Indistinguishable Proofs of

Work or Knowledge %

Foteini Baldimtsi, Aggelos Kiayias,
Thomas Zacharias, Bingsheng Zhang

ASIACRYPT 2016
8th December, Hanoi, Vietham

Lancaster
University

Motivation

(ZK) Proofs of Knowledge - PoK

Statement; x € L

.

1) Completeness: the verifier always accepts a valid proof
2) PoK: for any convincing verifier, we can extract w
3) Prover privacy is preserved via some ZK variant

Schnorr Identification — PoK of DLog

Parameters: g, q

Statement: Isk: pk = gk

pickt € Z, > .
a = gt) c pick c € Zgq
=t +c-sk 4
" €S " Checkif

g = a - (pk)*

Schnorr Identification — PoK of DLog

Parameters: g, q

waae Statement: Ask: pk = g~ /?

- -

_Prover

TAY C

Schnorr identification Is a Sigma
protocol that achieves special
soundness and honest-verifier ZK

Some motivating thoughts...

 PoK of DLog convinces us that the prover
actually has the witness.

Some motivating thoughts...

PoK of DLog convinces us that the prover
actually has the witness.
But how did the prover manage to

convince us?
= Did it run efficiently because it had

7 Knowledge of the withess OR

®. Diditwork for a (superpolynomial)
amount of a time to solve the given
DLog problem?

Reducing Spam

“f | don't know you and you want to send me a message, then you

must prove that you spent, say, ten seconds of CPU time, just for me
and just for this message” [DN92]

Reducing Spam

“If I don’t know you and you want to send me a message, then you

must prove that you spent, say, ten seconds of CPU time, just for me
and just for this message” [DN92]

@ email Server

>
| am an approved contact

Alice :-‘@ ;

Approved contacts:
- Alice

Reducing Spam

“If I don’t know you and you want to send me a message, then you

must prove that you spent, say, ten seconds of CPU time, just for me
and just for this message” [DN92]

email Server

af
‘#
@ Verlfler

Not approvedI Approved contacts:
‘ - Alice
Eve -
Q -

Reducing Spam

“f I dont know you and you want to send me a message, then you

must prove that you spent, say, ten seconds of CPU time, just for me
and just for this message” [DN92]

g =

> Mail server distinguishes
- I (ain an approved contact between
approved and
(/@ non-approved contacts!!
>
4Not approved! Approved contacts:

- Alice
Eve * :
— > ..

Reducing Spam

Where Email approval is done in a

privacy-preserving manner!

email Server

_ | am an ap contact
Alice i |
\ Q Verifier
>
4Not approved! Approved contacts:

- Alice
Eve * :
— \ - _> nes

Reducing spam in a
privacy-preserving way

1. For senders to have access, they must
prove that either
o know some secret that implies their relation
with the receiver OR
o has spent a certain amount of work in terms
of computational resources.

Reducing spam in a
privacy-preserving way

1. For senders to have access, they must

prove that either

o know some secret that implies their relation
with the receiver OR

o has spent a certain amount of work in terms
of computational resources.

2. The prover’s mode that provided access to
the sender, remains unknown to the mall
server.

Proofs of Work - PoW
o

) Task/Puzzle /?

-

solution

Proofs of Work - POW
o

A
Task/Puzzle

> Verifier

solution l

o

The verifier ascertains that the prover
performed some certain amount of work,
given the difficulty of the puzzle parameters

Proofs of Work or Knowledge (PoWorKs)

Statement: x € L

PoK: m
Prover
- ‘
Verifier
(> |
P Prover either knows a
Po\W: witness to the statement
» or performed work to

solve a puzzle

Prover

Indistinguishable
Proofs of Work or Knowledge (PoWorKs)

N

(>
P Prover either knows a
Po\W: witness to the statement
» or performed work to
— solve a puzzle

Prover

Statement; x € L

PoK:

Prover

Our contributions

Our contributions
** We define cryptographic puzzle systems.

Our contributions

** We define cryptographic puzzle systems.
** We define PoWorKs w.r.t. some language In
NP and a fixed puzzle system.

Our contributions

** We define cryptographic puzzle systems.

* We define PoWorKs w.r.t. some language in NP
and a fixed puzzle system.

** We provide an efficient 3-move PoWorK
construction.

Our contributions

** We define cryptographic puzzle systems.

* We define PoWorKs w.r.t. some language in NP
and a fixed puzzle system.

