
A SHUFFLE ARGUMENT
SECURE IN THE
GENERIC MODEL
Prastudy Fauzi, Helger Lipmaa, Michal Zajac

University of Tartu, Estonia

ASIACRYPT 2016

OUR RESULTS
▪A new efficient CRS-based NIZK shuffle argument

OUR RESULTS
▪A new efficient CRS-based NIZK shuffle argument
▪Four+ times more efficient verification than in prior work

OUR RESULTS
▪A new efficient CRS-based NIZK shuffle argument
▪Four+ times more efficient verification than in prior work
▪Verification time more critical

OUR RESULTS
▪A new efficient CRS-based NIZK shuffle argument
▪Four+ times more efficient verification than in prior work
▪Verification time more critical

▪Soundness proof in the Generic Bilinear Group Model

OUR RESULTS
▪A new efficient CRS-based NIZK shuffle argument
▪Four+ times more efficient verification than in prior work
▪Verification time more critical

▪Soundness proof in the Generic Bilinear Group Model
▪Very complicated machine-assisted proof

OUR RESULTS
▪A new efficient CRS-based NIZK shuffle argument
▪Four+ times more efficient verification than in prior work
▪Verification time more critical

▪Soundness proof in the Generic Bilinear Group Model
▪Very complicated machine-assisted proof
▪Use computer algebra to solve systems of polyn. eq.

OUR RESULTS
▪A new efficient CRS-based NIZK shuffle argument
▪Four+ times more efficient verification than in prior work
▪Verification time more critical

▪Soundness proof in the Generic Bilinear Group Model
▪Very complicated machine-assisted proof
▪Use computer algebra to solve systems of polyn. eq.
▪Esp. to find Gröbner bases

A BIT OF MOTIVATION: E-VOTING

A BIT OF MOTIVATION: E-VOTING

A BIT OF MOTIVATION: E-VOTING

A BIT OF MOTIVATION: E-VOTING
Lesson from the past:  
It is not voters who counts,
but who counts the votes

- Can we get away with that?
- I’m 140% sure!

A BIT OF MOTIVATION: E-VOTING

Anonymity Correctness

Lesson from the past:  
It is not voters who counts,
but who counts the votes

- Can we get away with that?
- I’m 140% sure!

A BIT OF MOTIVATION: E-VOTING

Anonymity Correctness

Data is public
(Data, source) is private

Lesson from the past:  
It is not voters who counts,
but who counts the votes

- Can we get away with that?
- I’m 140% sure!

SIMPLE MIX-NETS

SIMPLE MIX-NETS

c
1=Enc

pk(m
1)

c2=Encpk (m2)

c3=
Encpk (m3)

SIMPLE MIX-NETS

c
1=Enc

pk(m
1)

c2=Encpk (m2)

c3=
Encpk (m3)

π, r

Encryption protects against eavesdropping on the Internet

d1=cπ(1)

d2=cπ(2)

d3=cπ(3)

SIMPLE MIX-NETS

c
1=Enc

pk(m
1)

c2=Encpk (m2)

c3=
Encpk (m3)

π, r

Encryption protects against eavesdropping on the Internet

d1=cπ(1)

d2=cπ(2)

d3=cπ(3)

ψ,s

e1=dψ(1)

e2=dψ(2)

e3=dψ(3)

SIMPLE MIX-NETS

c
1=Enc

pk(m
1)

c2=Encpk (m2)

c3=
Encpk (m3)

π, r

mψ(π(1))
mψ(π(2))
mψ(π(3))

Encryption protects against eavesdropping on the Internet

d1=cπ(1)

d2=cπ(2)

d3=cπ(3)

ψ,s

e1=dψ(1)

e2=dψ(2)

e3=dψ(3)

sk

SIMPLE MIX-NETS

c
1=Enc

pk(m
1)

c2=Encpk (m2)

c3=
Encpk (m3)

π, r

mψ(π(1))
mψ(π(2))
mψ(π(3))

Encryption protects against eavesdropping on the Internet
Private against each individual server

d1=cπ(1)

d2=cπ(2)

d3=cπ(3)

ψ,s

e1=dψ(1)

e2=dψ(2)

e3=dψ(3)

sk

Anonymity

SIMPLE MIX-NETS

c
1=Enc

pk(m
1)

c2=Encpk (m2)

c3=
Encpk (m3)

π, r

mψ(π(1))
mψ(π(2))
mψ(π(3))

Encryption protects against eavesdropping on the Internet
Private against each individual server

d1=cπ(1)

d2=cπ(2)

d3=cπ(3)

ψ,s

e1=dψ(1)

e2=dψ(2)

e3=dψ(3)

sk

Not enough: what if a server cheats?

