
Iterated Random Oracle: A Universal Approach for
Finding Loss in Security Reduction

Fuchun Guo, Willy Susilo, Yi Mu, Rongmao Chen,

Jianchang Lai, Guomin Yang

About this work

• In the random oracle model, we can prove a cryptosystem such as
a public-key encryption in the IND (indistinguishability) security
model under a computational hard problem, e.g. CDH.

• The solution to the computational hard problem comes from one of
hash queries to the random oracle made by the adversary.

• When the decisional variant of this problem is also hard, the
simulator does not know which query contains the correct solution.

• Finding loss refers to finding an incorrect solution from queries.

• We introduce Iterated random oracle (a complex random oracle) to
address the finding loss towards tight(er) reduction.

1

About this work

• In the random oracle model, we can prove a cryptosystem such as
a public-key encryption in the IND (indistinguishability) security
model under a computational hard problem, e.g. CDH.

• The solution to the computational hard problem comes from one of
hash queries to the random oracle made by the adversary.

• When the decisional variant of this problem is also hard, the
simulator does not know which query contains the correct solution.

• Finding loss refers to finding an incorrect solution from queries.

• We introduce Iterated random oracle (a complex random oracle) to
address the finding loss towards tight(er) reduction.

1

About this work

• In the random oracle model, we can prove a cryptosystem such as
a public-key encryption in the IND (indistinguishability) security
model under a computational hard problem, e.g. CDH.

• The solution to the computational hard problem comes from one of
hash queries to the random oracle made by the adversary.

• When the decisional variant of this problem is also hard, the
simulator does not know which query contains the correct solution.

• Finding loss refers to finding an incorrect solution from queries.

• We introduce Iterated random oracle (a complex random oracle) to
address the finding loss towards tight(er) reduction.

1

About this work

• In the random oracle model, we can prove a cryptosystem such as
a public-key encryption in the IND (indistinguishability) security
model under a computational hard problem, e.g. CDH.

• The solution to the computational hard problem comes from one of
hash queries to the random oracle made by the adversary.

• When the decisional variant of this problem is also hard, the
simulator does not know which query contains the correct solution.

• Finding loss refers to finding an incorrect solution from queries.

• We introduce Iterated random oracle (a complex random oracle) to
address the finding loss towards tight(er) reduction.

1

About this work

• In the random oracle model, we can prove a cryptosystem such as
a public-key encryption in the IND (indistinguishability) security
model under a computational hard problem, e.g. CDH.

• The solution to the computational hard problem comes from one of
hash queries to the random oracle made by the adversary.

• When the decisional variant of this problem is also hard, the
simulator does not know which query contains the correct solution.

• Finding loss refers to finding an incorrect solution from queries.

• We introduce Iterated random oracle (a complex random oracle) to
address the finding loss towards tight(er) reduction.

1

Two Types of Security Reductions

In a security reduction, a simulator uses an adversary’s attack to solve a
hard problem. There are two types of reductions.

Unforgeability security based on a computational hard problem
(UF-CHP). For example, in a digital signature scheme, the simulator
uses the forged signature to solve a computational hard problem.
Indistinguishability security based on a decisional hard problem
(IND-DHP). For example, in a public-key encryption scheme, the
simulator uses the guess of the random message in CT to solve a
decisional hard problem.

2

Two Types of Security Reductions

In a security reduction, a simulator uses an adversary’s attack to solve a
hard problem. There are two types of reductions.

Unforgeability security based on a computational hard problem
(UF-CHP). For example, in a digital signature scheme, the simulator
uses the forged signature to solve a computational hard problem.

Indistinguishability security based on a decisional hard problem
(IND-DHP). For example, in a public-key encryption scheme, the
simulator uses the guess of the random message in CT to solve a
decisional hard problem.

2

Two Types of Security Reductions

In a security reduction, a simulator uses an adversary’s attack to solve a
hard problem. There are two types of reductions.

Unforgeability security based on a computational hard problem
(UF-CHP). For example, in a digital signature scheme, the simulator
uses the forged signature to solve a computational hard problem.
Indistinguishability security based on a decisional hard problem
(IND-DHP). For example, in a public-key encryption scheme, the
simulator uses the guess of the random message in CT to solve a
decisional hard problem.