“ We provide an efficient 3-move PoWorK
construction.

“* We provide two puzzle system instantiations

(one in the RO model and one under complexity
assumptions).

Our contributions

** We define cryptographic puzzle systems.

* We define PoWorKs w.r.t. some language in NP
and a fixed puzzle system.

“ We provide an efficient 3-move PoWorK
construction.

** We provide two puzzle system instantiations

(one in the RO model and one under complexity
assumptions).

* We present applications of PoWorKs in
1. Privacy-preserving reduce spam.
2. Robustness in cryptocurrencies.
3. 3-round concurrently simulatable arguments of
knowledge.

Cryptographic
puzzles

Cryptographic Puzzles

Basic properties:

1) Easy to generate and
efficiently sampleable

2) Hard to solve

3) Easy to verify

Cryptographic Puzzles *

Basic properties:

1) Easy to generate and
efficiently sampleable

2) Hard to solve

3) Easy to verify

5) Dense (can be sampled by just
generating random strings)

Cryptographic Puzzles

parallelizability of our
puzzles!

o

J
Puzzle Space PS, Solution Space SS, Hardness space HS

Cryptographic Puzzles

PuzSys = {Sample, Solve , Verify}

hardness parameter

el
e Sample (h) —> puz € PS

e Solve (h,puz) —> soln € SP

o Verify(h,puz, soln) —> true/false

o

J
Puzzle Space PS, Solution Space SS, Hardness space HS

Dense Cryptographic Puzzles

PuzSys = {Sample, Solve , Verify}

hardness parameter

el
e Sample (h) —> puz € PS
e Solve (h,puz) —> soln € SP
(h) —> (puz,soln)

o Verify(h,puz, soln) —> true/false

o

Cryptographic Puzzles Security Y

PuzSys = {Sample, Solve, , Verify}

1) Completeness/Correctness and Efficient Sampleability of
Sample and

.

Cryptographic Puzzles Security .

PuzSys = {Sample, Solve, , Verify}

1) Completeness and Efficient sampleability of
Sample and

2) g-Hardness:

Cryptographic Puzzles Security

PuzSys = {Sample, Solve, , Verify}

2) g-Hardness:

PuzSys iIs g-hard, if for every adversary:
h,puz

puz < — Sample (h) > as
; _ soln
Verify (h,puz,soln) —> true -

TimeAdversary(h’ puz) < g (TimeSolve(h' puz))

With negligible probability

o

Cryptographic Puzzles Security Y

PuzSys = {Sample, Solve, , Verify}

3) Statistical indistinguishability of Sample and

o

Cryptographic Puzzles Security Y

PuzSys = {Sample, Solve, , Verify}

4) (t, k) —amortization resistance

h,puz,, ..., puzk
puz,, .., puzk < — Sample(h)

&

foralll < i < k ﬁ)lnl,...,solnk
Verity(h, puzi, solni) —

Time sgyersary(h, PUZ) < t(Z g (TimeSo,,,(h, puzi))

With negllglble probability

PoWorKs

PoWorK Definition

(P,V) is an f-sound PoWorK for L € NP w.r.t. withess relation
R, and PuzSys, if it achieves the following properties:

PoWorK Definition

(P,V) is an f-sound PoWorK for L € NP w.r.t. withess relation
R, and PuzSys, if it achieves the following properties:

1) Completeness: forallx € L,w € RL(x),z € {0,1} ,he HS

Pr[< P(w) & V > (x,z,h); V - “accept”’] = 1 — negl(1) &

Pr[< psovel & V > (x,2,h); V - “accept’] = 1 — negl(1)

PoWorK Definition

(P,V) is an f-sound PoWorK for L € NP w.r.t. witness relation
R, and PuzSys, if it achieves the following properties:

1) Completeness
2) f-Soundness: forallx € L,y,z € {0,1} ,h € HS and

prover P’.

e puz <Sample(h)
e <P'(y) V> (x2zh)

If V accepts while Time, < f (Timeg,,,.(h,puz)) then

3 PPT extractor K s.t K'(x,y,z,h) € R,(x) /ﬁ%\/

¥

PoWorK Definition

(P,V) is an f-sound PoWorK for L € NP w.r.t. witness relation
R, and PuzSys, if it achieves the following properties:

1) Completeness

2) f-Soundness

3) Stat./Comp. Indistinguishability: forallx € L,w € R,(x),z
€ {0,1}",h € HS and verifier V':

{view(V') «< P(w) o V' > (x,z,h)}

?

