{A SHUFFLE ARGUMENT]|
SECURE IN THE
GENERIC MODEL

Prastudy Fauzi, Helger Lipmaa, Michal Zajac

University of Tartu, Estonia

Panora m&x
)

OUR RESULTS

= A new efficient CRS-based NIZK shuffle argument

OUR RESULTS

= A new efficient CRS-based NIZK shuffle argument
= Four+ times more efficient verification than in prior work

OUR RESULTS

= A new efficient CRS-based NIZK shuffle argument

= Four+ times more efficient verification than in prior work
= Verification time more critical

OUR RESULTS

= A new efficient CRS-based NIZK shuffle argument

= Four+ times more efficient verification than in prior work
= Verification time more critical

=Soundness proof in the Generic Bilinear Group Model

OUR RESULTS

= A new efficient CRS-based NIZK shuffle argument

= Four+ times more efficient verification than in prior work
= Verification time more critical

=Soundness proof in the Generic Bilinear Group Model
=Very complicated machine-assisted proof

OUR RESULTS

= A new efficient CRS-based NIZK shuffle argument

= Four+ times more efficient verification than in prior work
= Verification time more critical

=Soundness proof in the Generic Bilinear Group Model
=Very complicated machine-assisted proof
=Use computer algebra to solve systems of polyn. eq.

OUR RESULTS

= A new efficient CRS-based NIZK shuffle argument

= Four+ times more efficient verification than in prior work
= Verification time more critical

=Soundness proof in the Generic Bilinear Group Model
=Very complicated machine-assisted proof
=Use computer algebra to solve systems of polyn. eq.
= Esp. to find Grobner bases

A BIT OF MOTIVATION: E-VOTING

7, [

A BIT OF MOTIVATION: E-VOTING

. JEL
g&j\ B

A BIT OF MOTIVATION: E-VOTING

A BIT OF MOTIVATION: E-VOTING

j ““'& Lesson from the past:
)R« It is not voters who counts,
— —-”K M but who counts the votes
W
W\~

- Can we get away with that?
-I’'m 140% sure!

A BIT OF MOTIVATION: E-VOTING

Lesson from the past:
It is not voters who counts,
but who counts the votes

- Can we get away with that?
-I’'m 140% sure!

A BIT OF MOTIVATION: E-VOTING

j ““'& Lesson from the past:
)R« It is not voters who counts,
— —-”K M but who counts the votes
"X\

Data 1s public

(Data, source) is private - Can we get away with that?
-I'm 140% sure!

SIMPLE MIX-NETS

SIMPLE MIX-NETS

SIMPLE MIX-NETS

Encryption protects against eavesdropping on the Internet

@

SIMPLE MIX-NETS

Encryption protects against eavesdropping on the Internet

SIMPLE MIX-NETS

Iy 1))
> Iy riay)

I, (m(3))

Encryption protects against eavesdropping on the Internet

SIMPLE MIX-NETS

Iy 1))
> Iy riay)

I, (m(3))

Encryption protects against eavesdropping on the Internet
Private against each individual server

Iy (1))
> My m(2))

I, (m(3))

Encryption protects against eavesdropping on the Internet
Private against each individual server

Not enough: what if a server cheats? @

ACCOUNTABLE MIX-NETS

Iy 1))
> Iy riay)

I, (m(3))

ACCOUNTABLE MIX-NETS

Prove that
shuffling was
correct, send
proof to the next
server

Iy (1))
> My m(2))

I, (m(3))

ACCOUNTABLE MIX-NETS

............

Prove that Verify all previous
shuffling was proofs, shuffle,
correct, send Create your own
proof to the next proof

server

Iy (1))
> My m(2))

I, (m(3))

ACCOUNTABLE MIX-NETS

Iy (1))
> My m(2))

............

I, (m(3))

Prove that Verify all previous Verify all proofs
shuffling was proofs, shuffle,

correct, send Create your own

proof to the next proof

server

ACCOUNTABLE MIX-NETS oo

Iy (1))
> My m(2))

............

I, (m(3))

Prove that Verify all previous Verify all proofs
shuffling was proofs, shuffle,
correct, send Create your own

proof to the next proof @

server

SHUFFLE ARGUMENT

Shuffle argument:

=efficient zero knowledge argument of correctness
of shuffling
Mix-server permutes ciphertexts, re-encrypt them
and provides a proof that he has done it correctly.

