
Indistinguishable Proofs of

Work or Knowledge

Foteini Baldimtsi, Aggelos Kiayias,

Thomas Zacharias, Bingsheng Zhang

ASIACRYPT 2016

8th December, Hanoi, Vietnam

Motivation

(ZK) Proofs of Knowledge - PoK

Prover Verifier

Statement: 𝑥 ∈ 𝐿

⋮

Accept/Reject

Witness: 𝒘

1) Completeness: the verifier always accepts a valid proof

2) PoK: for any convincing verifier, we can extract 𝒘
3) Prover privacy is preserved via some ZK variant

Accept/Reject

Schnorr Identification – PoK of DLog

Prover Verifier

Parameters: 𝑔, 𝑞

Check if

𝑔𝑟 = 𝑎 ∙ (𝑝𝑘)𝑐

pick 𝑡 ∈ 𝑍𝑞
𝑎 = 𝑔𝑡

𝑎

pick 𝑐 ∈ 𝑍𝑞𝑐

𝑟 = 𝑡 + 𝑐 ∙ 𝑠𝑘
𝑟

Statement: ∃𝑠𝑘: 𝑝𝑘 = 𝑔𝑠𝑘

Witness: 𝑠𝑘

Schnorr Identification – PoK of DLog

Prover Verifier

Parameters: 𝑔, 𝑞

Schnorr identification is a Sigma

protocol that achieves special

soundness and honest-verifier ZK

Statement: ∃𝑠𝑘: 𝑝𝑘 = 𝑔𝑠𝑘

Witness: 𝑠𝑘

Some motivating thoughts…

• PoK of DLog convinces us that the prover

actually has the witness.

Some motivating thoughts…

• PoK of DLog convinces us that the prover

actually has the witness.

• But how did the prover manage to

convince us?

 Did it run efficiently because it had

knowledge of the witness OR

 Did it work for a (superpolynomial)

amount of a time to solve the given

DLog problem?

Reducing Spam

“If I don’t know you and you want to send me a message, then you

must prove that you spent, say, ten seconds of CPU time, just for me

and just for this message” [DN92]

Reducing Spam

“If I don’t know you and you want to send me a message, then you

must prove that you spent, say, ten seconds of CPU time, just for me

and just for this message” [DN92]

Alice

Verifier

I am an approved contact

email Server

Approved contacts:

- Alice

- ...

Bob

Alice

Verifier

I am an approved contact

email Server

Bob

Approved contacts:

- Alice

- ...
Eve

Not approved!

Reducing Spam

“If I don’t know you and you want to send me a message, then you

must prove that you spent, say, ten seconds of CPU time, just for me

and just for this message” [DN92]

Verifier

email Server

Bob

Approved contacts:

- Alice

- ...
Eve

Not approved!

Mail server distinguishes

between

approved and

non-approved contacts!!

Reducing Spam

“If I don’t know you and you want to send me a message, then you

must prove that you spent, say, ten seconds of CPU time, just for me

and just for this message” [DN92]

Alice
I am an approved contact

Verifier

email Server

Bob

Approved contacts:

- Alice

- ...
Eve

Not approved!

Reducing Spam

Where Email approval is done in a

privacy-preserving manner!

Alice
I am an approved contact

Reducing spam in a

privacy-preserving way

1. For senders to have access, they must

prove that either
○ know some secret that implies their relation

with the receiver OR

○ has spent a certain amount of work in terms

of computational resources.

1. For senders to have access, they must

prove that either
○ know some secret that implies their relation

with the receiver OR

○ has spent a certain amount of work in terms

of computational resources.

2. The prover’s mode that provided access to

the sender, remains unknown to the mail

server.

Reducing spam in a

privacy-preserving way

Proofs of Work - PoW

Task/Puzzle

solution
VerifierProver

Accept/Reject

Proofs of Work - PoW

Task/Puzzle

solution
VerifierProver

Accept

The verifier ascertains that the prover

performed some certain amount of work,

given the difficulty of the puzzle parameters

Proofs of Work or Knowledge (PoWorKs)

PoK:

PoW:

Prover either knows a

witness to the statement

or performed work to

solve a puzzle

Prover

Verifier

Prover

Statement: 𝑥 ∈ 𝐿

PoK:

PoW:

Prover either knows a

witness to the statement

or performed work to

solve a puzzle

Prover

Verifier

Prover

Indistinguishable
Proofs of Work or Knowledge (PoWorKs)

Statement: 𝑥 ∈ 𝐿

Our contributions

Our contributions

 We define cryptographic puzzle systems.

