

Iterated Random Oracle: A Universal Approach for Finding Loss in Security Reduction

<u>Fuchun Guo</u>, Willy Susilo, Yi Mu, Rongmao Chen, ⁹. Jianchang Lai, Guomin Yang

UNIVERSITY OF WOLLONGONG AUSTRALIA

 In the random oracle model, we can prove a cryptosystem such as a public-key encryption in the IND (indistinguishability) security model under a computational hard problem, e.g. CDH.

- In the random oracle model, we can prove a cryptosystem such as a public-key encryption in the IND (indistinguishability) security model under a computational hard problem, e.g. CDH.
- The solution to the computational hard problem comes from one of hash queries to the random oracle made by the adversary.

- In the random oracle model, we can prove a cryptosystem such as a public-key encryption in the IND (indistinguishability) security model under a computational hard problem, e.g. CDH.
- The solution to the computational hard problem comes from one of hash queries to the random oracle made by the adversary.
- When the decisional variant of this problem is also hard, the simulator does not know which query contains the correct solution.

- In the random oracle model, we can prove a cryptosystem such as a public-key encryption in the IND (indistinguishability) security model under a computational hard problem, e.g. CDH.
- The solution to the computational hard problem comes from one of hash queries to the random oracle made by the adversary.
- When the decisional variant of this problem is also hard, the simulator does not know which query contains the correct solution.
- Finding loss refers to finding an incorrect solution from queries.

- In the random oracle model, we can prove a cryptosystem such as a public-key encryption in the IND (indistinguishability) security model under a computational hard problem, e.g. CDH.
- The solution to the computational hard problem comes from one of hash queries to the random oracle made by the adversary.
- When the decisional variant of this problem is also hard, the simulator does not know which query contains the correct solution.
- Finding loss refers to finding an incorrect solution from queries.
- We introduce Iterated random oracle (a complex random oracle) to address the finding loss towards tight(er) reduction.

Two Types of Security Reductions

In a security reduction, a simulator uses an adversary's attack to solve a hard problem. There are two types of reductions.

Two Types of Security Reductions

In a security reduction, a simulator uses an adversary's attack to solve a hard problem. There are two types of reductions.

 Unforgeability security based on a computational hard problem (UF-CHP). For example, in a digital signature scheme, the simulator uses the forged signature to solve a computational hard problem.

Two Types of Security Reductions

In a security reduction, a simulator uses an adversary's attack to solve a hard problem. There are two types of reductions.

- Unforgeability security based on a computational hard problem (UF-CHP). For example, in a digital signature scheme, the simulator uses the forged signature to solve a computational hard problem.
- Indistinguishability security based on a decisional hard problem (IND-DHP). For example, in a public-key encryption scheme, the simulator uses the guess of the random message in *CT* to solve a decisional hard problem.

IND-Computational Hard Problem

IND security based on a computational hard problem (IND-CHP) ???

IND-Computational Hard Problem

IND security based on a computational hard problem (IND-CHP) ???

In this security model and reduction: The adversary's output: {0, 1} The simulator's output : solution to a computational hard problem.

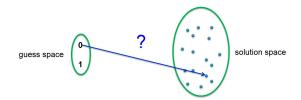
IND-Computational Hard Problem

IND security based on a computational hard problem (IND-CHP) ???

In this security model and reduction:

The adversary's output: {0, 1}

The simulator's output : solution to a computational hard problem.



It seems impossible to carry out such a security reduction because the guess 0 or 1 cannot provide sufficient information to find a correct solution from an exponential-size solution space.

IND-CHP in Random Oracles

However, using random oracles [BR93], IND-CHP reduction is possible!

Suppose a hash function *H* is treated as a random oracle. In the random oracle model, when the adversary makes a query on a string x to the random oracle:

- \blacksquare *H*(*x*) is uniformly random and independent of *x*.
- \blacksquare *H*(*x*) is controlled by the simulator (tricky part).

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V. (eds.) CCS 1993. pp. 62–73. ACM (1993)

Considering the following ciphertext:

$$CT = \left(g^{x}, g^{y}, H\left(g^{xy}\right) \oplus m_{coin}\right)$$

¹ assumption

Considering the following ciphertext:

$$CT = \left(g^{x}, g^{y}, H\left(g^{xy}\right) \oplus m_{coin}\right)$$

Suppose¹ an adversary A can distinguish the encrypted message $m_{coin} \in \{m_0, m_1\}$ in the random oracle model. We can construct a simulator to solve the CDH problem. Given (g, g^a, g^b) , the simulator aims to compute g^{ab} .