SHUFFLE ARGUMENT

Shuffle argument:

=efficient zero knowledge argument of correctness
of shuffling
Mix-server permutes ciphertexts, re-encrypt them
and provides a proof that he has done it correctly.

=Existing CRS model arguments not very efficient

CRS-BASED SHUFFLE ARGUMENTS

Assumption proposed in that paper, proof in GBGM

Assmpt. proposed 2010+, but not in that paper, proof in GBGM

_____|LipmeaZheng @012) [Fauzi-Lipmaa (2016) _|This paper

CRS length /n+6 8n + 17 3n + 14
Communic. 12n + 11 9n + 2 n + 3

P comp. (units) 36 19.8 24.3

V comp. (units) 196 126 36.3
GBGM? PSDL, DLIN (comp.) TSDH, PCDH; PSP (comp.) Pure GBGM
Soundness Full Culpable Full

1 unit = n million machine cycles

n: number of ciphertexts (say 100,000)

According to speed records on BN curves

ZERO KNOWLEDGE: CRS MODEL

2(e)
el

ZERO KNOWLEDGE: CRS MODEL

2(e)
el

ZERO KNOWLEDGE: CRS MODEL

ZERO KNOWLEDGE: CRS MODEL

X, W

w P(crs,x,w)=m:Proofof ” x € L”
O S

ZERO KNOWLEDGE: CRS MODEL

O
R

w P(crs,x,w)=m:Proofof ” x € L”
O S

V(crs,x,m): Accepts or rejects @

ZERO KNOWLEDGE: CRS MODEL

|
S

w P(crs,x,w)=m:Proofof ” x € L”
S >

ZERO KNOWLEDGE: CRS MODEL

X, W

w P(crs,x,w)=m:Proofof ” x € L”
S >

V(crs,x,m): Accepts or rejects @

ZERO KNOWLEDGE: CRS MODEL

Correctness
Soundness

Zero knowledge

X, W

@

P(crs,x,w)=m:Proofof ” x € L”

V(crs,x,m): Accepts or rejects @

BILINEAR PAIRINGS

BILINEAR PAIRINGS

=Three cyclic groups of the same order q: G, G,, Gy

BILINEAR PAIRINGS

=Three cyclic groups of the same order q: G, G,, Gy

=Generators g, of G, g, of G,, g; of G

BILINEAR PAIRINGS

=Three cyclic groups of the same order q: G, G,, Gy
=Generators g, of G, g, of G,, g; of G

«Bilinear map: e: G, X G, —= G

BILINEAR PAIRINGS

=Three cyclic groups of the same order q: G, G,, Gy
=Generators g, of G, g, of G,, g; of G
=Bilinear map: e: G, X G, = Gy

=Requirements:
= Efficiently computable
«Non-degeneracy: e (g,,9,) # 1

= Bilinearity: e (9,2, g,°) = e (9, 9,)%

ASSUMPTIONS & PAIRINGS

=Inverting pairings should be hard

ASSUMPTIONS & PAIRINGS

=Inverting pairings should be hard
=Given e (A, B), compute either A or B

ASSUMPTIONS & PAIRINGS

=Inverting pairings should be hard
=Given e (A, B), compute either A or B
=Analogous to DL: given g¢, compute a

ASSUMPTIONS & PAIRINGS

=Inverting pairings should be hard
=Given e (A, B), compute either A or B
=Analogous to DL: given g¢, compute a

=What else should be hard?

NON-GENERIC APPROACH

NON-GENERIC APPROACH

Assumption 1 (known)
Assumption m (known)

NON-GENERIC APPROACH

Assumption 1 (known)

Assumption m (known)
Assumption m+1 (new)

Assumption m+m’ (new)

NON-GENERIC APPROACH

Assumption 1 (known)

Assumption m (known)
Generic Model

Assumption m+1 (new)
Assumption m+m’ (new)

NON-GENERIC APPROACH

Assumption 1 (known)

Assumption m (known)
Generic Model

Assumption m+1 (new)
Assumption m+m’ (new)

Pro: nice if m’ is not big, or most assumptions are well-known, or...

NON-GENERIC APPROACH

Assumption 1 (known)

Assumption m (known)
Generic Model

Assumption m+1 (new)
Assumption m+m’ (new)

Pro: nice if m’ is not big, or most assumptions are well-known, or...