D
{view(V') «< PSolvelh) & V' > (x,z,h)} -

PoWorkK
construction

Trivial 4-round PoWorK construction

Parameters:

puz
<

compute commitment com S.t.

com = Commit (x) +
ZK: knowwthatx € L
OR

com = Commit (sol)+

ZK : solved puz to sol

>

pick puzzle puz

42

3- round PoWorK Compiler

Q

PoWorK Compiler

O

|

PoWorK

PuzSys= {Sample,
Solve, Verify,
SampleSol}

e

44

3-move special-sound HVZK

n=(P,,P,Ver)

L,RL,x
(@, u) —P(w,x) a
c
<
r — P,(c,u) r

>

¢ — ChallengeSpace

0/1 «Ver(x,a,c,1)

Goal: prove that (x, w)
€ RL

45

3-move special-sound HVZK
n=(P,,P,Ver)

L,RL,x
(@', u) —P,(w, x) a_,
, ¢’ < ChallengeSpace
. C
r' «— P,(c’,u) -
g 0/1 «Ver(x,a',c',r")

e Completeness

e Special Soundness: poly-time extractor K that on input (x,a,c,r) & (x,a,c’,r') outputs
w s.t. (X,w) € R,

e HVZK: poly-time simulator Sim that on input (X) outputs an accepting (x,a,c,r) with
same distribution as P on input (x,w) and honest V

PoWorK Compiler - PoK mode

L,RL,x, h

PoWorK Compiler - PoK mode %

L,RL,x, h

(a’,u) —P;(w,x) a >

PoWorK Compiler - PoK mode %

(a’,u) —P,(w,x)

L,RL,x, h

¢ < ChallengeSpace

PoWorK Compiler - PoK mode %

L,RL,x, h
(', w) —P,(w, %) a_,
C
<
(puz, soln)«— (h)
Setc’ = ¢ @ puz c',r',puz,soln

r — P,(c’,u) g

¢ < ChallengeSpace

PoWorK Compiler - PoK mode %

L,RL,x,h
(@', u) —P;(w, x) @
¢ < ChallengeSpace
c
<
(puz, soln)«— (h)
Setc = ¢ @ puz ¢, r',puz,soln verification
>

r — P,(c’,u) e ¢c = & puz
e Ver(x,a',c',r)

e Verify(h,puz, soln)

51

PoWorK Compiler - PoW mode

Prover

L,RL,x, h

B

B

PoWorK Compiler - PoW mode

Prover

L,RL,x, h

(@, c,1") «Sim(x) a ,

PoWorK Compiler - PoW mode

Prover

!/ / !/

(a,c,r) «Sim(x)

L,RL,x, h

B

¢ < ChallengeSpace

B

PoWorK Compiler - PoW mode

L,RL,x, h
!/
(@, c,1") «Sim(x) a ,
¢ < ChallengeSpace
c

Setpuz = ¢ G ¢ c',r',puz,soln
soln—Solve(h, puz) >

PoWorK Compiler - PoW mode

L,RL,x,h
!
(a',c’, ") «Sim(x) a_
¢ < ChallengeSpace
C

Setpuz = ¢c @ ¢

c',r',puz, soln e
soln—So IVe(h’ puz) p > Verification

e ¢c = @ puz
e Ver(x,a',c',r)
o Verify(h,puz, soln)

Security of
PoWorK compiler

Assumptions
e Challenge and puzzle sampling distributions are statistically close
e Both distributions are (statistically) invariant to any group operation @
e Solve asymptotically dominates the protocol run

Theorem:
- L language in NP with a witness relation R,
- N =(P,, P,, Ver) special-sound 3-move statistical HVZK for R,
- PuzSys = (Sample, Solve, , Verify)
with g-hardness

(P,V)is a(0(g))-sound PoWorK with statistical indistinguishability.

