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OUR RESULTS
▪A new efficient CRS-based NIZK shuffle argument
▪Four+ times more efficient verification than in prior work
▪Verification time more critical

▪Soundness proof in the Generic Bilinear Group Model
▪Very complicated machine-assisted proof
▪Use computer algebra to solve systems of polyn. eq.
▪Esp. to find Gröbner bases



A BIT OF MOTIVATION: E-VOTING



A BIT OF MOTIVATION: E-VOTING



A BIT OF MOTIVATION: E-VOTING



A BIT OF MOTIVATION: E-VOTING
Lesson from the past:  
It is not voters who counts, 
but who counts the votes

- Can we get away with that? 
- I’m 140% sure!



A BIT OF MOTIVATION: E-VOTING

Anonymity Correctness

Lesson from the past:  
It is not voters who counts, 
but who counts the votes

- Can we get away with that? 
- I’m 140% sure!



A BIT OF MOTIVATION: E-VOTING

Anonymity Correctness

Data is public 
(Data, source) is private

Lesson from the past:  
It is not voters who counts, 
but who counts the votes

- Can we get away with that? 
- I’m 140% sure!
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Encryption protects against eavesdropping on the Internet
Private against each individual server

d1=cπ(1)

d2=cπ(2)

d3=cπ(3)

ψ,s

e1=dψ(1)

e2=dψ(2)

e3=dψ(3)

sk

Not enough: what if a server cheats?

Anonymity
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▪Shuffle argument:
▪efficient zero knowledge argument of correctness 
of shuffling  
Mix-server permutes ciphertexts, re-encrypt them 
and provides a proof that he has done it correctly.

▪Existing CRS model arguments not very efficient



CRS-BASED SHUFFLE ARGUMENTS 

Lipmaa-Zhang (2012) Fauzi-Lipmaa (2016) This paper

CRS length 7n + 6 8n + 17 3n + 14
Communic. 12n + 11 9n + 2 7n + 3
P comp. (units) 36 19.8 24.3

V comp. (units) 196 126 36.3

GBGM? PSDL, DLIN (comp.) 
KE, PKE (knowledge)

TSDH, PCDH, PSP (comp.) 
2x PKE (knowledge)

Pure GBGM

Soundness Full Culpable Full

1 unit = n million machine cycles 
According to speed records on BN curvesn: number of ciphertexts (say 100,000)

Assumption proposed in that paper, proof in GBGM

Assmpt. proposed 2010+, but not in that paper, proof in GBGM
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ZERO KNOWLEDGE: CRS MODEL

x, w x

P(crs,x,w)=π: Proof of ” x ∈ L”

V(crs,x,π): Accepts or rejects

crs

td

Sim(crs,td,x)=π: Proof of ” x ∈ L”

Correctness 
Soundness 
Zero knowledge
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BILINEAR PAIRINGS

▪Three cyclic groups of the same order q: G1, G2, GT

▪Generators g1 of G1, g2 of G2, gT of GT

▪Bilinear map: e: G1 x G2 → GT

▪Requirements: 
▪Efficiently computable 

▪Non-degeneracy: e (g1, g2) ≠ 1 

▪Bilinearity: e (g1
a, g2

b) = e (g1, g2)ab
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ASSUMPTIONS & PAIRINGS

▪Inverting pairings should be hard
▪Given e (A, B), compute either  A or B
▪Analogous to DL: given ga, compute a

▪What else should be hard?
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Protocol

Assumption 1 (known)

…

Assumption m (known)
Generic Model

Assumption m+1 (new)

…

Assumption m+m’ (new)

Pro: nice if m’ is not big, or most assumptions are well-known, or…

Con: each arrow might mean a loss in efficiency



GENERIC MODEL APPROACH

Protocol Generic Model

Pro: only one arrow, thus smaller loss in efficiency

Con: proof in GGM is only for restricted adversaries
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GENERIC BILINEAR GROUP 
MODEL
▪Meta-Assumption: adversary only has access to
▪group operations, bilinear map, equality tests