Con: each arrow might mean a loss in efficiency

GENERIC MODEL APPROACH

Con: proof in GGM is only for restricted adversaries

Pro: only one arrow, thus smaller loss in efficiency

Generic Model

GENERIC BILINEAR GROUP
MODEL

= Meta-Assumption: adversary only has access to

GENERIC BILINEAR GROUP
MODEL

= Meta-Assumption: adversary only has access to
= group operations, bilinear map, equality tests

GENERIC BILINEAR GROUP
MODEL

= Meta-Assumption: adversary only has access to
= group operations, bilinear map, equality tests
=Each computed element in G, (1=1, 2) 1s given by group
operation of two already known elements

GENERIC BILINEAR GROUP
MODEL

= Meta-Assumption: adversary only has access to
= group operations, bilinear map, equality tests

=Each computed element in G, (1=1, 2) 1s given by group
operation of two already known elements

=Recursively, DL of each computed element is a known
polynomial of some indeterminates

GENERIC BILINEAR GROUP
MODEL

= Meta-Assumption: adversary only has access to
= group operations, bilinear map, equality tests

=Each computed element in G, (1=1, 2) 1s given by group
operation of two already known elements

=Recursively, DL of each computed element is a known
polynomial of some indeterminates

=Note: we do not handle G, as a generic group

SOUNDNESS IN GBGM

SOUNDNESS IN GBGM

Random variables
(TTP)

SOUNDNESS IN GBGM

Polynomials
(TTP knows X)

[X] =g*

{{£2:(X)]2}
g

Random variables CRS (TTP)
(TTP)

SOUNDNESS IN GBGM

Polynomials Linear combinations
(TTP knows X) (only group operation)
[X] =g*

| {[9:(X) =2 a,,£1;(X)];}
M—’ {[92:(X) =2; a5 1, (X)],}
—

Random variables CRS (TTP) Outputs in argument
(TTP) (adversary)

SOUNDNESS IN GBGM

Polynomials Linear combinations Quadpratic tests
(TTP knows X) (only group operation) (can use bilinear map)

4 (X):Zij blijhli(x) h,,(X)=0

{[{;;(X)];} {[91:(X) =2,a,1;(X)]}

e
(1) I (o (%)= a,0,%])

JZ]_ P4

— V() =2 byih (X)) hy(X)=0

Random variables CRS (TTP) Outputs in argument ?lljlel}‘,lEC{?tch)ln;} (verifier)
(TTP) (adversary) ji jir i (>

SOUNDNESS IN GBGM

=/th verification equation ascertains V(x)=0

SOUNDNESS IN GBGM

=/th verification equation ascertains V(x)=0

=Solve system of polynomial equations {I/,(-¥) = 0} in
coefficients a; chosen by the adversary

SOUNDNESS IN GBGM

=/th verification equation ascertains V(x)=0

=Solve system of polynomial equations {I/,(-¥) = 0} in
coefficients a; chosen by the adversary

«Show that solution’s coefficients are "nice”

SOUNDNESS IN GBGM

=/th verification equation ascertains V(x)=0

=Solve system of polynomial equations {I/,(-¥) = 0} in
coefficients a; chosen by the adversary

«Show that solution’s coefficients are "nice”
== restricted to be as in the honest case

INTUITION: CONSTRUCTING
ARGUMENT

Decomposing:

INTUITION: CONSTRUCTING
ARGUMENT

Decomposing:
= Write down main building blocks you need to prove
In argument

INTUITION: CONSTRUCTING
ARGUMENT

Decomposing:
= Write down main building blocks you need to prove
In argument

=Each “subargument” should be efficiently verifiable
(by a single pairing)

INTUITION: CONSTRUCTING
ARGUMENT

Decomposing:

= Write down main building blocks you need to prove ﬂ
In argument T

=Each “subargument” should be efficiently verifiable
(by a single pairing)

= Ascertain each subargument is sound independently

INTUITION: CONSTRUCTING
ARGUMENT

Decomposing:
= Write down main building blocks you need to prove
In argument
=Each “subargument” should be efficiently verifiable
(by a single pairing)
= Ascertain each subargument is sound independently ..