¹ assumption

Considering the following ciphertext:

$$CT = \left(g^{x}, g^{y}, H\left(g^{xy}\right) \oplus m_{coin}\right)$$

Suppose¹ an adversary A can distinguish the encrypted message $m_{coin} \in \{m_0, m_1\}$ in the random oracle model. We can construct a simulator to solve the CDH problem. Given (g, g^a, g^b) , the simulator aims to compute g^{ab} .

Simulation: $CT = (g^a, g^b, R)$, where *R* is a random string.

¹ assumption

Considering the following ciphertext:

$$CT = \left(g^{x}, g^{y}, H\left(g^{xy}\right) \oplus m_{coin}\right)$$

Suppose¹ an adversary A can distinguish the encrypted message $m_{coin} \in \{m_0, m_1\}$ in the random oracle model. We can construct a simulator to solve the CDH problem. Given (g, g^a, g^b) , the simulator aims to compute g^{ab} .

Simulation: $CT = (g^a, g^b, R)$, where *R* is a random string.

- No query on g^{ab} , no break on the ciphertext. (One-Time Pad)
- According to the assumption, g^{ab} will appear in one of queries.
- One of hash queries is the solution to the CDH problem.

¹ assumption

Suppose $\ensuremath{\mathcal{A}}$ made the following queries to the random oracle.

$$Q_1, Q_2, Q_3, \cdots, Q_q$$

Which Q is equal to g^{ab} ?

Suppose \mathcal{A} made the following queries to the random oracle.

```
Q_1, Q_2, Q_3, \cdots, Q_q
```

Which Q is equal to g^{ab} ?

If the DDH problem is easy, the simulator can test each query until find the correct solution. The success probability of finding the correct solution is 1.

Suppose \mathcal{A} made the following queries to the random oracle.

```
Q_1, Q_2, Q_3, \cdots, Q_q
```

Which Q is equal to g^{ab} ?

- If the DDH problem is easy, the simulator can test each query until find the correct solution. The success probability of finding the correct solution is 1.
- If the DDH problem is also **hard**, the simulator has to randomly pick one query as the solution. The success probability of finding the correct solution is 1/q.

Suppose \mathcal{A} made the following queries to the random oracle.

```
Q_1, Q_2, Q_3, \cdots, Q_q
```

Which Q is equal to g^{ab} ?

- If the DDH problem is easy, the simulator can test each query until find the correct solution. The success probability of finding the correct solution is 1.
- If the DDH problem is also **hard**, the simulator has to randomly pick one query as the solution. The success probability of finding the correct solution is 1/q.

The number of hash queries q could be as large as 2^{60} .

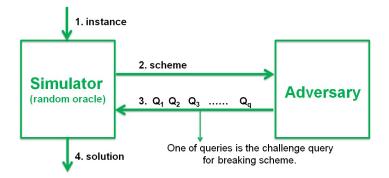
Loose Reduction!

How to find the correct solution from the adversary's query set?

We call this problem as a **finding problem** and the reduction has a **finding loss**, if the probability of finding the correct solution is < 1.

In this work, we focus on the non-trivial case that the decisional variant of a computational hard problem is also hard.

Security Reduction in IND-CHP



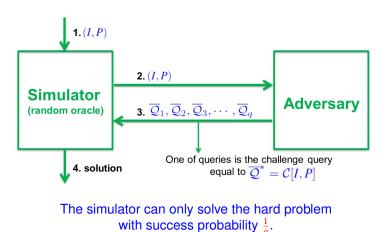
The simulator uses the query set to find the solution to the instance.

Security Reduction in IND-CHP

Let C[I, P] be a solution to an instance *I* under a computational hard problem *P*.

Before Disclosing Simulation		After Disclosing Simulation	
${\mathcal A}$ is given	Scheme	Instance	
${\cal A}$ queries	A query set including a challenge query for breaking scheme	A query set including a challenge query equal to the solution	

Theory 1 (Traditional Approach)



Cash-Kiltz-Shoup Approach

- In EUROCRYPT 2008, Cash, Kiltz and Shoup [CKS08] proposed a new computational problem called the twin Diffie-Hellman problem.
- The new hard problem is as hard as the CDH problem, where the DDH problem is also hard.
- Schemes based on the twin Diffie-Hellman problem have no finding loss in security reduction.

[CKS08] Cash, D., Kiltz, E., Shoup, V.: The twin diffie-hellman problem and applications. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 127–145. Springer, Heidelberg (2008). [CKS09] Cash, D., Kiltz, E., Shoup, V.: The twin diffie-hellman problem and applications. J. Cryptology 22(4), 470–504 (2009).