▪Each computed element in Gi (i=1, 2) is given by group 
operation of two already known elements
▪Recursively, DL of each computed element is a known 
polynomial of some indeterminates 

▪Note: we do not handle GT as a generic group
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X1

…

Xs

{[f1i(X)]1}

{[f2i(X)]2}

{[g1i(X) =Σi a1if1i(X)]1}

{[g2i(X) =Σi a2if2i(X)]1}

Random variables 
(TTP)

CRS (TTP) Outputs in argument 
 (adversary)

V1(X)=Σij b1ijh1i(X) h2i(X)=0

…

Vu(X)=Σij buijh1i(X) h2i(X)=0

Verifications (verifier) 
{hji} = {fji, hji} 

Linear combinations 
(only group operation)

Quadratic tests 
(can use bilinear map)

Polynomials 
(TTP knows X)

[X] = gX
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SOUNDNESS IN GBGM

▪jth verification equation ascertains Vj(X) = 0

▪Solve system of polynomial equations {Vj(X) = 0} in 
coefficients aji chosen by the adversary

▪Show that solution’s coefficients are ”nice”
▪= restricted to be as in the honest case
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INTUITION: CONSTRUCTING 
ARGUMENT
▪Decomposing:
▪Write down main building blocks you need to prove 

in argument
▪Each ”subargument” should be efficiently verifiable 

(by a single pairing)
▪Ascertain each subargument is sound independently

▪CRS composition:
▪Compose CRS-s of individual subarguments together, 

getting one big CRS
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INTUITION: CONSTRUCTING 
ARGUMENT
▪Soundness check: 
▪Is the composed protocol sound?  
▪ Subarguments get extra inputs in CRS 

▪If not: introduce new random variables that guarantee 
CRS elements are used in only correct subarguments, 
reiterate
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1-SPARSITY ARGUMENT
▪Commitment:

[Ai(X)]i = [aIPI (X) + rXρ]i        //  i = 1, 2

▪Argument:                   //  ”square span programs”

[π(X)]1 = [((aIPI (X) + P0 (X) + rXρ)2 - 1) / Xρ]1

▪Verification equation:
    V (X) := (A1(X) + Xα+ P0 (X)) (A2(X) - Xα+ P0 (X)) - π(X) Xρ – (1 - Xα)2 

               = 0

Pi (X) are linearly independent, well-chosen polynomials
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        π (X) = Σ πiPi (X) + πρXρ+ πα (X α+ P0 (X)) + π1 P0 (X) + …

▪Verification equation states 
V(X) = (A1(X) + Xα+ P0 (X)) (A2(X) - Xα+ P0 (X)) - π(X) Xρ – (1 - Xα)2 = 0

▪Goal: find coefficients s.t. verification equation is satisfied

CRS: ({[Pi(X)]1}i,  [Xρ]1,  [Xα+P0(X)]1,  [P0(X)]1,…, 
          ({[Pi(X)]2}i,  [Xρ]2, [-Xα+P0(X)]2, [1]2,…) 

honest prover: [Ai(X)]i = [aIPI (X) + rXρ]i     
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SOLVING SYSTEM OF POL. 
EQUATIONS
▪Goal:  
▪find coefficients s.t. V (X) = 0
▪Step 1: 
▪V (X) = 0 iff each coefficient [Xα 

jXρk …] V (X) = 0

▪This is a system of polynomial equations 
▪… and a nasty one 

▪of more than 20 polynomial equations
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SOLVING…
▪Used a mixture of computer algebra system and manual labor
1. Use linear independence of Pi (X) to split some coefficients

2. Construct Gröbner basis of system of polynomial equations 
•Needs(?) a CAS…

3. Solve the Gröbner basis 
•Can be done manually or by using CAS

•Obtain that Ai (X) = aI PI (X) => Sound



THANK YOU!