=CRS composition:

INTUITION: CONSTRUCTING
ARGUMENT

Decomposing:

= Write down main building blocks you need to prove m

In argument e

=Each “subargument” should be efficiently verifiable
(by a single pairing)

= Ascertain each subargument is sound independently e sy

*CRS composition: SO e i
« Compose CRS-s of individual subarguments together, St Sas
getting one big CRS

INTUITION: CONSTRUCTING
ARGUMENT

INTUITION: CONSTRUCTING
ARGUMENT

INTUITION: CONSTRUCTING
ARGUMENT

=Soundness check:
=[Is the composed protocol sound?
= Subarguments get extra inputs in CRS
= If not: introduce new random variables that guarantee
CRS elements are used in only correct subarguments,
reiterate

SUBARGUMENTS

= "Permutation matrix argument”:

SUBARGUMENTS

= "Permutation matrix argument”:
= Prover commits to permutation; proves this is done correctly

SUBARGUMENTS

= "Permutation matrix argument”:
= Prover commits to permutation; proves this is done correctly

= "Consistency argument”:

SUBARGUMENTS

= "Permutation matrix argument”:
= Prover commits to permutation; proves this is done correctly

= "Consistency argument”:

= Prover proves she used the committed permutation to
shuffle ciphertexts

SUBARGUMENTS

= "Permutation matrix argument”:
= Prover commits to permutation; proves this is done correctly

= "Consistency argument”:

= Prover proves she used the committed permutation to
shuffle ciphertexts

= ”Validity argument”:

SUBARGUMENTS

= "Permutation matrix argument”:
= Prover commits to permutation; proves this is done correctly

= "Consistency argument”:

= Prover proves she used the committed permutation to
shuffle ciphertexts

= ”Validity argument”:
= Prover proves each ciphertext has been formed ”correctly”

SUBARGUMENTS

= "Permutation matrix argument”:
= Prover commits to permutation; proves this is done correctly

= "Consistency argument”:

= Prover proves she used the committed permutation to
shuffle ciphertexts

= ”Validity argument”:
= Prover proves each ciphertext has been formed ”correctly”
= Correctly: so that the soundness proof goes through

SUBARGUMENTS
= Prover commuits to permutation; proves this is done correctly

= "Consistency argument”:

= Prover proves she used the committed permutation to
shuffle ciphertexts

= ”Validity argument”:
= Prover proves each ciphertext has been formed ”correctly”
= Correctly: so that the soundness proof goes through

PERMUTATION MATRIX
ARGUMENT

Lemma. A matrix is permutation matrix iff
1. Itisstochastic // rows sumto (1,..., 1)
2. Eachrow is l-sparse

PERMUTATION MATRIX
ARGUMENT

Lemma. A matrix is permutation matrix iff
1. Itisstochastic // rows sumto (1,..., 1)

Zz. Eachrow is l-sparse

1-SPARSITY ARGUMENT

Commitment:

1-SPARSITY ARGUMENT

Commitment:
[A,(X)]; = [af; (X) +rX],

1-SPARSITY ARGUMENT

Commitment:
[A4,(X)]; = [af (X) + rX],
Argument: // ’square span programs’

1-SPARSITY ARGUMENT

Commitment:
[A(X)],=[aP; (X)+rX] //1=1,2
Argument: // ’square span programs’

[MCD], = [((@P; () + Py (X) +rX)% -1) / X],

1-SPARSITY ARGUMENT

Commitment:
[A,(X)]; = [af (X)) +rX], //71=1,2
Argument: // ’square span programs’

[MCD], = [((@P; () + Py (X) +rX)% -1) / X],

=Verification equation:

1-SPARSITY ARGUMENT

Commitment:
[A(X)],=[aP; (X)+rX] //1=1,2
Argument: // ’square span programs’

[MCD], = [((@P; () + Py (X) +rX)% -1) / X],

=Verification equation:
V (X) = (A,(X) + X+ Py (X)) (Ay(X) - X+ Py (X)) - m(X) X, = (1-%)*

1-SPARSITY ARGUMENT

Commitment:
[A(X)],=[aP; (X)+rX] //1=1,2
Argument: // ’square span programs’

[MCD], = [((@P; () + Py (X) +rX)% -1) / X],

=Verification equation:
V (X) = (A,(X) + X+ Py (X)) (Ay(X) - X+ Py (X)) - m(X) X, = (1-%)*
=0

honest prover: [Az()]1 — [aIPI() tr]j

SOUNDNESS PROOF: IDEA

honest prover: [Az()]1 — [aIPI() tr]j

SOUNDNESS PROOF: IDEA

- In GBGM we know constants a,;, 4, ,...,s.t.for X =

lo? =

honest prover: [Az()]1 — [aIPI() tr]1‘

SOUNDNESS PROOF: IDEA

- In GBGM we know constants a,;, 4, ,...,s.t.for X =

lo? =

A (X)) =2a,P (X)) + A4, X+ A, (X FPy (X)) + A, Py (X) + ...

