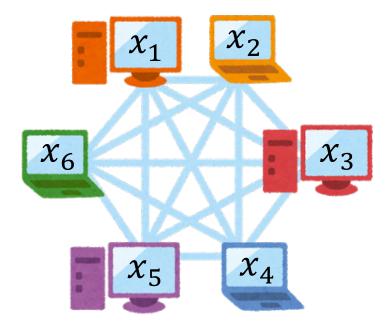
Size-Hiding Computation for Multiple Parties


Kazumasa Shinagawa^{1,2} Koji Nuida^{2,3} Takashi Nishide¹ Goichiro Hanaoka² Eiji Okamoto¹

1: University of Tsukuba, 2: AIST, 3: JST PRESTO

1

Secure Multiparty Computation

- Each party P_i has some private input x_i
- The parties wish to compute a function $y = f(x_1, \dots, x_n)$ without revealing the inputs
- Consider the single output, semi-honest, n 1 corruption

Size-Hiding Computation

- can hide some of input/output-sizes from some of parties
- Each private size can be hidden from different set of parties
- It is known that some of size-hiding is impossible in general
- Which type of size-hiding is possible in general?

This Talk

complete characterization for the feasibility (assuming the existence of FHE)

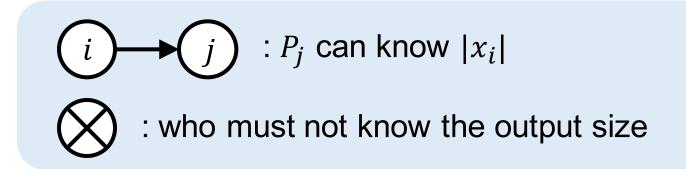
Set Intersection

- Police has a list of terrorists X
- Company has a list of customers Y
- Police wants to compute $X \cap Y$ without revealing |X|
- Naïve approach: Padding
- Padding is inefficient

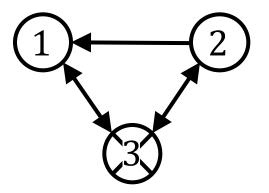
Compute $X \cap Y$

Millionaire Problem

- Aliens: "Which planet has the largest population?"
- The population is related to the military power
- The input-size is also related to the military power
- Padding doesn't work
 - \because The largest population in the universe is too large



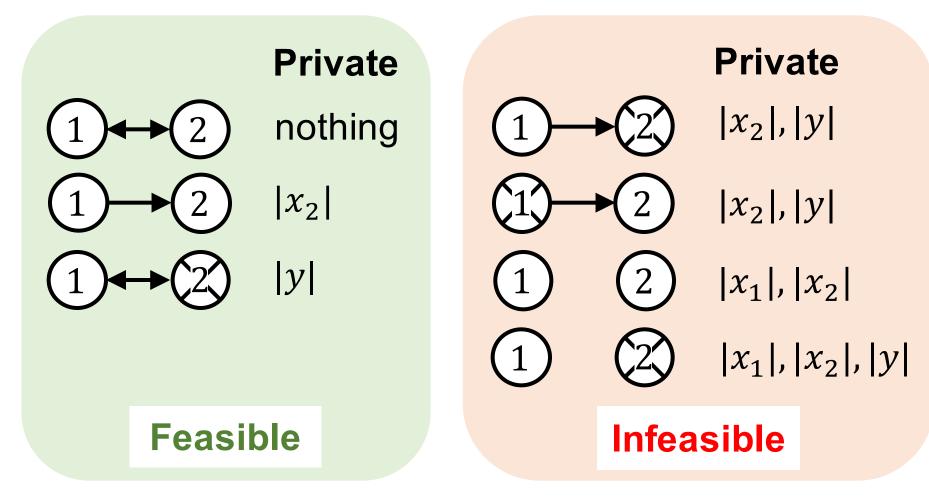
Outline


NEW Notations

- Classification for two-party [LNO13]
- Classification for multiparty
 Almost all sizes cannot be hidden
- Strong secure channel (SSC) model
 It is implementable by steganography
- NEW OCLASSIFICATION FOR MULTIPARTY IN SSC model
 Many sizes can be hidden in SSC model