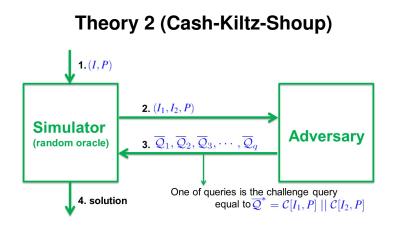
Trapdoor Test in Cash-Kiltz-Shoup Approach

Given an instance I_1 , suppose there exist a particularly constructed instance I_2 and a trapdoor test algorithm such that:

TrapdoorTest(Q_1, Q_2)=True if and only if

$$Q_1 = \mathcal{C}[I_1, P], \quad Q_2 = \mathcal{C}[I_2, P],$$

except with a negligible probability.



The simulator can solve the hard problem with success probability 1 if there exists a trapdoor test on solutions to a given instance $I_1(=I)$ and a created instance I_2 .

Theory 2 (Cash-Kiltz-Shoup)

Summary:

- Cash-Kiltz-Shoup approach is smart and easy in understanding.
- This approach requires a trapdoor test.
- The proposed trapdoor test can be adopted by some computational Diffie-Hellman hard problems only. (Limitation & Our Motivation)

What is Iterated Random Oracle?

Suppose the adversary needs to make a challenge query in order to use its output to break a scheme.

What is Iterated Random Oracle?

Suppose the adversary needs to make a challenge query in order to use its output to break a scheme.

1. Traditional Random Oracle (one special input)

What is Iterated Random Oracle?

Suppose the adversary needs to make a challenge query in order to use its output to break a scheme.

1. Traditional Random Oracle (one special input)

2. Iterated Random Oracle (n special inputs)

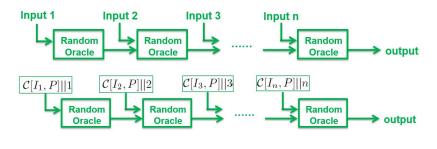
Iterated Query in the Iterated Random Oracle

Iterated Query. We define an iterated query $\overline{\mathcal{Q}}$ to the random oracle as

 $\overline{\mathcal{Q}} = \mathsf{Response} \mid\mid \mathsf{Weight} \mid\mid \mathsf{Iteration} \mathsf{Time} = \overline{\mathcal{R}} \mid\mid Q \mid\mid i,$

- $\overline{\mathcal{R}}$: a response of a hash query or an empty string 0_{ϵ} ,
- Q: a weight (any arbitrary string) chosen by the adversary,
- *i*: the iteration time.

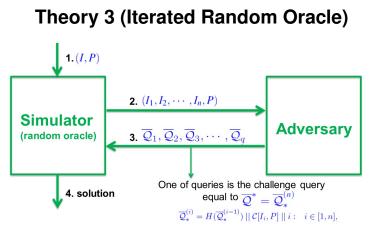
Challenge Query in Iterated Random Oracle



 $\overline{\mathcal{Q}}_*^{(i)} = H(\overline{\mathcal{Q}}_*^{(i-1)}) || \mathcal{C}[I_i, P] || i: i \in [1, n],$

where $H(\overline{\mathcal{Q}}_*^{(0)}) = 0_{\epsilon}$ is an empty string.

 $\overline{\mathcal{Q}}_{*}^{(n)}$ is the defined challenge query.



The simulator can solve the hard problem with success probability $\frac{1}{nq^{\frac{1}{n}}}$.

Comparison of Three Theories

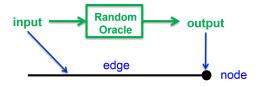
	Theory 1 (Traditional)	Theory 2 (CKS)	Theory 3 (Ours)
For All Problems	\checkmark	×	\checkmark
Success Probability	$\frac{1}{q}$	1	$\frac{1}{n \cdot q^{\frac{1}{n}}}$
Finding Efficiency	O(1)	O(q)	O(n)
Query Efficiency	1	2	O(n)

Table : Comparison of success probability.

	$q = 2^{40}$	$q = 2^{50}$	$q = 2^{60}$
Traditional Approach	$\frac{1}{2^{40}}$	$\frac{1}{2^{50}}$	$\frac{1}{2^{60}}$
Cash-Kiltz-Shoup	1	1	1
Iterated Random Oracle with $n = 10$	$\frac{1}{160}$	$\frac{1}{320}$	$\frac{1}{640}$

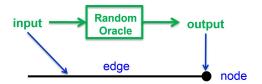
Queries and Tree Representation

All queries and responses are represented using a tree.



Queries and Tree Representation

All queries and responses are represented using a tree.