Dense Puzzle
Instantiations

Dense Puzzle Instantiations

PuzSys = (Sample,SampleSol, Solve, Verify)

(1) Based on random oracles

(2) Based on complexity assumptions

Random Oracle instantiation ‘, '

Assume a hash function H: {0,1}* - {0,1}*

e Sample (h): return puz € {0,1}*

o (h): pick x € {0,1}* and set
puz = LSB,(H(x)) and soln = x

e Solve (puz): randomly pick x" € {0,1}* and try whether
LSB,(H(x')) = puz
If yes, then output soln = x'

e Verify (h,puz, soln). check whether
LSB, (H(soln)) = puz

Random Oracle instantiation ‘, '

R

Theorem:

For every h € [log?A,A/4],c > 2, k = O(3/2%), if H
IS a RO, then the RO Instantiation IS a dense

puzzle system with 3/(-)- soundness and (id, k)-
amortization resistance.

o

DLog Iinstantiation "y

- We construct target collision resistant (TCR)
strong extractors from regular universal oneway
hash functions (UOWHEFs).

DLog instantiation ‘,I‘.

J

- We construct target collision resistant (TCR) strong

extractors from regular universal oneway hash functions
(UOWHEFs).

- We prove that given a target TCR strong extractor
Ext, and a one-way function f , we get that

Y(x,seed)=(Ext(f(x),seed),seed)

IS a dense one-way function (i.e. its output Is close
to uniform)

DLog instantiation d,ll.

J

- We construct target collision resistant (TCR) strong

extractors from regular universal oneway hash functions
(UOWHEFs).

- We prove that given a target TCR strong extractor Ext,
and a one-way function f, we get that

Y(x,seed)=(Ext(f(x), seed), seed)
IS a dense one-way function

- Given randomness r and hardness parameter h
we set the puzzle
puz = (Ext(DLog'(x + 1), seed)), seed, 1)
with solution
soln = x € {0,1}"

DLog instantiation ‘.p '

R

Theorem:

For every h € [2log*d,log51], ¢ > 2, k = O(218°%),
if the TCR property of Ext is 0(+/2") —secure and
DLog is 0(Y2") — hard, then the DLog instantiation
is a dense puzzle system with {/(-)- soundness
and (id, k)-amortization resistance.

PoWork
applications

Privacy-Preserving Reducing Spam

“f I dont know you and you want to send me a message, then you

must prove that you spent, say, ten seconds of CPU time, just for me
and just for this message” [DN92]

@ email Server
> - B |
sl s
PoWorK u R
i,-

=

>

Cryptocurrencies with
enhanced liveness

4 N 7 N 7 N 7 N
Block 51 Block 52 Block 53 Block 54
roof of work: Proof of work: Proof of work Proof of wo

999999 \\\ 000000z2xvzx5 ‘\ 00000090k x\ Q00000jE3x
vavavavava ock Previous block: Previous block: Previous block:
0000004 32grzat 000000SESTvwy 000000zZXVZXS Q00000004

ransacion Transacton Transacton || || Transacton
Ik54ifve «dd5g31bm Gdlxcvid 5551bj4;
ransacton Transacton Transacton || || Transacton
09345w1d 22gsx987 abb7bxxq || || btn24xal20
Transacion Transacton || || Transacton
{ mmmmmm] [001hk009 } [3oiuda] [CAER e }
S ~ X 7 ~ X 4

Most blockchains are maintained via proofs of
work

Cryptocurrencies with
enhanced liveness

4 N 7 N 7 N)

Block 51 Block 52 Block 53 Block 54
roof of work Proof of work Proof of work: Proof of wol
QQQQQQ \\\ 000000z2xvzx5 \ 00000090k 1 b x\ Q00000jE3x
vavavavava ock Previous block: Previous block: Previous block:
0000004 32grzat 000000SESTvwy 000000zZXVZXS Q00000004
ransacion Transacton Transacton || || Transacton
Ik54ifve «dd5g31bm Gdlxcvid 5551bj4;
ransacton Transacton || ||| Transacton || || Transacton
09345wid 2qsx087 || || abbTo weg || || br24xa0zon
Transacion Transacton || || Transacton
{ mmmmmm] [001hk009 } [3oiuda] [CAER e }
S ~ X 7 ~ X 4

But...recent suggestions exist that are based in
signatures/ proofs of knowledge

Cryptocurrencies with
enhanced liveness

4 N O e N 7 ™
Block 51 Block 52 Block 53 Block 54
roof of work: Proof of work: Proof of work: Proof of wo
000000985 Tvwy 00000zzxvzx5 00000090041 bx 00000093
vavavava ock: \ Previous block: \ Previous block: Previous block:
000000432grzal 0000D0GEST v 000000zzvzRS 0000G00:4
Transacton Transacton Transacion Transacton
[IkSdifux J { dd5g31bm J [9dlxcv14 J [55514
[Transacion J { Transacton J [Transacion J [Transacton
09345w1d 22qsx987 abb7bmxq bn24xa0201
[Transacton J { Transacton J [Transacton J [Alice > Bob
MMMMMM 001hk009 JMoiudda
NS N\ N\ =\ 4

