z || kc,z) 

0 1 ((0 + ma) NAND (1 + mb)) + mc  E(ka,0,kb,1, z || kc,z) 

1 0 ((1 + ma) NAND (0 + mb)) + mc  E(ka,1,kb,0, z || kc,z) 

1 1 ((1 + ma) NAND (1 + mb)) + mc  E(ka,1,kb,1, z || kc,z) 

NAND 

a b 

c 
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Circuit Garbling with Distributed Encryption 

 

z1 z2 Masked Output Bit z Garbled Entry 

0 0 ((0 + ma) NAND (0 + mb)) + mc  [ z , kc,z ] 

0 1 ((0 + ma) NAND (1 + mb)) + mc  [ z , kc,z ] 

1 0 ((1 + ma) NAND (0 + mb)) + mc  [ z , kc,z ] 

1 1 ((1 + ma) NAND (1 + mb)) + mc  [ z , kc,z ] 

NAND 

a b 

c 

Instead of encrypting garbled entry, compute 

secret-sharing of (each component of) it 
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Phase I: Setting the Stage for Garbling with Distributed 

Encryption 

Phase I: Described by (randomized) constant-depth function that 

 Randomly chooses masks and subkeys 

 Computes masked inputs and corresponding subkeys based on player 

inputs and masks 

 Computes shared function tables (can be done in parallel) 

 Outputs to Pi: 

• Masked inputs and corresponding subkeys 

• ith shares of all shared function tables 

• Masks of output wires 
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Phase I: Setting the Stage for Garbling with Distributed 

Encryption (2) 

 Actual Phase I: Evaluate Phase I function using [BKR94] protocol 

 Round complexity of [BKR94] depends on depth of evaluated 

circuit 

 But: Phase I function is constant-depth! 
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Issue 2 

 [BKR94] protocol evaluates arithmetic circuits 

 Phase I function described by Boolean circuit 

 → Conversion to circuit over extension field of GF(2) 

• Replace each NAND gate with inputs x,y by a computation of  1−xy 

 Ensure that all inputs are 0,1 as follows: 

• After input phase, for every input x, jointly open x – x2  [BGN05]  

• If result is 0, accept x, otherwise replace by 0 
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Protocol Overview 

 Three phases for computing Boolean circuit C: 

I. Compute distributed version of garbled circuit  

• Evaluate constant-depth function using asynchronous (unconditionally secure) 

MPC protocol by [BKR94] (whose round complexity depends on depth of 

evaluated circuit) 

II. With output from Phase I, complete circuit garbling 

III. Locally evaluate garbled circuit 
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Phases II + III: Encrypting and Evaluating 

 Phase II: Compute encryption of garbled entries 

• Each party Pi locally encrypts its shares with the appropriate subkeys and 

sends resulting ciphertexts to all 
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Phases II + III: Encrypting and Evaluating 

 Phase II: Compute encryption of garbled entries 

• Each party Pi locally encrypts its shares with the appropriate subkeys and 

sends resulting ciphertexts to all 

 Phase III: Locally evaluate garbled circuit 

• Decryption of a function table entry with decryption subkeys k1,…,kn: 

o Upon receiving encrypted share from Pi, decrypt it with ki 

o Wait until 2t+1 shares on degree-t polynomial received and interpolate 
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Recap: Constant-Round Async. MPC Protocol 

 UC-realizes A-SFE in (A-SMT, A-BA)-hybrid model 

 Function computed specified by Boolean circuit 

 Computationally secure against adversary adaptively corrupting up 

to t < n/3 parties (optimal [BCG93, Can95] ) 

 Constant-round 

 Black-box from one-way functions 



 S. Coretti, J. Garay, M. Hirt and V. Zikas, “Constant-Round Asynchronous 

Multi-Party Computation Based on One-Way Functions.” Cryptology 

ePrint Archive Report 2016/208 

          http://eprint.iacr.org/2016/208 
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Full Version  



Thanks! 

 