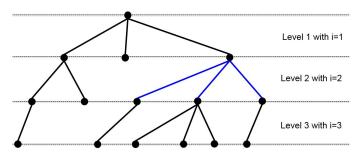


For example:

$$\overline{\mathcal{Q}}_1 = 0_{\epsilon} ||\mathcal{Q}_1||1, \quad \overline{\mathcal{Q}}_2 = H(\overline{\mathcal{Q}}_1)||\mathcal{Q}_2||2, \quad \overline{\mathcal{Q}}_3 = H(\overline{\mathcal{Q}}_2)||\mathcal{Q}_3||3$$

$$\overline{\mathcal{Q}}_1 \quad H(\overline{\mathcal{Q}}_1) \quad \overline{\mathcal{Q}}_2 \quad H(\overline{\mathcal{Q}}_2) \quad \overline{\mathcal{Q}}_3 \quad H(\overline{\mathcal{Q}}_3)$$

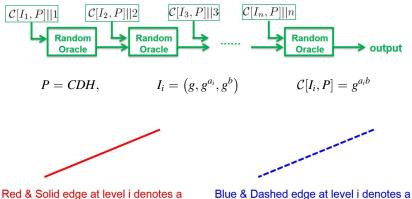
Properties of Tree Representation



 $\overline{\mathcal{Q}} = \text{Response} \mid\mid \text{Weight} \mid\mid \text{Iteration Time} = \overline{\mathcal{R}} \mid\mid Q \mid\mid i,$

- All queries with the same iteration time *i* are edges at the level *i*.
- All queries with the same response are edges from the same node.
- All edges starting from the same node must have different weights.

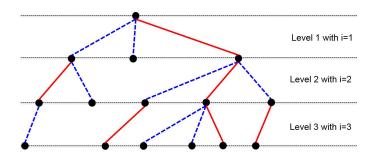
Properties of Tree Representation



Red & Solid edge at level i denotes query with a valid weight $= g^{a_i b}$

query with an invalid weight $\neq g^{a_i b}$

Properties of Tree Representation



- Each level could have more than one red & solid edge.
- All red & solid edges at the same level must be from different nodes.
- There exists one red & solid path from the root to a leaf $H(\overline{Q}^*)$.

Simulator Construction. Given (I, P), the simulator works as follows.

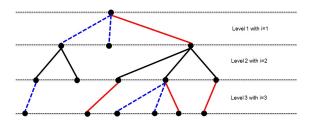
- Randomly choose $d \in [1, n]$ and set $I_d = I$.
- Choose random instances $I_1, I_2, \dots, I_{d-1}, I_{d+1}, \dots, I_n$ such that $C[I_i, P]$ for all $i \in [1, n] \setminus \{d\}$ are known by the simulator.

Each instance should be indistinguishable such that *d* is unknown to the adversary (very important!).

- $C[I_d, P] = C[I, P]$ is unknown.
- $C[I_i, P]$ for all $i \in [1, n] \setminus \{d\}$ are known.
- 1. The solution will appear in one of edges at the d-th level.
- 2. Use known solutions at levels d + 1 to n to filter useless queries.
- 3. Randomly pick a query from candidate queries as a valid query.

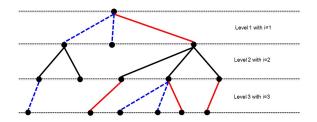
The query \overline{Q} at the level *i* is a **valid query** if its weight is $g^{a_i b}$.

- The query \overline{Q} is a **candidate query** if there exists a red & solid path from the node $H(\overline{Q})$ to a leaf node at the level *n*. All queries at the level *n* are candidate queries.
- The query \overline{Q} is a **useless query** if there exists no red & solid path from the node $H(\overline{Q})$ to a leaf node at the level *n*.



In the above example, d = 2. The simulator does not know whether a query at the level 2 is a valid query or not, but knows.....

Randmly choose a query fromTraditional Approachall queriesIterated Random Oraclecandidate queries at the level d



1. (Lemma 1) If the following rate

 $R^{(i)} = \frac{\text{The number of valid queries in } \mathbb{Q}^{(i)}}{\text{The number of candidate queries in } \mathbb{Q}^{(i)}} < \frac{1}{q^{\frac{1}{n}}}$

holds for all $i \in [1, n]$, the adversary must make more than q queries.

1. (Lemma 1) If the following rate

 $R^{(i)} = \frac{\text{The number of valid queries in } \mathbb{Q}^{(i)}}{\text{The number of candidate queries in } \mathbb{Q}^{(i)}} < \frac{1}{q^{\frac{1}{n}}}$

holds for all $i \in [1, n]$, the adversary must make more than q queries.