Anonymity

Correctness

ACCOUNTABLE MIX-NETS

c2=Encpk (m2)

pk, π, r

mψ(π(1))
mψ(π(2))
mψ(π(3))

d1=cπ(1)

d2=cπ(2)

d3=cπ(3)

pk, ψ,s

e1=dψ(1)

e2=dψ(2)

e3=dψ(3)

sk
c

1=Enc
pk(m

1)

c3=
Encpk (m3)

ACCOUNTABLE MIX-NETS

c2=Encpk (m2)

pk, π, r

mψ(π(1))
mψ(π(2))
mψ(π(3))

d1=cπ(1)

d2=cπ(2)

d3=cπ(3)

pk, ψ,s

e1=dψ(1)

e2=dψ(2)

e3=dψ(3)

sk

Prove that
shuffling was
correct, send
proof to the next
server

proof

c
1=Enc

pk(m
1)

c3=
Encpk (m3)

ACCOUNTABLE MIX-NETS

c2=Encpk (m2)

pk, π, r

mψ(π(1))
mψ(π(2))
mψ(π(3))

d1=cπ(1)

d2=cπ(2)

d3=cπ(3)

pk, ψ,s

e1=dψ(1)

e2=dψ(2)

e3=dψ(3)

sk

Prove that
shuffling was
correct, send
proof to the next
server

Verify all previous
proofs, shuffle,
create your own
proof

proof proof

c
1=Enc

pk(m
1)

c3=
Encpk (m3)

ACCOUNTABLE MIX-NETS

c2=Encpk (m2)

pk, π, r

mψ(π(1))
mψ(π(2))
mψ(π(3))

d1=cπ(1)

d2=cπ(2)

d3=cπ(3)

pk, ψ,s

e1=dψ(1)

e2=dψ(2)

e3=dψ(3)

sk

Prove that
shuffling was
correct, send
proof to the next
server

Verify all previous
proofs, shuffle,
create your own
proof

proof proof

Verify all proofs

c
1=Enc

pk(m
1)

c3=
Encpk (m3)

ACCOUNTABLE MIX-NETS

c2=Encpk (m2)

pk, π, r

mψ(π(1))
mψ(π(2))
mψ(π(3))

d1=cπ(1)

d2=cπ(2)

d3=cπ(3)

pk, ψ,s

e1=dψ(1)

e2=dψ(2)

e3=dψ(3)

sk

Prove that
shuffling was
correct, send
proof to the next
server

Verify all previous
proofs, shuffle,
create your own
proof

proof proof

Verify all proofs

c
1=Enc

pk(m
1)

c3=
Encpk (m3)

Anonymity

Correctness

SHUFFLE ARGUMENT
▪Shuffle argument:
▪efficient zero knowledge argument of correctness
of shuffling  
Mix-server permutes ciphertexts, re-encrypt them
and provides a proof that he has done it correctly.

SHUFFLE ARGUMENT
▪Shuffle argument:
▪efficient zero knowledge argument of correctness
of shuffling  
Mix-server permutes ciphertexts, re-encrypt them
and provides a proof that he has done it correctly.

▪Existing CRS model arguments not very efficient

CRS-BASED SHUFFLE ARGUMENTS 

Lipmaa-Zhang (2012) Fauzi-Lipmaa (2016) This paper

CRS length 7n + 6 8n + 17 3n + 14
Communic. 12n + 11 9n + 2 7n + 3
P comp. (units) 36 19.8 24.3

V comp. (units) 196 126 36.3

GBGM? PSDL, DLIN (comp.)
KE, PKE (knowledge)

TSDH, PCDH, PSP (comp.)
2x PKE (knowledge)

Pure GBGM

Soundness Full Culpable Full

1 unit = n million machine cycles
According to speed records on BN curvesn: number of ciphertexts (say 100,000)