Our contributions

 We define cryptographic puzzle systems.

 We define PoWorKs w.r.t. some language in

NP and a fixed puzzle system.

Our contributions

 We define cryptographic puzzle systems.

 We define PoWorKs w.r.t. some language in NP

and a fixed puzzle system.

 We provide an efficient 3-move PoWorK

construction.

Our contributions

 We define cryptographic puzzle systems.

 We define PoWorKs w.r.t. some language in NP

and a fixed puzzle system.

 We provide an efficient 3-move PoWorK

construction.

 We provide two puzzle system instantiations
(one in the RO model and one under complexity

assumptions).

Our contributions

 We define cryptographic puzzle systems.

 We define PoWorKs w.r.t. some language in NP

and a fixed puzzle system.

 We provide an efficient 3-move PoWorK

construction.

 We provide two puzzle system instantiations
(one in the RO model and one under complexity

assumptions).

 We present applications of PoWorKs in
1. Privacy-preserving reduce spam.

2. Robustness in cryptocurrencies.

3. 3-round concurrently simulatable arguments of

knowledge.

Cryptographic

puzzles

Cryptographic Puzzles

Basic properties:

1) Easy to generate and

efficiently sampleable

2) Hard to solve

3) Easy to verify

4) Amortization resistant

Cryptographic Puzzles

Basic properties:

1) Easy to generate and

efficiently sampleable

2) Hard to solve

3) Easy to verify

4) Amortization resistant

5) Dense (can be sampled by just

generating random strings)

Cryptographic Puzzles

We do not restrict

parallelizability of our

puzzles!

Dense Cryptographic Puzzles

● Sample (𝒉) −> 𝒑𝒖𝒛 ∈ 𝑷𝑺

● Solve (𝒉, 𝒑𝒖𝒛) −> 𝒔𝒐𝒍𝒏 ∈ 𝑺𝑷

● SampleSol(𝒉) −> (𝒑𝒖𝒛, 𝒔𝒐𝒍𝒏)

● Verify(𝒉, 𝒑𝒖𝒛, 𝒔𝒐𝒍𝒏) −> 𝑡𝑟𝑢𝑒/𝑓𝑎𝑙𝑠𝑒

PuzSys = {Sample, Solve , SampleSol, Verify}

hardness parameter

Puzzle Space 𝑷𝑺, Solution Space 𝑺𝑺, Hardness space 𝑯𝑺

Dense Cryptographic Puzzles

● Sample (𝒉) −> 𝒑𝒖𝒛 ∈ 𝑷𝑺

● Solve (𝒉, 𝒑𝒖𝒛) −> 𝒔𝒐𝒍𝒏 ∈ 𝑺𝑷

● SampleSol(𝒉) −> (𝒑𝒖𝒛, 𝒔𝒐𝒍𝒏)

● Verify(𝒉, 𝒑𝒖𝒛, 𝒔𝒐𝒍𝒏) −> 𝑡𝑟𝑢𝑒/𝑓𝑎𝑙𝑠𝑒

PuzSys = {Sample, Solve , SampleSol, Verify}

hardness parameter

Puzzle Space 𝑷𝑺, Solution Space 𝑺𝑺, Hardness space 𝑯𝑺

Cryptographic Puzzles Security

1) Completeness/Correctness and Efficient Sampleability of

Sample and SampleSol

PuzSys = {Sample, Solve, SampleSol, Verify}

Cryptographic Puzzles Security

1) Completeness and Efficient sampleability of

Sample and SampleSol

2) 𝒈-Hardness:

PuzSys = {Sample, Solve , SampleSol, Verify}

Cryptographic Puzzles Security

1) Completeness and Efficient Sampleability of

Sample and SampleSol

2) 𝒈-Hardness:

PuzSys is 𝒈-hard, if for every adversary:

𝒑𝒖𝒛 < − Sample (𝒉)
𝒉, 𝒑𝒖𝒛

𝒔𝒐𝒍𝒏Verify (𝒉, 𝒑𝒖𝒛, 𝒔𝒐𝒍𝒏) −> 𝑡𝑟𝑢𝑒

𝑻𝒊𝒎𝒆𝑨𝒅𝒗𝒆𝒓𝒔𝒂𝒓𝒚(𝒉, 𝒑𝒖𝒛) < 𝒈 (𝑻𝒊𝒎𝒆𝐒𝐨𝐥𝐯𝐞(𝒉, 𝒑𝒖𝒛))