Notations

A size-hiding class



✓ P₂ must not know |x₁|
 ✓ P₃ must not know the output-size

Def. A class is feasible if general MPC is possible

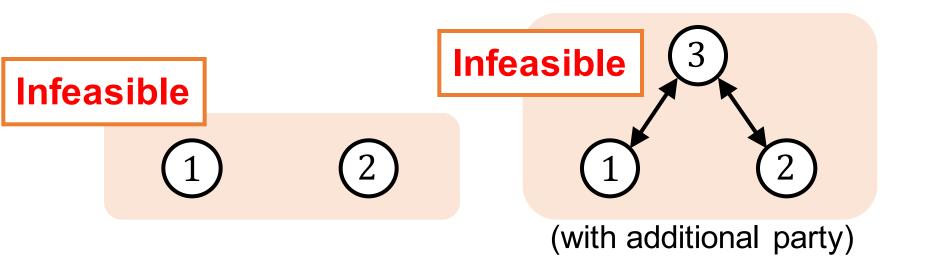
Two-party Cases [LNO13]

Hiding two or more sizes is infeasible in two-party case

Outline

NEW Notations

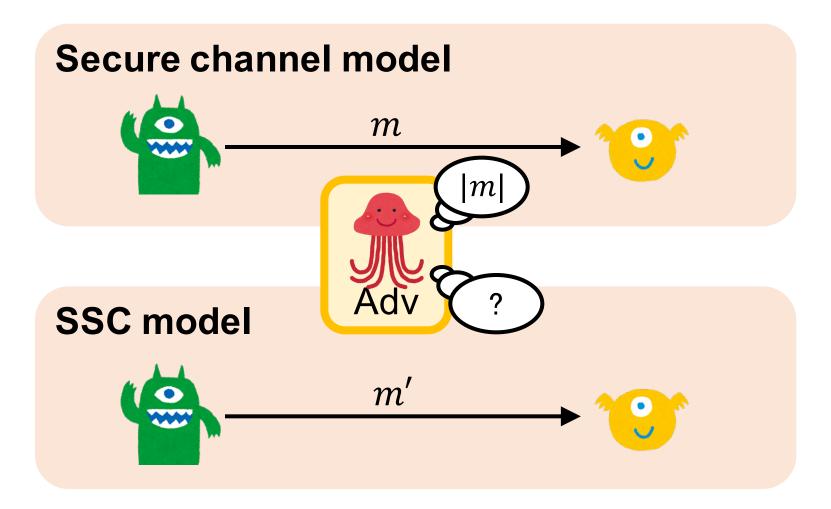
- Classification for two-party [LNO13]
- Classification for multiparty
 Almost all sizes cannot be hidden
- Strong secure channel (SSC) model
 It is implementable by steganography
- NEW OCLASSIFICATION FOR MULTIPARTY IN SSC model
 Many sizes can be hidden in SSC model


Multiparty Cases (Our Result)

Our result in standard model

Even in MPC, it is infeasible to hide two sizes

- The infeasibility is proven by techniques of [LNO13]
- The protocol for hiding $|x_1|$
 - The parties invoke KeyGen for threshold FHE
 - Each party P_i sends $Enc(x_i)$ to P_1
 - P_1 computes [y] and broadcast it
 - They invoke Decryption


Limitation of standard channel

 P_3 can know $|x_1|$ and $|x_2|$ but P_1 cannot send $Enc(x_1)$ P_2 cannot send $Enc(x_2)$

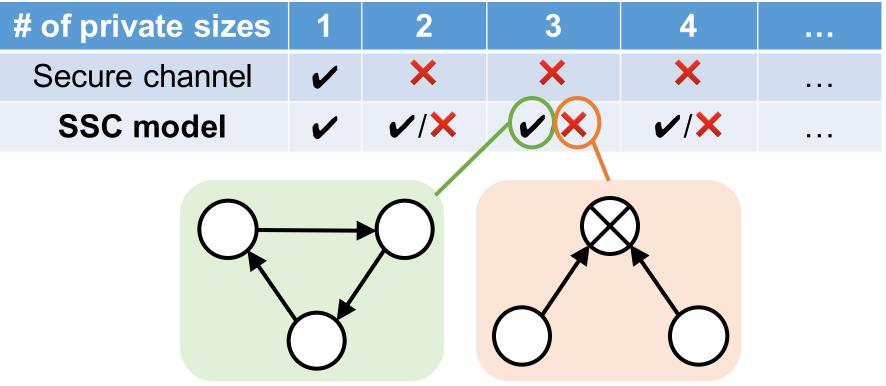
: channel may leak the number of communication bits