CRS: ({[Pi(X)]1}i, [X.]1s [X,+Po()]1s [Po(X)]15---5

({[Pi()]2ki> [X,]25 [-X,+Po(X)]z5 [1125--:)

honest prover: [Az()]1 — [aIPI() tr]1‘

SOUNDNESS PROOF: IDEA

- In GBGM we know constants a,;, 4, ,...,s.t.for X =

lo? =

Ap (X) =2aP () + A X+ Ay (X + Py (X)) + A4, Py (X) + ...
AZ()=ZaZj‘Pj()+A2Q +A20c(' +P0())+A21+"'

CRS: ({[Pi(X)]1}i, [X.]1s [X,+Po()]1s [Po(X)]15---5

({[Pi()]2ki> [X,]25 [-X,+Po(X)]z5 [1125--:)

honest prover: [Az()]1 — [aIPI() tr]1‘

SOUNDNESS PROOF: IDEA

- In GBGM we know constants a,;, 4, ,...,s.t.for X =

lo? =

Ay (X) =2 P (X) + A X+ Ay (X + Py (X)) + Ay, Py (X) + ...
AZ()=ZaZj‘Pj()+A2Q +A20c(' +P0())+A21+"'
mX)=2mp, (X)+n X +m, (X +Py(X)+mPy(X)+...

CRS: ({[Pi(X)]1}i, [X.]1s [X,+Po()]1s [Po(X)]15---5

({[Pi()]2ki> [X,]25 [-X,+Po(X)]z5 [1125--:)

honest prover: [Az()]1 — [aIPI() tr]1‘

SOUNDNESS PROOF: IDEA

- In GBGM we know constants a,;, 4, ,...,s.t.for X =

lo? =

A (X)=zaP X)) +A4, 5 +A4,, X +P (X)) +A,; X))+ ...
Ay (X) = 2 ayP; (X) + Ay X+ Ay, (X + Py (X)) + A, + ...
mX)=2mp; (X) + X + 1, (X + Py (X)) +m Py(X)+ ...

= Verification equation states

CRS: ({[Pi(X)]1}i, [X.]1s [X,+Po()]1s [Po(X)]15---5

({[Pi()]2ki> [X,]25 [-X,+Po(X)]z5 [1125--:)

honest prover: [Az()]1 — [aIPI() tr]1‘

SOUNDNESS PROOF: IDEA

- In GBGM we know constants a,;, 4, ,...,s.t.for X =

lo? =

A (X)=zaP X)) +A4, 5 +A4,, X +P (X)) +A,; X))+ ...
Ay (X) = 2 ayP; (X) + Ay X+ Ay, (X + Py (X)) + A, + ...
mX)=2mp; (X) + X + 1, (X + Py (X)) +m Py(X)+ ...

= Verification equation states
V() = (A, + X+ Py (X)) Ay(X) - X+ Py (X)) -m(X) X, —(1-X%)2=0

CRS: ({[Pi(X)]1}i, [X.]1s [X,+Po()]1s [Po(X)]15---5

({[Pi()]2ki> [X,]25 [-X,+Po(X)]z5 [1125--:)

honest prover: [Az()]1 — [aIPI() tr]1‘

SOUNDNESS PROOF: IDEA

- In GBGM we know constants a,;, 4, ,...,s.t.for X =

lo? =

Ay () = 2P (X)) + A X+ Ay (X F Py (X)) + A4y, Py (X) + ...
Ay (X) = 2 ayP; (X) + Ay X+ Ay (-4, + Py (X)) + Ay + ...
mX)=2mP; (X) +m X +m, (X +Py(X))+mPy(X)+...
= Verification equation states
V() = (A,(X) + X + Py (X)) (Ay(X) - X+ Py (X)) -m(XE) X, - (1-X)2=0
= Goal: find coefficients s.t. verification equation is satisfied

CRS: ({[Pi(X)]1}i, [X.]1s [X,+Po()]1s [Po(X)]15---5

({[Pi()]2ki> [X,]25 [-X,+Po(X)]z5 [1125--:)