With negligible probability

PuzSys = {Sample, Solve , SampleSol, Verify}

Cryptographic Puzzles Security

1) Completeness and Efficient sampleability of

Sample and SampleSol

2) 𝒈-Hardness

3) Statistical indistinguishability of Sample and SampleSol

PuzSys = {Sample, Solve , SampleSol, Verify}

Cryptographic Puzzles Security

1) Completeness and Efficient sampleability of

Sample and SampleSol

2) 𝒈-Hardness

3) Statistical indistinguishability of Sample and SampleSol

4) (𝒕, 𝒌) −amortization resistance

𝒑𝒖𝒛𝟏, … , 𝒑𝒖𝒛𝒌 < − Sample(𝒉)
𝒉, 𝒑𝒖𝒛𝟏, … , 𝒑𝒖𝒛𝒌

𝒔𝒐𝒍𝒏𝟏, … , 𝒔𝒐𝒍𝒏𝒌for all 1 < 𝑖 < 𝑘
Verify(𝒉, 𝒑𝒖𝒛𝒊, 𝒔𝒐𝒍𝒏𝒊) −>
𝑡𝑟𝑢𝑒

PuzSys = {Sample, Solve , SampleSol, Verify}

𝑻𝒊𝒎𝒆𝑨𝒅𝒗𝒆𝒓𝒔𝒂𝒓𝒚(𝒉, 𝒑𝒖𝒛) < 𝒕(෍

𝒊=𝟏

𝒌

𝒈 (𝑻𝒊𝒎𝒆𝑺𝒐𝒍𝒗𝒆(𝒉, 𝒑𝒖𝒛𝒊))

With negligible probability

PoWorKs

PoWorK Definition

(𝑃, 𝑉) is an f-sound PoWorK for 𝐿 ∈ 𝑵𝑷 w.r.t. witness relation

𝑅𝐿 and PuzSys, if it achieves the following properties:

PoWorK Definition

(𝑃, 𝑉) is an f-sound PoWorK for 𝐿 ∈ 𝑵𝑷 w.r.t. witness relation

𝑅𝐿 and PuzSys, if it achieves the following properties:

1) Completeness: for all 𝒙 ∈ 𝐿,𝒘 ∈ 𝑅𝐿 𝑥 , 𝒛 ∈ 0,1
∗
, 𝒉 ∈ 𝐻𝑆

Pr[< 𝑃(𝒘) ↔ 𝑉 > (𝒙, 𝒛, 𝒉); 𝑉 → “accept”] = 1 − negl(𝜆)&

Pr[< 𝑃Solve(h) ↔ 𝑉 > 𝒙, 𝒛, 𝒉 ; 𝑉 → “accept”] = 1 − negl(𝜆)

PoWorK Definition

(𝑃, 𝑉) is an 𝒇-sound PoWorK for 𝐿 ∈ 𝑵𝑷 w.r.t. witness relation

𝑅𝐿 and PuzSys, if it achieves the following properties:

1) Completeness

2) 𝒇-Soundness: for all 𝒙 ∈ 𝐿, 𝒚, 𝒛 ∈ 0,1
∗
, 𝒉 ∈ 𝐻𝑆 and

prover 𝑷′:

● 𝒑𝒖𝒛 ←Sample(𝒉)
● < 𝑷′(𝒚) ↔ 𝑉 > (𝒙, 𝒛, 𝒉)

If 𝑉 accepts while 𝑇𝑖𝑚𝑒𝑷′ ≤ 𝒇 (𝑇𝑖𝑚𝑒Solve(𝒉, 𝒑𝒖𝒛)) then

∃ PPT extractor 𝑲 s.t 𝑲𝑷′(𝒙, 𝒚, 𝒛, 𝒉) ∈ 𝑅𝐿(𝒙)

PoWorK Definition

(𝑃, 𝑉) is an 𝒇-sound PoWorK for 𝐿 ∈ 𝑵𝑷 w.r.t. witness relation

𝑅𝐿 and PuzSys, if it achieves the following properties:

1) Completeness

2) 𝒇-Soundness

3) Stat./Comp. Indistinguishability: for all 𝒙 ∈ 𝐿,𝒘 ∈ 𝑅𝐿 𝑥 , 𝒛

∈ 0,1
∗
, 𝒉 ∈ 𝐻𝑆 and verifier 𝑽′:

𝐯𝐢𝐞𝐰 𝑽′ ←< 𝑃 𝒘 ↔ 𝑽′ > 𝒙, 𝒛, 𝒉

𝐯𝐢𝐞𝐰 𝑽′ ←< PSolve(h) ↔ 𝑽′ > 𝒙, 𝒛, 𝒉

PoWorK

construction

Trivial 4-round PoWorK construction

VerifierProver

pick puzzle 𝒑𝒖𝒛

𝒑𝒖𝒛

compute commitment 𝒄𝒐𝒎 s.t.

