Indistinguishable Proofs of Work or Knowledge

Foteini Baldimtsi, Aggelos Kiayias, **Thomas Zacharias**, Bingsheng Zhang

ASIACRYPT 2016 8th December, Hanoi, Vietnam

Motivation

(ZK) Proofs of Knowledge - PoK

Completeness: the verifier always accepts a valid proof
PoK: for any convincing verifier, we can extract w

3) Prover privacy is preserved via some ZK variant

Schnorr Identification – PoK of DLog

Schnorr Identification – PoK of DLog

Schnorr identification is a Sigma protocol that achieves **special soundness** and **honest-verifier ZK**

Some motivating thoughts...

 PoK of DLog convinces us that the prover actually has the witness.

Some motivating thoughts...

- PoK of DLog convinces us that the prover actually has the witness.
- But how did the prover manage to convince us?
 - Did it run efficiently because it had knowledge of the witness OR
 - Did it work for a (superpolynomial) amount of a time to solve the given DLog problem?

"If I don't know you and you want to send me a message, then you must prove that you spent, say, ten seconds of CPU time, just for me and just for this message" [DN92]

"If I don't know you and you want to send me a message, then you must prove that you spent, say, ten seconds of CPU time, just for me and just for this message" [DN92]

"If I don't know you and you want to send me a message, then you must prove that you spent, say, ten seconds of CPU time, just for me and just for this message" [DN92]

"If I don't know you and you want to send me a message, then you must prove that you spent, say, ten seconds of CPU time, just for me and just for this message" [DN92]

Where Email approval is done in a privacy-preserving manner!

Reducing spam in a privacy-preserving way

- For senders to have access, they must prove that either
 - know some secret that implies their relation with the receiver OR
 - has spent a certain amount of work in terms of computational resources.

Reducing spam in a privacy-preserving way

- 1. For senders to have access, they must **prove** that either
 - know some secret that implies their relation with the receiver OR
 - has spent a certain amount of work in terms of computational resources.
- 2. The **prover's mode** that provided access to the sender, **remains unknown** to the mail server.

Proofs of Work - PoW

Proofs of Work - PoW

The verifier ascertains that the prover performed some certain amount of work, given the difficulty of the puzzle parameters

Proofs of Work or Knowledge (PoWorKs)

Indistinguishable Proofs of Work or Knowledge (PoWorKs)

We define cryptographic puzzle systems.

- We define cryptographic puzzle systems.
- We define PoWorKs w.r.t. some language in NP and a fixed puzzle system.

- We define cryptographic puzzle systems.
- We define PoWorKs w.r.t. some language in NP and a fixed puzzle system.
- We provide an efficient 3-move PoWork construction.

- We define cryptographic puzzle systems.
- We define PoWorKs w.r.t. some language in NP and a fixed puzzle system.
- We provide an efficient 3-move PoWork construction.
- We provide two puzzle system instantiations (one in the RO model and one under complexity assumptions).

- We define cryptographic puzzle systems.
- We define PoWorKs w.r.t. some language in NP and a fixed puzzle system.
- We provide an efficient 3-move PoWork construction.
- We provide two puzzle system instantiations (one in the RO model and one under complexity assumptions).
- We present applications of PoWorKs in
 - 1. Privacy-preserving reduce spam.
 - 2. Robustness in cryptocurrencies.
 - 3. 3-round **concurrently simulatable** arguments of knowledge.

Basic properties:

 Easy to generate and efficiently sampleable
Hard to solve
Easy to verify
Amortization resistant

Basic properties:

 Easy to generate and efficiently sampleable
Hard to solve
Easy to verify
Amortization resistant
Dense (can be sampled by just generating random strings)

We do not restrict parallelizability of our puzzles!

Puzzle Space PS, Solution Space SS, Hardness space HS

PuzSys = {Sample, Solve, , Verify} hardness parameter • Sample (h) -> $puz \in PS$ • Solve (h, puz) -> $soln \in SP$

Verify(h, puz, soln) -> true/false

Dense Cryptographic Puzzles

Puzzle Space *PS*, Solution Space *SS*, Hardness space *HS*

PuzSys = {Sample, Solve, SampleSol, Verify}

hardness parameter • Sample $(h) \rightarrow puz \in PS$

• Solve $(h, puz) \rightarrow soln \in SP$

• SampleSol(h) -> (puz, soln)

• Verify(h, puz, soln) -> true/false

- PuzSys = {Sample, Solve, SampleSol, Verify}
 - 1) Completeness/Correctness and Efficient Sampleability of Sample and SampleSol