Hybrid PoW - PoK
Cryptocurrencies

[
o

Cryptocurrencies with
enhanced liveness

4 N O N N 7 ™
Block 51 Block 52 Block 53 Block 54
roof of work: Proof of work: Proof of work: Proof of wo
000000985 Tvwy w | 000000zzxvexh =] 00000090b41be w | 000000jI93x g
vavavava ock: \ Previous block: \ Previous block: \ Previous block:
000000432grzal 0000D0GEST v 000000zzvzRS 0000G00:4
ransacton Transacton Transacion Transacton

[k54w J { dd3g31bm J [Sdlecvid J [5551bj4,

[nsacion J { Transacton J [nsacion J [Transacton
09345w1d 22qsx9 abb7bmxq bn24xa0201
Transacto Transacton Transacto

[voa2a2 J { 001hK000 J [aosa J [L2

NS N\ N\ =\ 4

Hybrid PoW - PoK The ledger remains live

Cryptocurrencies even if many miners go
A offline
|] \
(05> B
P

Cryptocurrencies with
enhanced liveness

4 N O N N 7 ™
Block 51 Block 52 Block 53 Block 54
Proof of work: Proof of work: Proof of work: Proof of work:
DODOODIBETVWY v 000000zzxvzx5) 000000904 1bx v 000000jI93xga%
Previous block: Previous block: Previous block: Previous block:
000000432qgrzal 0000009857 vy 000000ZZxvZXS 0000009064 1bx.
Transacton Transacton Transacton
IkSdifux dd5g31bm salmr 5551hj4{12
Transacion Transacton Transacion Transacton
09345w1d 22qsx987 abb7bxxq bn24xa0201
Transacton Transacton Transacton
[VeA23Na2 J { 001hk009 J [40iug8a J [(L2
NS N\ N\ =\ 4

Hybrid PoW - PoK
Cryptocurrencies

|

A trusted party could
Issue blocks in case of
such emergency

[
o

Cryptocurrencies with
enhanced liveness

4 N O N N 7 ™
Block 51 Block 52 Block 53 Block 54
Proof of work: Proof of work: Proof of work: Proof of work:
0000009857wWy w) 000000z2xv2x5 \\ 00000090b41bx w) 000000jI93xga%
Previous block: Previous block: Previous block: Previous block:
000000432qgrzal 000000SEST v 000000zzvzx S 0000002064 16x
Transacton Transacton Transacion Transacton
IkSdifux dd5g31bm 9dlxcv14 5551hj4{12
Transacion Trsnsacmn Transacion Tra sacton
09345w1d abb7bxxq || || bn24xa0201
Transacton Transacton Transacton
[VeA23Na2 J L 001hk009 [40iug8a J [(L2
NS = X S ~ X -/

Hybrid PoW - PoK
Cryptocurrencies

\

[
&

the trusted party’s involvement
will be unnoticed and hence will
have no impact to the economy
that the cryptocurrency supports

3-round concurrently simulatable
arguments of knowledge

* We show that under reasonable
assumptions our 3-move PoWorK
construction Is straight-line simulatable In
O (Apolyliogd)y time.

« Apolyllogd) js closed under polynomial.

* By the results of Pass, our PoWorK
construction is a 3-round concurrently
simulatable argument of knowledge.

Conclusions
and
Future Work

Conclusions

We define PoWorKs, a meaningful novel
class of interactive proof systems.

We define and instantiate cryptographic
puzzle systems.

We provide an efficient 3-round PoWorK
construction.

We motivate the applicability of PoWorKs
via real-world and theoretic applications.

Future directions

Alternative PoWorK constructions.
Relation of PoWorKs with other
complexity classes.

Applications of PoWorKs in real-world
scenarios.

Puzzle system instantiations.

Indistinguishable Proofs of
Work or Knowledge g

Foteini Baldimtsi, Aggelos Kiayias,
Thomas Zacharias, Bingsheng Zhang

ASIACRYPT 2016
8th December, Hanoi, Vietham

Lancaster
University