𝒄𝒐𝒎 = Commit (𝒙) +

ZK: know 𝒘 that 𝒙 ∈ 𝑳

OR
𝒄𝒐𝒎 = Commit (𝒔𝒐𝒍)+
ZK : solved 𝒑𝒖𝒛 to sol

𝒄𝒐𝒎+ZK proof

42

Parameters:

𝑳, 𝒙, 𝝀,𝒉

3- round PoWorK Compiler

43

3-round

special-sound HVZK
PuzSys

PoWorK

PoWorK Compiler

44

PoWorK

PuzSys= {Sample,

Solve, Verify,

SampleSol}

3-move special-sound

HVZK

3-move special-sound HVZK
Π = (P1,P2,Ver)

45

Verifier

𝐿, 𝑅𝐿, 𝒙

Prover (w)

Goal: prove that (𝒙,𝒘)
∈ 𝑅𝐿

(𝒂, 𝒖) ←P1(𝒘, 𝒙)

𝒓 ← P2(𝒄, 𝒖)

𝒂

𝒄 ← ChallengeSpace

0/1 ←Ver(𝒙, 𝒂, 𝒄, 𝒓)

𝒄

𝒓

3-move special-sound HVZK
Π = (P1,P2,Ver)

46

Verifier

𝐿, 𝑅𝐿, 𝒙

Prover (w)

Goal: prove that (𝒙,𝒘)
∈ 𝑅𝐿

(𝒂′, 𝒖′) ←P1(𝒘, 𝒙)

𝒓′ ← P2(𝒄′, 𝒖′)

𝒂′

𝒄′ ← ChallengeSpace

0/1 ←Ver(𝒙, 𝒂′, 𝒄′, 𝒓′)

𝒄′

𝒓′

● Completeness

● Special Soundness: poly-time extractor K that on input (x,a,c,r) & (x,a,c’,r’) outputs

w s.t. (x,w) ∈ RL

● HVZK: poly-time simulator Sim that on input (x) outputs an accepting (x,a,c,r) with

same distribution as P on input (x,w) and honest V

PoWorK Compiler - PoK mode

VerifierProver (𝒘)

𝐿, 𝑅𝐿, 𝒙, 𝒉

PoWorK Compiler - PoK mode

VerifierProver (𝒘)

(𝒂′, 𝒖) ←P1(𝒘, 𝒙) 𝒂′

𝐿, 𝑅𝐿, 𝒙, 𝒉

PoWorK Compiler - PoK mode

VerifierProver (𝒘)

(𝒂′, 𝒖) ←P1(𝒘, 𝒙) 𝒂′
𝒄 ← ChallengeSpace

𝒄

𝐿, 𝑅𝐿, 𝒙, 𝒉

PoWorK Compiler - PoK mode

VerifierProver (𝒘)

(𝒂′, 𝒖) ←P1(𝒘, 𝒙) 𝒂′
𝒄 ← ChallengeSpace

𝒄

𝒄′, 𝒓′, 𝒑𝒖𝒛, 𝒔𝒐𝒍𝒏
(𝒑𝒖𝒛, 𝒔𝒐𝒍𝒏)←SampleSol(𝒉)

Set 𝒄′ = 𝒄 ⊕ 𝒑𝒖𝒛

𝒓′ ← P2(𝒄′, 𝒖)

𝐿, 𝑅𝐿, 𝒙, 𝒉

PoWorK Compiler - PoK mode

51

VerifierProver (𝒘)

(𝒂′, 𝒖) ←P1(𝒘, 𝒙) 𝒂′
𝒄 ← ChallengeSpace

𝒄

𝒄′, 𝒓′, 𝒑𝒖𝒛, 𝒔𝒐𝒍𝒏 Verification

● 𝒄 = 𝒄′ ⊕ 𝒑𝒖𝒛
● Ver(𝒙, 𝒂′, 𝒄′, 𝒓′)
● Verify(𝒉, 𝒑𝒖𝒛, 𝒔𝒐𝒍𝒏)

(𝒑𝒖𝒛, 𝒔𝒐𝒍𝒏)←SampleSol(𝒉)