2

IND-Computational Hard Problem
IND security based on a computational hard problem (IND-CHP) ???

In this security model and reduction:
The adversary’s output: {0, 1}
The simulator’s output : solution to a computational hard problem.

It seems impossible to carry out such a security reduction because the
guess 0 or 1 cannot provide sufficient information to find a correct
solution from an exponential-size solution space.

3

IND-Computational Hard Problem
IND security based on a computational hard problem (IND-CHP) ???

In this security model and reduction:
The adversary’s output: {0, 1}
The simulator’s output : solution to a computational hard problem.

It seems impossible to carry out such a security reduction because the
guess 0 or 1 cannot provide sufficient information to find a correct
solution from an exponential-size solution space.

3

IND-Computational Hard Problem
IND security based on a computational hard problem (IND-CHP) ???

In this security model and reduction:
The adversary’s output: {0, 1}
The simulator’s output : solution to a computational hard problem.

It seems impossible to carry out such a security reduction because the
guess 0 or 1 cannot provide sufficient information to find a correct
solution from an exponential-size solution space.

3

IND-CHP in Random Oracles
However, using random oracles [BR93], IND-CHP reduction is possible!

Suppose a hash function H is treated as a random oracle. In the
random oracle model, when the adversary makes a query on a string x
to the random oracle:

H(x) is uniformly random and independent of x.
H(x) is controlled by the simulator (tricky part).

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V.
(eds.) CCS 1993. pp. 62–73. ACM (1993)

4

Core of Encryption Reduction in Random Oracles
Considering the following ciphertext:

CT =
(

gx, gy, H (gxy)⊕ mcoin

)

Suppose1 an adversary A can distinguish the encrypted message
mcoin ∈ {m0,m1} in the random oracle model. We can construct a
simulator to solve the CDH problem. Given

(
g, ga, gb

)
, the simulator

aims to compute gab .

Simulation: CT = (ga, gb, R),where R is a random string.

No query on gab, no break on the ciphertext. (One-Time Pad)
According to the assumption, gab will appear in one of queries.
One of hash queries is the solution to the CDH problem.

1 assumption

5

Core of Encryption Reduction in Random Oracles
Considering the following ciphertext:

CT =
(

gx, gy, H (gxy)⊕ mcoin

)
Suppose1 an adversary A can distinguish the encrypted message
mcoin ∈ {m0,m1} in the random oracle model. We can construct a
simulator to solve the CDH problem. Given

(
g, ga, gb

)
, the simulator

aims to compute gab .

Simulation: CT = (ga, gb, R),where R is a random string.

No query on gab, no break on the ciphertext. (One-Time Pad)
According to the assumption, gab will appear in one of queries.
One of hash queries is the solution to the CDH problem.

1 assumption

5

Core of Encryption Reduction in Random Oracles
Considering the following ciphertext:

CT =
(

gx, gy, H (gxy)⊕ mcoin

)
Suppose1 an adversary A can distinguish the encrypted message
mcoin ∈ {m0,m1} in the random oracle model. We can construct a
simulator to solve the CDH problem. Given

(
g, ga, gb

)
, the simulator

aims to compute gab .

Simulation: CT = (ga, gb, R),where R is a random string.

No query on gab, no break on the ciphertext. (One-Time Pad)
According to the assumption, gab will appear in one of queries.
One of hash queries is the solution to the CDH problem.

1 assumption

5

Core of Encryption Reduction in Random Oracles
Considering the following ciphertext:

CT =
(

gx, gy, H (gxy)⊕ mcoin

)
Suppose1 an adversary A can distinguish the encrypted message
mcoin ∈ {m0,m1} in the random oracle model. We can construct a
simulator to solve the CDH problem. Given

(
g, ga, gb

)
, the simulator

aims to compute gab .

Simulation: CT = (ga, gb, R),where R is a random string.

No query on gab, no break on the ciphertext. (One-Time Pad)
According to the assumption, gab will appear in one of queries.
One of hash queries is the solution to the CDH problem.

1 assumption

5

Finding Loss
Suppose A made the following queries to the random oracle.