2. For q hash queries at most, there must exist an $i^* \in [1, n]$ such that

$$R^{(i^*)} = \frac{\text{The number of valid queries in } \mathbb{Q}^{(i^*)}}{\text{The number of candidate queries in } \mathbb{Q}^{(i^*)}} \ge \frac{1}{q^{\frac{1}{n}}}$$

1. (Lemma 1) If the following rate

 $R^{(i)} = \frac{\text{The number of valid queries in } \mathbb{Q}^{(i)}}{\text{The number of candidate queries in } \mathbb{Q}^{(i)}} < \frac{1}{q^{\frac{1}{n}}}$

holds for all $i \in [1, n]$, the adversary must make more than q queries.

2. For q hash queries at most, there must exist an $i^* \in [1, n]$ such that

$$R^{(i^*)} = \frac{\text{The number of valid queries in } \mathbb{Q}^{(i^*)}}{\text{The number of candidate queries in } \mathbb{Q}^{(i^*)}} \ge \frac{1}{q^{\frac{1}{n}}}$$

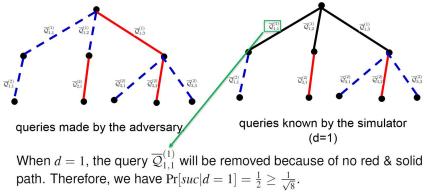
3. When $d = i^*$,

$$\Pr[suc] = \sum_{i=1}^{n} \Pr[suc|d=i] \Pr[d=i]$$

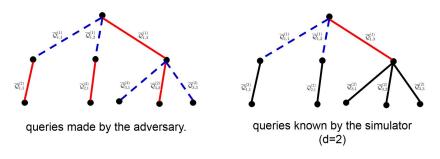
$$\geq \Pr[suc|d=i^*] \Pr[d=i^*] = \frac{1}{n} \cdot \frac{1}{q^{\frac{1}{n}}}$$

Examples: n = 2, q = 8. The probability should be at least $\frac{1}{nq^{\frac{1}{n}}} = \frac{1}{2\sqrt{8}}$. The probability $\Pr[suc|d = i^*]$ for some i^* should be at least $\frac{1}{\sqrt{8}}$.

Examples: n = 2, q = 8. The probability should be at least $\frac{1}{nq^{\frac{1}{n}}} = \frac{1}{2\sqrt{8}}$. The probability $\Pr[suc|d = i^*]$ for some i^* should be at least $\frac{1}{\sqrt{8}}$.



Examples: n = 2, q = 8. The probability should be at least $\frac{1}{nq^{\frac{1}{n}}} = \frac{1}{2\sqrt{8}}$. The probability $\Pr[suc|d = i^*]$ for some i^* should be at least $\frac{1}{\sqrt{8}}$.



When d = 2, it is easy to see that $\Pr[suc|d=2] = \frac{3}{5} \ge \frac{1}{\sqrt{8}}$.

Theories in Applications

Theories	Instance(s)	Challenge Query	
Traditional Approach	Ι	$\overline{\mathcal{Q}}^* = \mathcal{C}[I,P]$	
Cash-Kiltz-Shoup	(I_1,I_2)	$\overline{\mathcal{Q}}^* = \mathcal{C}[I_1, P] \mid\mid \mathcal{C}[I_2, P]$	
Iterated Random Oracle	(I_1, I_2, \cdots, I_n)	$\overline{\mathcal{Q}}^* = \overline{\mathcal{Q}}^{(n)}_*$	

To apply the theories:

- The scheme must be simulated using the generated instance(s).
- The defined challenge query must be made to break the scheme.

Applications

• Generic conversion for Key Encapsulation Mechanism (KEM):

One-Way KEM to IND-KEM with a small finding loss in the random oracle mode without expending ciphertext size.

• Tight reduction for Key Exchange under the IND-CHP reduction.

Advantage: tighter reduction with a small finding loss Disadvantage: Longer private/secret key (linear n, n = 10)

Conclusion

- Introduced the finding loss in the IND-CHP reduction.
- Proposed iterated random oracle to reduce the finding loss.

	Theory 1 (Traditional)	Theory 2 (CKS)	Theory 3 (Ours)
For All Problems	\checkmark	×	\checkmark
Success Probability	$\frac{1}{q}$	1	$\frac{1}{n \cdot q^{\frac{1}{n}}}$
Finding Efficiency	O(1)	O(q)	O(n)
Query Efficiency	1	2	O(n)

Showed applications in encryption and key exchange.

Thanks & Questions