Set 𝒄′ = 𝒄 ⊕ 𝒑𝒖𝒛

𝒓′ ← P2(𝒄′, 𝒖)

𝐿, 𝑅𝐿, 𝒙, 𝒉

VerifierProver

PoWorK Compiler - PoW mode

𝐿, 𝑅𝐿, 𝒙, 𝒉

VerifierProver

(𝒂′, 𝒄′, 𝒓′) ←Sim(𝒙)
𝒂′

PoWorK Compiler - PoW mode

𝐿, 𝑅𝐿, 𝒙, 𝒉

VerifierProver

𝒂′
𝒄 ← ChallengeSpace

𝒄

PoWorK Compiler - PoW mode

(𝒂′, 𝒄′, 𝒓′) ←Sim(𝒙)

𝐿, 𝑅𝐿, 𝒙, 𝒉

VerifierProver

𝒂′
𝒄 ← ChallengeSpace

𝒄

𝒄′, 𝒓′, 𝒑𝒖𝒛, 𝒔𝒐𝒍𝒏

PoWorK Compiler - PoW mode

Set 𝒑𝒖𝒛 = 𝒄 ⊕ 𝒄′
𝒔𝒐𝒍𝒏←Solve(𝒉, 𝒑𝒖𝒛)

(𝒂′, 𝒄′, 𝒓′) ←Sim(𝒙)

𝐿, 𝑅𝐿, 𝒙, 𝒉

VerifierProver

𝒂′
𝒄 ← ChallengeSpace

𝒄

𝒄′, 𝒓′, 𝒑𝒖𝒛, 𝒔𝒐𝒍𝒏

PoWorK Compiler - PoW mode

Set 𝒑𝒖𝒛 = 𝒄 ⊕ 𝒄′

𝒔𝒐𝒍𝒏←Solve(𝒉, 𝒑𝒖𝒛)
Verification

● 𝒄 = 𝒄′ ⊕ 𝒑𝒖𝒛
● Ver(𝒙, 𝒂′, 𝒄′, 𝒓′)
● Verify(𝒉, 𝒑𝒖𝒛, 𝒔𝒐𝒍𝒏)

(𝒂′, 𝒄′, 𝒓′) ←Sim(𝒙)

𝐿, 𝑅𝐿, 𝒙, 𝒉

Security of

PoWorK compiler

Assumptions

● Challenge and puzzle sampling distributions are statistically close

● Both distributions are (statistically) invariant to any group operation ⊕
● Solve asymptotically dominates the protocol run

Theorem:

- 𝐿 language in 𝑵𝑷 with a witness relation 𝑅𝐿

- Π =(P1, P2, Ver) special-sound 3-move statistical HVZK for 𝑅𝐿

- PuzSys = (Sample, Solve,SampleSol , Verify)

with 𝒈-hardness

(𝑃, 𝑉) is a (Θ(𝒈))-sound PoWorK with statistical indistinguishability.

Dense Puzzle

Instantiations

Dense Puzzle Instantiations

PuzSys = (Sample,SampleSol, Solve, Verify)

(1) Based on random oracles

(2) Based on complexity assumptions

Random Oracle instantiation

Assume a hash function 𝐻: {0,1}𝜆 → {0,1}𝜆

● Sample (𝒉): return 𝒑𝒖𝒛 ∈ 0,1 𝜆

● SampleSol (𝒉): pick 𝒙 ∈ 0,1 𝜆 and set

𝒑𝒖𝒛 = 𝑳𝑺𝑩𝒉(𝐻(𝒙)) and 𝒔𝒐𝒍𝒏 = 𝒙

● Solve (𝒑𝒖𝒛): randomly pick 𝒙′ ∈ 0,1 𝜆 and try whether

𝑳𝑺𝑩𝒉(𝐻 𝒙′) = 𝒑𝒖𝒛
If yes, then output 𝒔𝒐𝒍𝒏 = 𝒙′

● Verify (𝒉, 𝒑𝒖𝒛, 𝒔𝒐𝒍𝒏): check whether

𝑳𝑺𝑩𝒉(𝐻 𝒔𝒐𝒍𝒏) = 𝒑𝒖𝒛

Random Oracle instantiation

Theorem:

For every ℎ ∈ [log2𝜆, 𝜆/4], 𝑐 > 2, 𝑘 = 𝑂(
8
2𝜆), if H

is a RO, then the RO instantiation is a dense

puzzle system with
𝑐 (∙)- soundness and (𝑖𝑑, 𝑘)-

amortization resistance.