Q1, Q2, Q3, · · · ,Qq

Which Q is equal to gab ?

If the DDH problem is easy, the simulator can test each query until
find the correct solution. The success probability of finding the
correct solution is 1.

If the DDH problem is also hard, the simulator has to randomly pick
one query as the solution. The success probability of finding the
correct solution is 1/q.

The number of hash queries q could be as large as 260.

Loose Reduction!

6

Finding Loss
Suppose A made the following queries to the random oracle.

Q1, Q2, Q3, · · · ,Qq

Which Q is equal to gab ?
If the DDH problem is easy, the simulator can test each query until
find the correct solution. The success probability of finding the
correct solution is 1.

If the DDH problem is also hard, the simulator has to randomly pick
one query as the solution. The success probability of finding the
correct solution is 1/q.

The number of hash queries q could be as large as 260.

Loose Reduction!

6

Finding Loss
Suppose A made the following queries to the random oracle.

Q1, Q2, Q3, · · · ,Qq

Which Q is equal to gab ?
If the DDH problem is easy, the simulator can test each query until
find the correct solution. The success probability of finding the
correct solution is 1.

If the DDH problem is also hard, the simulator has to randomly pick
one query as the solution. The success probability of finding the
correct solution is 1/q.

The number of hash queries q could be as large as 260.

Loose Reduction!

6

Finding Loss
Suppose A made the following queries to the random oracle.

Q1, Q2, Q3, · · · ,Qq

Which Q is equal to gab ?
If the DDH problem is easy, the simulator can test each query until
find the correct solution. The success probability of finding the
correct solution is 1.

If the DDH problem is also hard, the simulator has to randomly pick
one query as the solution. The success probability of finding the
correct solution is 1/q.

The number of hash queries q could be as large as 260.

Loose Reduction!

6

Finding Loss

How to find the correct solution from the adversary’s query set?

We call this problem as a finding problem and the reduction has a
finding loss, if the probability of finding the correct solution is < 1.

In this work, we focus on the non-trivial case that the decisional variant
of a computational hard problem is also hard.

7

Security Reduction in IND-CHP

The simulator uses the query set to find the solution to the instance.

8

Security Reduction in IND-CHP

Let C[I,P] be a solution to an instance I under a computational hard problem P.

Before Disclosing Simulation After Disclosing Simulation
A is given Scheme Instance

A queries A query set including a challenge query A query set including a challenge query
for breaking scheme equal to the solution

9

Theory 1 (Traditional Approach)

The simulator can only solve the hard problem
with success probability 1

q .

10

Cash-Kiltz-Shoup Approach

• In EUROCRYPT 2008, Cash, Kiltz and Shoup [CKS08] proposed a
new computational problem called the twin Diffie-Hellman problem.

• The new hard problem is as hard as the CDH problem, where the
DDH problem is also hard.

• Schemes based on the twin Diffie-Hellman problem have no finding
loss in security reduction.

[CKS08] Cash, D., Kiltz, E., Shoup, V.: The twin diffie-hellman problem and applications. In: Smart, N.P.
(ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer,Heidelberg (2008).
[CKS09] Cash, D., Kiltz, E., Shoup, V.: The twin diffie-hellman problem and applications. J. Cryptology
22(4), 470–504 (2009).

11

Trapdoor Test in Cash-Kiltz-Shoup Approach

Given an instance I1, suppose there exist a particularly constructed
instance I2 and a trapdoor test algorithm such that:

TrapdoorTest(Q1,Q2)=True if and only if

Q1 = C[I1,P], Q2 = C[I2,P],

except with a negligible probability.

12

Theory 2 (Cash-Kiltz-Shoup)

The simulator can solve the hard problem with success probability
1 if there exists a trapdoor test on solutions to a given

instance I1(= I) and a created instance I2.

13

Theory 2 (Cash-Kiltz-Shoup)

Summary:

• Cash-Kiltz-Shoup approach is smart and easy in understanding.
• This approach requires a trapdoor test.
• The proposed trapdoor test can be adopted by some computational

Diffie-Hellman hard problems only. (Limitation & Our Motivation)

14

What is Iterated Random Oracle?