Assumption proposed in that paper, proof in GBGM

Assmpt. proposed 2010+, but not in that paper, proof in GBGM

ZERO KNOWLEDGE: CRS MODEL

crs

ZERO KNOWLEDGE: CRS MODEL

x, w

crs

ZERO KNOWLEDGE: CRS MODEL

x, w x

crs

ZERO KNOWLEDGE: CRS MODEL

x, w x

P(crs,x,w)=π: Proof of ” x ∈ L”

crs

ZERO KNOWLEDGE: CRS MODEL

x, w x

P(crs,x,w)=π: Proof of ” x ∈ L”

V(crs,x,π): Accepts or rejects

crs

ZERO KNOWLEDGE: CRS MODEL

x, w x

P(crs,x,w)=π: Proof of ” x ∈ L”

V(crs,x,π): Accepts or rejects

crs

td

ZERO KNOWLEDGE: CRS MODEL

x, w x

P(crs,x,w)=π: Proof of ” x ∈ L”

V(crs,x,π): Accepts or rejects

crs

td

Sim(crs,td,x)=π: Proof of ” x ∈ L”

ZERO KNOWLEDGE: CRS MODEL

x, w x

P(crs,x,w)=π: Proof of ” x ∈ L”

V(crs,x,π): Accepts or rejects

crs

td

Sim(crs,td,x)=π: Proof of ” x ∈ L”

Correctness
Soundness
Zero knowledge

BILINEAR PAIRINGS

BILINEAR PAIRINGS

▪Three cyclic groups of the same order q: G1, G2, GT

BILINEAR PAIRINGS

▪Three cyclic groups of the same order q: G1, G2, GT

▪Generators g1 of G1, g2 of G2, gT of GT

BILINEAR PAIRINGS

▪Three cyclic groups of the same order q: G1, G2, GT

▪Generators g1 of G1, g2 of G2, gT of GT

▪Bilinear map: e: G1 x G2 → GT

BILINEAR PAIRINGS

▪Three cyclic groups of the same order q: G1, G2, GT

▪Generators g1 of G1, g2 of G2, gT of GT

▪Bilinear map: e: G1 x G2 → GT

▪Requirements:
▪Efficiently computable

▪Non-degeneracy: e (g1, g2) ≠ 1

▪Bilinearity: e (g1
a, g2

b) = e (g1, g2)ab

ASSUMPTIONS & PAIRINGS

▪Inverting pairings should be hard

ASSUMPTIONS & PAIRINGS

▪Inverting pairings should be hard
▪Given e (A, B), compute either A or B

ASSUMPTIONS & PAIRINGS

▪Inverting pairings should be hard
▪Given e (A, B), compute either A or B
▪Analogous to DL: given ga, compute a

ASSUMPTIONS & PAIRINGS

▪Inverting pairings should be hard
▪Given e (A, B), compute either A or B
▪Analogous to DL: given ga, compute a

▪What else should be hard?

NON-GENERIC APPROACH

Protocol

NON-GENERIC APPROACH

Protocol

Assumption 1 (known)

…

Assumption m (known)

NON-GENERIC APPROACH

Protocol

Assumption 1 (known)

…

Assumption m (known)

Assumption m+1 (new)

…

Assumption m+m’ (new)

NON-GENERIC APPROACH

Protocol

Assumption 1 (known)

…

Assumption m (known)
Generic Model

Assumption m+1 (new)

…

Assumption m+m’ (new)

NON-GENERIC APPROACH

Protocol

Assumption 1 (known)

…

Assumption m (known)
Generic Model

Assumption m+1 (new)

…

Assumption m+m’ (new)

Pro: nice if m’ is not big, or most assumptions are well-known, or…

NON-GENERIC APPROACH

Protocol

Assumption 1 (known)

…

Assumption m (known)
Generic Model

Assumption m+1 (new)

…

Assumption m+m’ (new)

Pro: nice if m’ is not big, or most assumptions are well-known, or…

Con: each arrow might mean a loss in efficiency

GENERIC MODEL APPROACH

Protocol Generic Model

Pro: only one arrow, thus smaller loss in efficiency

Con: proof in GGM is only for restricted adversaries

GENERIC BILINEAR GROUP
MODEL
▪Meta-Assumption: adversary only has access to

GENERIC BILINEAR GROUP
MODEL
▪Meta-Assumption: adversary only has access to
▪group operations, bilinear map, equality tests