Strong Secure Channel (SSC)

It is implementable by steganography

Outline

NEW Notations

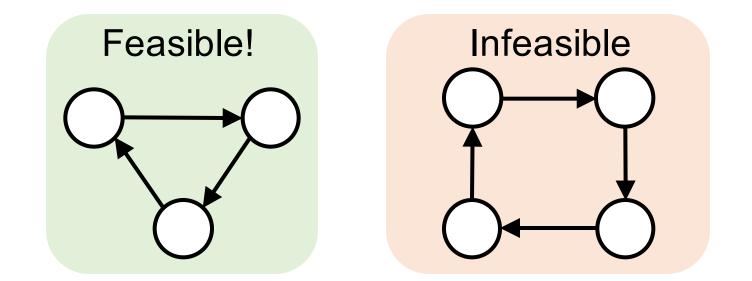

- Classification for two-party [LNO13]
- Classification for multiparty
 Almost all sizes cannot be hidden
- Strong secure channel (SSC) model
 It is implementable by steganography

NEW O Classification for multiparty in SSC model

Many sizes can be hidden in SSC model

Our Result in SSC model

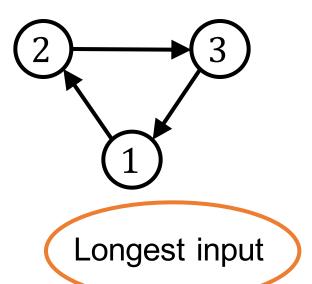
- Complete classification in SSC model
- Maximum number of private sizes is n



Case 1 When the output-size is public

Case 1 (public output-size)

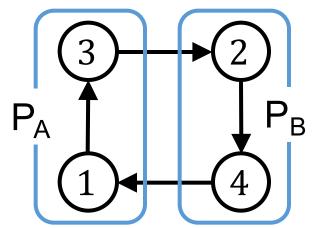
- Suppose the output-size is public
- Size-hiding computation is feasible in SSC model \Leftrightarrow for every (i) and (j)


 $(i) \leftarrow (j) \text{ or } \exists (k) : (i)$ or

Main Idea for Construction

Invoke Sharing Protocols for P₁, P₂, P₃

[*x*] : FHE ciphertext

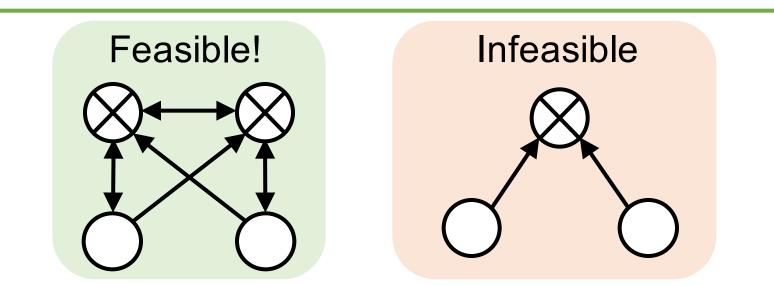


Sharing Protocol for P_1 : P_3 sends to P_1 : $\begin{bmatrix} 1 & x_3 \end{bmatrix}$ P_2 sends to P_1 : $\|f\|x_1\| \ge \|x_2\| \|\|1\|^{|x_1|-|x_2|} \|x_2\|$ Otherwise $\begin{bmatrix} 0 & 0^{|x_1|} \end{bmatrix}$

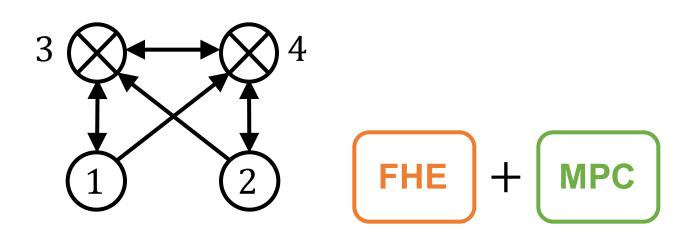
One of them can obtain all flagged ciphertexts! $\rightarrow [f(x_1, x_2, x_3)]$ can be computed

Infeasibility (Reduced to [LNO13])