DLog instantiation

- We construct target collision resistant (TCR)

strong extractors from regular universal oneway

hash functions (UOWHFs).

DLog instantiation

- We construct target collision resistant (TCR) strong

extractors from regular universal oneway hash functions

(UOWHFs).

- We prove that given a target TCR strong extractor

𝐄𝐱𝐭, and a one-way function 𝒇 , we get that

Ψ(𝒙, 𝑠𝑒𝑒𝑑)=(𝐄𝐱𝐭 𝒇(𝒙), 𝑠𝑒𝑒𝑑 , 𝑠𝑒𝑒𝑑)

is a dense one-way function (i.e. its output is close

to uniform)

DLog instantiation

- We construct target collision resistant (TCR) strong

extractors from regular universal oneway hash functions

(UOWHFs).

- We prove that given a target TCR strong extractor 𝐄𝐱𝐭,
and a one-way function 𝒇 , we get that

Ψ(𝒙, 𝑠𝑒𝑒𝑑)=(𝐄𝐱𝐭 𝒇(𝑥), 𝑠𝑒𝑒𝑑 , 𝑠𝑒𝑒𝑑)

is a dense one-way function

- Given randomness 𝒓 and hardness parameter 𝒉
we set the puzzle

𝒑𝒖𝒛 = 𝐄𝐱𝐭 𝐃𝐋𝐨𝐠
_𝟏 𝒙 + 𝒓 , 𝑠𝑒𝑒𝑑) , 𝑠𝑒𝑒𝑑, 𝒓

with solution

𝒔𝒐𝒍𝒏 = 𝒙 ∈ {0,1}𝒉

DLog instantiation

Theorem:

For every ℎ ∈ [2log4𝜆, log5𝜆], 𝑐 > 2, 𝑘 = 𝑂(2log
3
𝜆),

if the TCR property of Ext is 𝑂(2ℎ) −secure and

DLog is 𝑂(
𝑐
2ℎ) − hard, then the DLog instantiation

is a dense puzzle system with
𝑐 (∙)- soundness

and (𝑖𝑑, 𝑘)-amortization resistance.

PoWorK

applications

Privacy-Preserving Reducing Spam

Verifier

email Server

PoWorK

PoWorK
Mail server cannot distinguish

between approved contacts or not

email Server

Bob

“If I don’t know you and you want to send me a message, then you

must prove that you spent, say, ten seconds of CPU time, just for me

and just for this message” [DN92]

Cryptocurrencies with

enhanced liveness

Most blockchains are maintained via proofs of

work

But...recent suggestions exist that are based in

signatures/ proofs of knowledge

Cryptocurrencies with

enhanced liveness

Hybrid PoW - PoK

Cryptocurrencies

OR

Cryptocurrencies with

enhanced liveness

Hybrid PoW - PoK

Cryptocurrencies

OR

Cryptocurrencies with

enhanced liveness

The ledger remains live

even if many miners go

offline

Hybrid PoW - PoK

Cryptocurrencies

OR

Cryptocurrencies with

enhanced liveness

A trusted party could

issue blocks in case of

such emergency

Hybrid PoW - PoK

Cryptocurrencies

OR

Cryptocurrencies with

enhanced liveness

the trusted party’s involvement

will be unnoticed and hence will

have no impact to the economy

that the cryptocurrency supports

3-round concurrently simulatable

arguments of knowledge

• We show that under reasonable

assumptions our 3-move PoWorK

construction is straight-line simulatable in

𝑂(𝜆poly(log𝜆)) time.

• 𝜆poly(log𝜆) is closed under polynomial.

• By the results of Pass, our PoWorK

construction is a 3-round concurrently

simulatable argument of knowledge.

Conclusions

and

Future Work

Conclusions

• We define PoWorKs, a meaningful novel

class of interactive proof systems.

• We define and instantiate cryptographic

puzzle systems.

• We provide an efficient 3-round PoWorK

construction.

• We motivate the applicability of PoWorKs

via real-world and theoretic applications.

Future directions

• Alternative PoWorK constructions.

• Relation of PoWorKs with other

complexity classes.

• Applications of PoWorKs in real-world

scenarios.

• Puzzle system instantiations.

𝑻𝒉𝒂𝒏𝒌 𝒚𝒐𝒖!!!

Indistinguishable Proofs of

Work or Knowledge

Foteini Baldimtsi, Aggelos Kiayias,

Thomas Zacharias, Bingsheng Zhang

ASIACRYPT 2016

8th December, Hanoi, Vietnam