GENERIC BILINEAR GROUP
MODEL
▪Meta-Assumption: adversary only has access to
▪group operations, bilinear map, equality tests

▪Each computed element in Gi (i=1, 2) is given by group
operation of two already known elements

GENERIC BILINEAR GROUP
MODEL
▪Meta-Assumption: adversary only has access to
▪group operations, bilinear map, equality tests

▪Each computed element in Gi (i=1, 2) is given by group
operation of two already known elements
▪Recursively, DL of each computed element is a known
polynomial of some indeterminates

GENERIC BILINEAR GROUP
MODEL
▪Meta-Assumption: adversary only has access to
▪group operations, bilinear map, equality tests

▪Each computed element in Gi (i=1, 2) is given by group
operation of two already known elements
▪Recursively, DL of each computed element is a known
polynomial of some indeterminates

▪Note: we do not handle GT as a generic group

SOUNDNESS IN GBGM

SOUNDNESS IN GBGM

X1

…

Xs

Random variables
(TTP)

SOUNDNESS IN GBGM

X1

…

Xs

{[f1i(X)]1}

{[f2i(X)]2}

Random variables
(TTP)

CRS (TTP)

Polynomials
(TTP knows X)

[X] = gX

SOUNDNESS IN GBGM

X1

…

Xs

{[f1i(X)]1}

{[f2i(X)]2}

{[g1i(X) =Σi a1if1i(X)]1}

{[g2i(X) =Σi a2if2i(X)]1}

Random variables
(TTP)

CRS (TTP) Outputs in argument
 (adversary)

Linear combinations
(only group operation)

Polynomials
(TTP knows X)

[X] = gX

SOUNDNESS IN GBGM

X1

…

Xs

{[f1i(X)]1}

{[f2i(X)]2}

{[g1i(X) =Σi a1if1i(X)]1}

{[g2i(X) =Σi a2if2i(X)]1}

Random variables
(TTP)

CRS (TTP) Outputs in argument
 (adversary)

V1(X)=Σij b1ijh1i(X) h2i(X)=0

…

Vu(X)=Σij buijh1i(X) h2i(X)=0

Verifications (verifier)
{hji} = {fji, hji}

Linear combinations
(only group operation)

Quadratic tests
(can use bilinear map)

Polynomials
(TTP knows X)

[X] = gX

SOUNDNESS IN GBGM

▪jth verification equation ascertains Vj(X) = 0

SOUNDNESS IN GBGM

▪jth verification equation ascertains Vj(X) = 0

▪Solve system of polynomial equations {Vj(X) = 0} in
coefficients aji chosen by the adversary

SOUNDNESS IN GBGM

▪jth verification equation ascertains Vj(X) = 0

▪Solve system of polynomial equations {Vj(X) = 0} in
coefficients aji chosen by the adversary

▪Show that solution’s coefficients are ”nice”

SOUNDNESS IN GBGM

▪jth verification equation ascertains Vj(X) = 0

▪Solve system of polynomial equations {Vj(X) = 0} in
coefficients aji chosen by the adversary

▪Show that solution’s coefficients are ”nice”
▪= restricted to be as in the honest case

INTUITION: CONSTRUCTING
ARGUMENT
▪Decomposing:

INTUITION: CONSTRUCTING
ARGUMENT
▪Decomposing:
▪Write down main building blocks you need to prove

in argument

INTUITION: CONSTRUCTING
ARGUMENT
▪Decomposing:
▪Write down main building blocks you need to prove

in argument
▪Each ”subargument” should be efficiently verifiable

(by a single pairing)

INTUITION: CONSTRUCTING
ARGUMENT
▪Decomposing:
▪Write down main building blocks you need to prove

in argument
▪Each ”subargument” should be efficiently verifiable

(by a single pairing)
▪Ascertain each subargument is sound independently

INTUITION: CONSTRUCTING
ARGUMENT
▪Decomposing:
▪Write down main building blocks you need to prove

in argument
▪Each ”subargument” should be efficiently verifiable

(by a single pairing)
▪Ascertain each subargument is sound independently

▪CRS composition:

INTUITION: CONSTRUCTING
ARGUMENT
▪Decomposing:
▪Write down main building blocks you need to prove

in argument
▪Each ”subargument” should be efficiently verifiable

(by a single pairing)
▪Ascertain each subargument is sound independently

▪CRS composition:
▪Compose CRS-s of individual subarguments together,

getting one big CRS

INTUITION: CONSTRUCTING
ARGUMENT

INTUITION: CONSTRUCTING
ARGUMENT

INTUITION: CONSTRUCTING
ARGUMENT
▪Soundness check:
▪Is the composed protocol sound?
▪ Subarguments get extra inputs in CRS

▪If not: introduce new random variables that guarantee
CRS elements are used in only correct subarguments,
reiterate

SUBARGUMENTS
▪”Permutation matrix argument”:

SUBARGUMENTS
▪”Permutation matrix argument”:
▪Prover commits to permutation; proves this is done correctly

SUBARGUMENTS
▪”Permutation matrix argument”:
▪Prover commits to permutation; proves this is done correctly

▪”Consistency argument”:

SUBARGUMENTS
▪”Permutation matrix argument”:
▪Prover commits to permutation; proves this is done correctly

▪”Consistency argument”:
▪Prover proves she used the committed permutation to

shuffle ciphertexts

SUBARGUMENTS
▪”Permutation matrix argument”:
▪Prover commits to permutation; proves this is done correctly

▪”Consistency argument”:
▪Prover proves she used the committed permutation to

shuffle ciphertexts
▪”Validity argument”:

SUBARGUMENTS
▪”Permutation matrix argument”:
▪Prover commits to permutation; proves this is done correctly

▪”Consistency argument”:
▪Prover proves she used the committed permutation to

shuffle ciphertexts
▪”Validity argument”:
▪Prover proves each ciphertext has been formed ”correctly”

SUBARGUMENTS
▪”Permutation matrix argument”:
▪Prover commits to permutation; proves this is done correctly

▪”Consistency argument”:
▪Prover proves she used the committed permutation to

shuffle ciphertexts
▪”Validity argument”:
▪Prover proves each ciphertext has been formed ”correctly”
▪Correctly: so that the soundness proof goes through

SUBARGUMENTS
▪”Permutation matrix argument”:
▪Prover commits to permutation; proves this is done correctly

▪”Consistency argument”:
▪Prover proves she used the committed permutation to

shuffle ciphertexts
▪”Validity argument”:
▪Prover proves each ciphertext has been formed ”correctly”
▪Correctly: so that the soundness proof goes through

PERMUTATION MATRIX
ARGUMENT
▪Lemma. A matrix is permutation matrix iff

1. It is stochastic // rows sum to (1, …, 1)

2. Each row is 1-sparse
At most one coefficient is non-zero

PERMUTATION MATRIX
ARGUMENT
▪Lemma. A matrix is permutation matrix iff

1. It is stochastic // rows sum to (1, …, 1)

2. Each row is 1-sparse
At most one coefficient is non-zero

1-SPARSITY ARGUMENT
▪Commitment:

1-SPARSITY ARGUMENT
▪Commitment:

[Ai(X)]i = [aIPI (X) + rXρ]i // i = 1, 2
Pi (X) are linearly independent, well-chosen polynomials

1-SPARSITY ARGUMENT
▪Commitment:

[Ai(X)]i = [aIPI (X) + rXρ]i // i = 1, 2

▪Argument: // ”square span programs”

Pi (X) are linearly independent, well-chosen polynomials

1-SPARSITY ARGUMENT
▪Commitment:

[Ai(X)]i = [aIPI (X) + rXρ]i // i = 1, 2

▪Argument: // ”square span programs”

[π(X)]1 = [((aIPI (X) + P0 (X) + rXρ)2 - 1) / Xρ]1

Pi (X) are linearly independent, well-chosen polynomials

1-SPARSITY ARGUMENT
▪Commitment:

[Ai(X)]i = [aIPI (X) + rXρ]i // i = 1, 2

▪Argument: // ”square span programs”

[π(X)]1 = [((aIPI (X) + P0 (X) + rXρ)2 - 1) / Xρ]1

▪Verification equation:

Pi (X) are linearly independent, well-chosen polynomials

1-SPARSITY ARGUMENT
▪Commitment:

[Ai(X)]i = [aIPI (X) + rXρ]i // i = 1, 2

▪Argument: // ”square span programs”