SOLVING SYSTEM OF POL.
EQUATIONS

SOLVING SYSTEM OF POL.
EQUATIONS

=Goal:
=find coefficients s.t. IV (°0) = 0

SOLVING SYSTEM OF POL.
EQUATIONS

Goal:
=find coefficients s.t. IV (°0) = 0

=Step 1:
« I/ (X)) = 0 1ff each coefficient | L]V (X)) =0

SOLVING SYSTEM OF POL.
EQUATIONS

=Goal:
=find coefficients s.t. IV (°0) = 0
=Step 1:
« I/ (X)) = 0 1ff each coefficient | L]V (X)) =0

=This 1s a system of polynomial equations
=... and a nasty one

=of more than 20 polynomial equations

{il, es ey ‘i4} coelf,,(,-)(vup(X) - V,‘,p(X))

{1.2.1,0} |=Ap(Ba + 1) 4+ (Aa + 1)B, — Ca

{1.2.0,1} |=Ay(Ba + 1)

{1.2.0,0} |=Aps(Ba + 1)

{1.1.2,0} |(Aa + 1)Bg

{1.1.1,1} |(Aa + 1) B,

{1,1,1,0} |—=a(X)(Ba + 1) + (Aa + 1) (b(X) + B1) — Ao(Ba + 1) Po(X)

{1.0.1,0} |—=(Ba + 1) Z(X)a' (X)

{0.3,1,0} |A,B, — C,

{0.3.0,1} |A,B, — C,,

{0,3,0,0} |A8B, — Cpp

{0,2,2,0} |A,Bg

{0,2,1,1} |A,Bs + A,B,

{0,2,1,0} la(X)B, + A, (b(X) + By) + A3 Bs+
Po(X)(Ap(Ba + 1)+ (Aa + Ao+ 1) B, = Cq = Cp) — ¢(X)

{0,2,0,2} (A, B,

{0,2,0,1} |Ay (B(X) + By) + Apg By + Ay(Ba + 1) Po(X)

{0,2,0,0} |Aps (B(X) + B1) + Aps(Ba + 1) Po(X)

{0,1.2,0} |a(X)Bg + (Aa + Ao + 1) BgPo(X)

{0,1,1,1} |a(X)By + (Aa + Ao + 1) By Po(X)

{0.1,1,0} |=Z(X)e"(X) 4 Po(X) (a(X)(Ba + 1) + (Aa + Ao + 1) (b(X) + B1)) +
a(X)(B(X) 4+ B1) + (Aa 4+ Ao+ 1) (Ba + 1)Po(X)? - 1+
Bo,Z(X)a'(X)

{0,0,2,0} |BsZ(X)a'(X)

{0,0,1,1} | B, Z(X)a'(X)

{0,0,1,0}

Z(X)(b(X) + B1)a'(X) + (Ba + 1) Po(X)Z(X)a' (X)

SOLVING...

SOLVING...

=Used a mixture of computer algebra system and manual labor

SOLVING...

=Used a mixture of computer algebra system and manual labor
1. Use linear independence of P, (.X) to split some coefficients

SOLVING...

=Used a mixture of computer algebra system and manual labor
1. Use linear independence of P, (.X) to split some coefficients

2. Construct Grobner basis of system of polynomial equations
* Needs(?) a CAS...

SOLVING...

=Used a mixture of computer algebra system and manual labor
1. Use linear independence of P, (.X) to split some coefficients

2. Construct Grobner basis of system of polynomial equations
* Needs(?) a CAS...

3. Solve the Grobner basis i
* Can be done manually or by using CAS =

|
X
e oo
:-'g"c
’d_\:‘\
';d‘(-‘—\
-0 0

), 0,00,
w ol

o 0 60 0

28008

@

SOLVING...

=Used a mixture of computer algebra system and manual labor
1. Use linear independence of P, (.X) to split some coefficients

2. Construct Grobner basis of system of polynomial equations
* Needs(?) a CAS...

3. Solve the Grobner basis i
* Can be done manually or by using CAS =

- Obtain that A. (/X) = a, P, () => Sound

|
X
e oo
:-'g"c
’d_\:‘\
';d‘(-‘—\
-0 0

), 0,00,
w ol

o 0 60 0

28008

@

THANK YOU!

Panorao m('kx