 $F(x_1, x_2, x_3, x_4)$

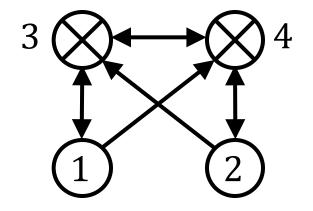

- Suppose the class is feasible
- Let $F(x_1, x_2, x_3, x_4) = f(x_1, x_2)$
- Two private sizes (in two-party) is feasible
- It contradicts [LNO13]

Case 2 When the output-size is private


Case 2 (private output-size)

- Suppose the output-size is private
- Size-hiding computation is feasible in SSC model ⇔ for every ⊗
 - ✓ The party can know all input-sizes; and

✓ ∃O: ⊗→O



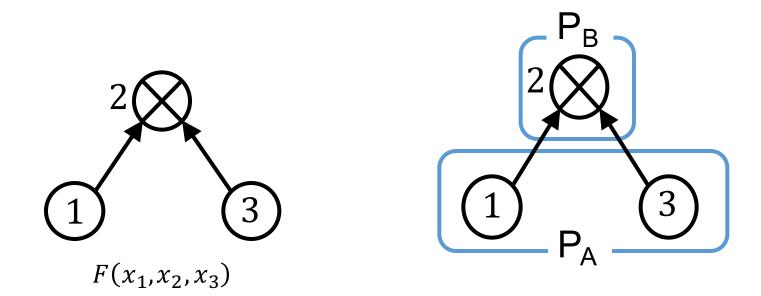
Main Idea for Construction (1)

- P_3 , P_4 are not involved in KeyGen
 - \therefore P₃, P₄ must not join threshold **Decryption of** [y]
- P_3 , P_4 do **Evaluation**, and obtain [y] with zero paddings Thanks to the padding, they can do this without knowing |y|

Main Idea for Construction (2)

- P_1, P_2 do KeyGen
- P_3 , P_4 get encrypted input-shares
- P_3 , P_4 do Evaluate using MPC
- P_1 , P_2 do threshold Decryption

If P_1 , P_2 are corrupted **FHE does not work**


P₃ or P₄ is honest Security by MPC

If P_3 , P_4 are corrupted **MPC does not work**

*P*₁ or *P*₂ is honest Security by FHE

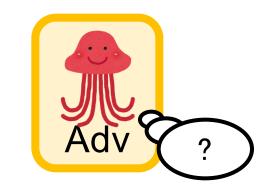
FHE or MPC guarantee the security!

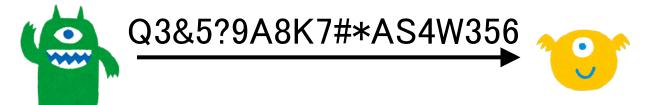
Infeasibility (Reduced to [LNO13])

Suppose the class is feasible

• Let
$$F(x_1, x_2, x_3) = f(x_1, x_2)$$

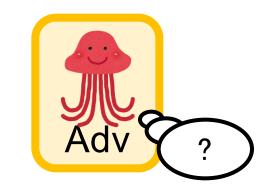
- Two private sizes (in two-party) is feasible
- It contradicts [LNO13]

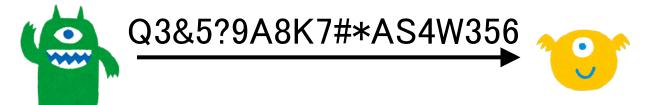

Conclusion


- Hiding two is infeasible (standard model)
- SSC model is rich for size-hiding
 Some of them are still infeasible

Thank you for your attention!

A&C


How to implement SSC by steganography?
 A party can hide message of an arbitrary length



A&C

How to implement SSC by steganography?
 A party can hide message of an arbitrary length

Conclusion

Background

[LNO13] constructed size-hiding protocol for two parties
 They also proved the strong limitation

This work

We introduce the strong secure channel (SSC) model

- We construct size-hiding protocols in the SSC model
- We also prove the (weaker) limitation for the SSC model

Thank you for your attention!

Set Intersection

- Police has a list of terrorists X
- Company has a list of customers Y
- Police wish to compute $X \cap Y$ without regaling
- Naïve approach, Padding, is inefficient

- Millionaire Problem (Population version)
 - Aliens: "Which planet has the largest population?"
 - The population is related to the military power
 - Its size is also related to the military power
 - Padding doesn't work since the upper-bound is too large