[π(X)]1 = [((aIPI (X) + P0 (X) + rXρ)2 - 1) / Xρ]1

▪Verification equation:
 V (X) := (A1(X) + Xα+ P0 (X)) (A2(X) - Xα+ P0 (X)) - π(X) Xρ – (1 - Xα)2

Pi (X) are linearly independent, well-chosen polynomials

1-SPARSITY ARGUMENT
▪Commitment:

[Ai(X)]i = [aIPI (X) + rXρ]i // i = 1, 2

▪Argument: // ”square span programs”

[π(X)]1 = [((aIPI (X) + P0 (X) + rXρ)2 - 1) / Xρ]1

▪Verification equation:
 V (X) := (A1(X) + Xα+ P0 (X)) (A2(X) - Xα+ P0 (X)) - π(X) Xρ – (1 - Xα)2

 = 0

Pi (X) are linearly independent, well-chosen polynomials

SOUNDNESS PROOF: IDEA
honest prover: [Ai(X)]i = [aIPI (X) + rXρ]i

SOUNDNESS PROOF: IDEA
▪ In GBGM we know constants a1i, A1ρ, …, s.t. for X = (X, Xρ, Xα, Xβ, Xγ, Xsk)

honest prover: [Ai(X)]i = [aIPI (X) + rXρ]i

SOUNDNESS PROOF: IDEA
▪ In GBGM we know constants a1i, A1ρ, …, s.t. for X = (X, Xρ, Xα, Xβ, Xγ, Xsk)

 A1 (X) = Σ a1iPi (X) + A1ρXρ+ A1α (X α+ P0 (X)) + A11 P0 (X) + …

CRS: ({[Pi(X)]1}i, [Xρ]1, [Xα+P0(X)]1, [P0(X)]1,…,
 ({[Pi(X)]2}i, [Xρ]2, [-Xα+P0(X)]2, [1]2,…)

honest prover: [Ai(X)]i = [aIPI (X) + rXρ]i

SOUNDNESS PROOF: IDEA
▪ In GBGM we know constants a1i, A1ρ, …, s.t. for X = (X, Xρ, Xα, Xβ, Xγ, Xsk)

 A1 (X) = Σ a1iPi (X) + A1ρXρ+ A1α (X α+ P0 (X)) + A11 P0 (X) + …

 A2 (X) = Σ a2iPi (X) + A2ρXρ+ A2α (-Xα + P0 (X)) + A21 + …

CRS: ({[Pi(X)]1}i, [Xρ]1, [Xα+P0(X)]1, [P0(X)]1,…,
 ({[Pi(X)]2}i, [Xρ]2, [-Xα+P0(X)]2, [1]2,…)

honest prover: [Ai(X)]i = [aIPI (X) + rXρ]i

SOUNDNESS PROOF: IDEA
▪ In GBGM we know constants a1i, A1ρ, …, s.t. for X = (X, Xρ, Xα, Xβ, Xγ, Xsk)

 A1 (X) = Σ a1iPi (X) + A1ρXρ+ A1α (X α+ P0 (X)) + A11 P0 (X) + …

 A2 (X) = Σ a2iPi (X) + A2ρXρ+ A2α (-Xα + P0 (X)) + A21 + …

 π (X) = Σ πiPi (X) + πρXρ+ πα (X α+ P0 (X)) + π1 P0 (X) + …

CRS: ({[Pi(X)]1}i, [Xρ]1, [Xα+P0(X)]1, [P0(X)]1,…,
 ({[Pi(X)]2}i, [Xρ]2, [-Xα+P0(X)]2, [1]2,…)

honest prover: [Ai(X)]i = [aIPI (X) + rXρ]i

SOUNDNESS PROOF: IDEA
▪ In GBGM we know constants a1i, A1ρ, …, s.t. for X = (X, Xρ, Xα, Xβ, Xγ, Xsk)

 A1 (X) = Σ a1iPi (X) + A1ρXρ+ A1α (X α+ P0 (X)) + A11 P0 (X) + …

 A2 (X) = Σ a2iPi (X) + A2ρXρ+ A2α (-Xα + P0 (X)) + A21 + …

 π (X) = Σ πiPi (X) + πρXρ+ πα (X α+ P0 (X)) + π1 P0 (X) + …

▪Verification equation states

CRS: ({[Pi(X)]1}i, [Xρ]1, [Xα+P0(X)]1, [P0(X)]1,…,
 ({[Pi(X)]2}i, [Xρ]2, [-Xα+P0(X)]2, [1]2,…)

honest prover: [Ai(X)]i = [aIPI (X) + rXρ]i

SOUNDNESS PROOF: IDEA
▪ In GBGM we know constants a1i, A1ρ, …, s.t. for X = (X, Xρ, Xα, Xβ, Xγ, Xsk)