PuzSys = {Sample, Solve , SampleSol, Verify}

- 1) Completeness and Efficient sampleability of **Sample** and **SampleSol**
- **2)** *g*-Hardness:

PuzSys = {Sample, Solve , SampleSol, Verify}

- 1) Completeness and Efficient Sampleability of **Sample** and **SampleSol**
- **2)** *g*-Hardness:

PuzSys is *g*-hard, if for every adversary:

PuzSys = {Sample, Solve , SampleSol, Verify}

- 1) Completeness and Efficient sampleability of **Sample** and **SampleSol**
- 2) g-Hardness
- 3) Statistical indistinguishability of **Sample** and **SampleSol**

PuzSys = {Sample, Solve , SampleSol, Verify}

- 1) Completeness and Efficient sampleability of **Sample** and **SampleSol**
- 2) g-Hardness
- 3) Statistical indistinguishability of Sample and SampleSol
- 4) (t, k) amortization resistance

PoWorKs

(P, V) is an **f**-sound PoWorK for $L \in NP$ w.r.t. witness relation R_L and **PuzSys**, if it achieves the following properties:

(P, V) is an **f**-sound PoWorK for $L \in NP$ w.r.t. witness relation R_L and **PuzSys**, if it achieves the following properties:

1) **Completeness:** for all $x \in L, w \in RL(x), z \in \{0,1\}^*, h \in HS$

 $\Pr[\langle P(\boldsymbol{w}) \leftrightarrow V \rangle (\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{h}); V \rightarrow ``accept''] = 1 - \operatorname{negl}(\lambda) \&$

 $\Pr[\langle P^{\text{Solve}(h)} \leftrightarrow V \rangle (x, z, h); V \rightarrow \text{``accept''}] = 1 - \operatorname{negl}(\lambda)$

(P, V) is an **f**-sound PoWorK for $L \in NP$ w.r.t. witness relation R_L and **PuzSys**, if it achieves the following properties:

- 1) <u>Completeness</u>
- 2) f-Soundness: for all $x \in L, y, z \in \{0,1\}^*$, $h \in HS$ and prover P':
 - $puz \leftarrow \text{Sample}(h)$
 - $< P'(y) \leftrightarrow V > (x, z, h)$

If V accepts while $Time_{P'} \leq f(Time_{Solve}(h, puz))$ then

$$\exists \mathsf{PPT} \mathsf{extractor} K \mathsf{s.t} K^{\mathbf{P}'}(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{h}) \in R_L(\mathbf{x})$$

(P, V) is an **f**-sound PoWorK for $L \in NP$ w.r.t. witness relation R_L and **PuzSys**, if it achieves the following properties:

- 1) <u>Completeness</u>
- <u>f</u>-Soundness
- 3) <u>Stat./Comp. Indistinguishability:</u> for all $x \in L, w \in R_L(x), z \in \{0,1\}^*$, $h \in HS$ and verifier V':

$$\{\text{view}(V') \leftarrow < P(w) \leftrightarrow V' > (x, z, h)\}$$

$$\{\text{view}(V') \leftarrow < \mathsf{P}^{\mathsf{Solve}(h)} \leftrightarrow V' > (x, z, h)\}$$

PoWorK construction

Trivial 4-round PoWorK construction

3- round PoWorK Compiler

PoWorK Compiler

Goal: prove that $(x, w) \in RL$

- Completeness
- Special Soundness: poly-time extractor K that on input (x,a,c,r) & (x,a,c',r') outputs w s.t. (x,w) ∈ R_L
- HVZK: poly-time simulator Sim that on input (x) outputs an accepting (x,a,c,r) with same distribution as P on input (x,w) and honest V

PoWorK Compiler - PoK mode

L, RL, **x**, **h**

Verifier

PoWorK Compiler - **PoK mode**

L, RL, **x**, **h**

Prover (w)

 $(\boldsymbol{a}',\boldsymbol{u}) \leftarrow \mathsf{P}_1(\boldsymbol{w},\boldsymbol{x})$

<u>a'</u>

Verifier

PoWorK Compiler - **PoW mode**

L, RL, **x**, **h**

Prover

Verifier

PoWorK Compiler - PoW mode

 $soln \leftarrow Solve(h, puz)$

c', *r'*, *puz*, *soln*

Security of PoWorK compiler

Assumptions

- Challenge and puzzle sampling distributions are statistically close
- Both distributions are (statistically) invariant to any group operation \oplus
- Solve asymptotically dominates the protocol run

Theorem:

- L language in **NP** with a witness relation R_L
- $\Pi = (P_1, P_2, Ver)$ special-sound 3-move statistical HVZK for R_L
- PuzSys = (Sample, Solve, SampleSol, Verify) with *g*-hardness

(P, V) is a $(\Theta(g))$ -sound PoWorK with statistical indistinguishability.