Suppose the adversary needs to make a challenge query in order to use
its output to break a scheme.

1. Traditional Random Oracle (one special input)

2. Iterated Random Oracle (n special inputs)

15

What is Iterated Random Oracle?

Suppose the adversary needs to make a challenge query in order to use
its output to break a scheme.

1. Traditional Random Oracle (one special input)

2. Iterated Random Oracle (n special inputs)

15

What is Iterated Random Oracle?

Suppose the adversary needs to make a challenge query in order to use
its output to break a scheme.

1. Traditional Random Oracle (one special input)

2. Iterated Random Oracle (n special inputs)

15

Iterated Query in the Iterated Random Oracle

Iterated Query. We define an iterated query Q to the random oracle as

Q = Response ||Weight || Iteration Time = R || Q || i,

R: a response of a hash query or an empty string 0ε,
Q: a weight (any arbitrary string) chosen by the adversary,
i: the iteration time.

16

Challenge Query in Iterated Random Oracle

Q(i)
∗ = H(Q(i−1)

∗)||C[Ii,P] || i : i ∈ [1, n],

where H(Q(0)
∗) = 0ε is an empty string.

Q(n)
∗ is the defined challenge query.

17

Theory 3 (Iterated Random Oracle)

The simulator can solve the hard problem
with success probability 1

nq
1
n
.

18

Comparison of Three Theories

Theory 1 (Traditional) Theory 2 (CKS) Theory 3 (Ours)

For All Problems X × X

Success Probability 1
q 1 1

n·q
1
n

Finding Efficiency O(1) O(q) O(n)

Query Efficiency 1 2 O(n)

Table : Comparison of success probability.

q = 240 q = 250 q = 260

Traditional Approach 1
240

1
250

1
260

Cash-Kiltz-Shoup 1 1 1

Iterated Random Oracle with n = 10 1
160

1
320

1
640

19

Queries and Tree Representation

All queries and responses are represented using a tree.

For example:

Q1 = 0ε||Q1||1, Q2 = H(Q1)||Q2||2, Q3 = H(Q2)||Q3||3

20

Queries and Tree Representation

All queries and responses are represented using a tree.

For example:

Q1 = 0ε||Q1||1, Q2 = H(Q1)||Q2||2, Q3 = H(Q2)||Q3||3

20

Properties of Tree Representation

Q = Response ||Weight || Iteration Time = R || Q || i,

• All queries with the same iteration time i are edges at the level i.
• All queries with the same response are edges from the same node.
• All edges starting from the same node must have different weights.

21

Properties of Tree Representation

P = CDH, Ii =
(
g, gai , gb) C[Ii,P] = gaib

22

Properties of Tree Representation

• Each level could have more than one red & solid edge.
• All red & solid edges at the same level must be from different nodes.
• There exists one red & solid path from the root to a leaf H(Q∗).

23

Proof of Our Theory

Simulator Construction. Given (I,P), the simulator works as follows.
• Randomly choose d ∈ [1, n] and set Id = I.
• Choose random instances I1, I2, · · · , Id−1, Id+1, · · · , In such that
C[Ii,P] for all i ∈ [1, n] \ {d} are known by the simulator.

Each instance should be indistinguishable such that d is unknown to the
adversary (very important!).

24

Proof of Our Theory

• C[Id,P] = C[I,P] is unknown.
• C[Ii,P] for all i ∈ [1, n] \ {d} are known.

1. The solution will appear in one of edges at the d-th level.

2. Use known solutions at levels d + 1 to n to filter useless queries.

3. Randomly pick a query from candidate queries as a valid query.

25

Proof of Our Theory
The query Q at the level i is a valid query if its weight is gaib.
The query Q is a candidate query if there exists a red & solid path
from the node H(Q) to a leaf node at the level n. All queries at the
level n are candidate queries.
The query Q is a useless query if there exists no red & solid path
from the node H(Q) to a leaf node at the level n.

In the above example, d = 2. The simulator does not know whether a
query at the level 2 is a valid query or not, but knows.....