 A1 (X) = Σ a1iPi (X) + A1ρXρ+ A1α (X α+ P0 (X)) + A11 P0 (X) + …

 A2 (X) = Σ a2iPi (X) + A2ρXρ+ A2α (-Xα + P0 (X)) + A21 + …

 π (X) = Σ πiPi (X) + πρXρ+ πα (X α+ P0 (X)) + π1 P0 (X) + …

▪Verification equation states
V(X) = (A1(X) + Xα+ P0 (X)) (A2(X) - Xα+ P0 (X)) - π(X) Xρ – (1 - Xα)2 = 0

CRS: ({[Pi(X)]1}i, [Xρ]1, [Xα+P0(X)]1, [P0(X)]1,…,
 ({[Pi(X)]2}i, [Xρ]2, [-Xα+P0(X)]2, [1]2,…)

honest prover: [Ai(X)]i = [aIPI (X) + rXρ]i

SOUNDNESS PROOF: IDEA
▪ In GBGM we know constants a1i, A1ρ, …, s.t. for X = (X, Xρ, Xα, Xβ, Xγ, Xsk)

 A1 (X) = Σ a1iPi (X) + A1ρXρ+ A1α (X α+ P0 (X)) + A11 P0 (X) + …

 A2 (X) = Σ a2iPi (X) + A2ρXρ+ A2α (-Xα + P0 (X)) + A21 + …

 π (X) = Σ πiPi (X) + πρXρ+ πα (X α+ P0 (X)) + π1 P0 (X) + …

▪Verification equation states
V(X) = (A1(X) + Xα+ P0 (X)) (A2(X) - Xα+ P0 (X)) - π(X) Xρ – (1 - Xα)2 = 0

▪Goal: find coefficients s.t. verification equation is satisfied

CRS: ({[Pi(X)]1}i, [Xρ]1, [Xα+P0(X)]1, [P0(X)]1,…,
 ({[Pi(X)]2}i, [Xρ]2, [-Xα+P0(X)]2, [1]2,…)

honest prover: [Ai(X)]i = [aIPI (X) + rXρ]i

SOLVING SYSTEM OF POL.
EQUATIONS

SOLVING SYSTEM OF POL.
EQUATIONS
▪Goal:
▪find coefficients s.t. V (X) = 0

SOLVING SYSTEM OF POL.
EQUATIONS
▪Goal:
▪find coefficients s.t. V (X) = 0
▪Step 1:
▪V (X) = 0 iff each coefficient [Xα

jXρk …] V (X) = 0

SOLVING SYSTEM OF POL.
EQUATIONS
▪Goal:
▪find coefficients s.t. V (X) = 0
▪Step 1:
▪V (X) = 0 iff each coefficient [Xα

jXρk …] V (X) = 0

▪This is a system of polynomial equations
▪… and a nasty one

▪of more than 20 polynomial equations

SOLVING…

SOLVING…
▪Used a mixture of computer algebra system and manual labor

SOLVING…
▪Used a mixture of computer algebra system and manual labor
1. Use linear independence of Pi (X) to split some coefficients

SOLVING…
▪Used a mixture of computer algebra system and manual labor
1. Use linear independence of Pi (X) to split some coefficients

2. Construct Gröbner basis of system of polynomial equations
•Needs(?) a CAS…

SOLVING…
▪Used a mixture of computer algebra system and manual labor
1. Use linear independence of Pi (X) to split some coefficients

2. Construct Gröbner basis of system of polynomial equations
•Needs(?) a CAS…

3. Solve the Gröbner basis
•Can be done manually or by using CAS

SOLVING…
▪Used a mixture of computer algebra system and manual labor
1. Use linear independence of Pi (X) to split some coefficients

2. Construct Gröbner basis of system of polynomial equations
•Needs(?) a CAS…

3. Solve the Gröbner basis
•Can be done manually or by using CAS

•Obtain that Ai (X) = aI PI (X) => Sound

THANK YOU!