Dense Puzzle Instantiations

Dense Puzzle Instantiations

PuzSys = (Sample, SampleSol, Solve, Verify)

(1) Based on random oracles

(2) Based on complexity assumptions

Random Oracle instantiation

- Sample (*h*): return $puz \in \{0,1\}^{\lambda}$
- SampleSol (h): pick $x \in \{0,1\}^{\lambda}$ and set $puz = LSB_h(H(x))$ and soln = x
- Solve (*puz*): randomly pick $x' \in \{0,1\}^{\lambda}$ and try whether $LSB_{h}(H(x')) = puz$ If yes, then output soln = x'
- Verify (h, puz, soln): check whether $LSB_h(H(soln)) = puz$

Random Oracle instantiation

Theorem:

For every $h \in [\log^2 \lambda, \lambda/4], c > 2, k = O(\sqrt[8]{2^{\lambda}})$, if H is a RO, then the RO instantiation is a dense puzzle system with $\sqrt[c]{(\cdot)}$ - soundness and (id, k)-amortization resistance.

 We construct target collision resistant (TCR) strong extractors from regular universal oneway hash functions (UOWHFs).

- We construct target collision resistant (TCR) strong extractors from regular universal oneway hash functions (UOWHFs).
- We prove that given a target TCR strong extractor
 Ext, and a one-way function *f*, we get that

 $\Psi(\mathbf{x}, seed) = (\mathbf{Ext}(\mathbf{f}(\mathbf{x}), seed), seed)$

is a **dense one-way function** (i.e. its output is close to uniform)

- We construct target collision resistant (TCR) strong extractors from regular universal oneway hash functions (UOWHFs).
- We prove that given a target TCR strong extractor Ext, and a one-way function *f*, we get that Ψ(*x*, seed)=(Ext(*f*(*x*), seed), seed) is a dense one-way function
- Given randomness *r* and hardness parameter *h* we set the puzzle

 $puz = (Ext(DLog^{-1}(x + r), seed)), seed, r)$ with solution

soln = $x \in \{0,1\}^h$

Theorem:

For every $h \in [2\log^4\lambda, \log^5\lambda], c > 2, k = O(2^{\log^5\lambda}),$ if the TCR property of **Ext** is $O(\sqrt{2^h})$ –secure and **DLog** is $O(\sqrt[c]{2^h})$ – hard, then the DLog instantiation is a dense puzzle system with $\sqrt[c]{(\cdot)}$ - soundness and (id, k)-amortization resistance.

PoWorK applications

Privacy-Preserving Reducing Spam

"If I don't know you and you want to send me a message, then you must prove that you spent, say, ten seconds of CPU time, just for me and just for this message" [DN92]

Mail server cannot distinguish between approved contacts or not

Most blockchains are maintained via proofs of work

But...recent suggestions exist that are based in signatures/ proofs of knowledge

Hybrid PoW - PoK Cryptocurrencies

Hybrid PoW - PoK Cryptocurrencies

The ledger remains live even if many miners go offline

Hybrid PoW - PoK Cryptocurrencies

A trusted party could issue blocks in case of such emergency

Hybrid PoW - PoK Cryptocurrencies

the trusted party's involvement will be unnoticed and hence will have no impact to the economy that the cryptocurrency supports

3-round concurrently simulatable arguments of knowledge

- We show that under reasonable assumptions our 3-move PoWorK construction is straight-line simulatable in O(λ^{poly(logλ)}) time.
- $\lambda^{\text{poly}(\log\lambda)}$ is closed under polynomial.
- By the results of Pass, our PoWorK construction is a 3-round concurrently simulatable argument of knowledge.

Conclusions and Future Work

Conclusions

- We define PoWorKs, a meaningful novel class of interactive proof systems.
- We define and instantiate cryptographic puzzle systems.
- We provide an efficient 3-round PoWorK construction.
- We motivate the applicability of **PoWorKs** via real-world and theoretic **applications**.

Future directions

- Alternative **PoWorK constructions**.
- Relation of PoWorKs with other complexity classes.
- Applications of PoWorKs in real-world scenarios.
- Puzzle system instantiations.

Indistinguishable Proofs of Work or Knowledge

Foteini Baldimtsi, Aggelos Kiayias, **Thomas Zacharias**, Bingsheng Zhang

ASIACRYPT 2016 8th December, Hanoi, Vietnam