26

Proof of Our Theory

Randmly choose a query from
Traditional Approach all queries

Iterated Random Oracle candidate queries at the level d

27

Proof of Our Theory

1. (Lemma 1) If the following rate

R(i) =
The number of valid queries in Q(i)

The number of candidate queries in Q(i) <
1

q
1
n

holds for all i ∈ [1, n], the adversary must make more than q queries.

2. For q hash queries at most, there must exist an i∗ ∈ [1, n] such that

R(i∗) =
The number of valid queries in Q(i∗)

The number of candidate queries in Q(i∗)
≥ 1

q
1
n
.

3. When d = i∗,

Pr[suc] =
n∑

i=1

Pr[suc|d = i]Pr[d = i]

≥ Pr[suc|d = i∗]Pr[d = i∗] =
1
n
· 1

q
1
n

28

Proof of Our Theory

1. (Lemma 1) If the following rate

R(i) =
The number of valid queries in Q(i)

The number of candidate queries in Q(i) <
1

q
1
n

holds for all i ∈ [1, n], the adversary must make more than q queries.

2. For q hash queries at most, there must exist an i∗ ∈ [1, n] such that

R(i∗) =
The number of valid queries in Q(i∗)

The number of candidate queries in Q(i∗)
≥ 1

q
1
n
.

3. When d = i∗,

Pr[suc] =
n∑

i=1

Pr[suc|d = i]Pr[d = i]

≥ Pr[suc|d = i∗]Pr[d = i∗] =
1
n
· 1

q
1
n

28

Proof of Our Theory

1. (Lemma 1) If the following rate

R(i) =
The number of valid queries in Q(i)

The number of candidate queries in Q(i) <
1

q
1
n

holds for all i ∈ [1, n], the adversary must make more than q queries.

2. For q hash queries at most, there must exist an i∗ ∈ [1, n] such that

R(i∗) =
The number of valid queries in Q(i∗)

The number of candidate queries in Q(i∗)
≥ 1

q
1
n
.

3. When d = i∗,

Pr[suc] =

n∑
i=1

Pr[suc|d = i]Pr[d = i]

≥ Pr[suc|d = i∗]Pr[d = i∗] =
1
n
· 1

q
1
n

28

Proof of Our Theory
Examples: n = 2, q = 8.
The probability should be at least 1

nq
1
n
= 1

2
√

8
.

The probability Pr[suc|d = i∗] for some i∗ should be at least 1√
8
.

29

Proof of Our Theory
Examples: n = 2, q = 8.
The probability should be at least 1

nq
1
n
= 1

2
√

8
.

The probability Pr[suc|d = i∗] for some i∗ should be at least 1√
8
.

29

Proof of Our Theory
Examples: n = 2, q = 8.
The probability should be at least 1

nq
1
n
= 1

2
√

8
.

The probability Pr[suc|d = i∗] for some i∗ should be at least 1√
8
.

When d = 2, it is easy to see that Pr[suc|d = 2] = 3
5 ≥

1√
8
.

30

Theories in Applications

Theories Instance(s) Challenge Query

Traditional Approach I Q∗ = C[I,P]

Cash-Kiltz-Shoup (I1, I2) Q∗ = C[I1,P] || C[I2,P]

Iterated Random Oracle (I1, I2, · · · , In) Q∗ = Q(n)
∗

To apply the theories:
• The scheme must be simulated using the generated instance(s).
• The defined challenge query must be made to break the scheme.

31

Applications

• Generic conversion for Key Encapsulation Mechanism (KEM):

One-Way KEM to IND-KEM with a small finding loss in the random
oracle mode without expending ciphertext size.

• Tight reduction for Key Exchange under the IND-CHP reduction.

Advantage: tighter reduction with a small finding loss

Disadvantage: Longer private/secret key (linear n, n = 10)

32

Conclusion

• Introduced the finding loss in the IND-CHP reduction.

• Proposed iterated random oracle to reduce the finding loss.

Theory 1 (Traditional) Theory 2 (CKS) Theory 3 (Ours)

For All Problems X × X

Success Probability 1
q 1 1

n·q
1
n

Finding Efficiency O(1) O(q) O(n)

Query Efficiency 1 2 O(n)

Showed applications in encryption and key exchange.

33

Thanks & Questions

34

	First Section

