On Weak Keys and Forgery Attacks Against Polynomial-based MAC Schemes

Gordon Procter and Carlos Cid

Information Security Group, Royal Holloway, University of London

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Our Contributions

- Study the underlying algebraic structure of polynomial-evaluation MACs and hash functions
- 2 Present a generalised forgery attack that:
 - extends Cycling Attacks (from FSE 2012)
 - describes all existing attacks against GCM
 - leads to a length extension attack against GCM
- Identify many weak key classes for polynomial-based MAC constructions

almost every subset of the keyspace is weak

2 Forgeries

2 Forgeries

Consider a message containing ciphertext, additional authenticated data and message length:

$$M = (M_1, \ldots, M_m) \in \mathbb{K}^m$$

The hash function family $\mathcal{H} = \{h_H : \mathbb{K}^* \to \mathbb{K} | H \in \mathbb{K}\}$ is defined by a polynomial:

$$h_H(M) = \sum_{i=1}^m M_i H^i \in \mathbb{K}$$

This family is used for performance and low collision probabilities

We can use \mathcal{H} to construct fast and secure MACs The authentication tag is the encryption of the hash, perhaps:

$$MAC_{H||k}(M) = E_k(N) + h_H(M)$$

$$MAC_{H||k}(M) = E_k(h_H(M))$$

In both cases:

Hash collision \Rightarrow MAC forgery

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Real Examples

GCM [MV05]

- Field: $\mathbb{K} = \mathbb{F}_{2^{128}}$
- Hash key: $H = E_k(0)$
- Tag encryption: Additive

CWC [KVW03]

- Field: $\mathbb{K} = \mathbb{F}_{2^{127}-1}$
- Hash key: $H = E_k(110^{126})$
- Tag encryption: Both

Poly-1305 [B05]

- Field: $\mathbb{K} = \mathbb{F}_{2^{130}-5}$
- Hash key: 128 bits (some specific bits zero)
- Tag encryption: Additive

SGCM [S12]

- Field: $\mathbb{K} = \mathbb{F}_{2^{128}+12451}$
- Hash key: $H = E_k(0)$
- Tag encryption: Additive

GCM's MAC

Adversary Model

The adversary can:

- Obtain T for (N, M) of his choosing
 - but can't repeat nonces
- Ask whether (N, M, T) is valid

Goal:

Find (N, M, T) that is valid - without querying (N, M)

One Method:

- 1 Obtain T for (N, M)
- **2** Find M' with $h_H(M) = h_H(M')$
- **3** Then (N, M', T) is valid

Let H be the (unknown) hash key. Suppose $q(x) = q_1x + q_2x^2 + \cdots + q_rx^r$ and that q(H) = 0

Then
$$h_H(M) = \sum_{i=1}^m M_i H^i$$

 $= \sum_{i=1}^m M_i H^i + \sum_{i=1}^r q_i H^i$
 $= \sum_{i=1}^r (M_i + q_i) H^i$ (zero pad the shorter of M and q)
 $= h_H(M + Q)$ ($Q = q_1 || \dots || q_r$, blockwise addition)

Generalised Forgery

We can find a hash collision by finding q(x) = q₁x + q₂x² + ... + q_rx^r such that q(H) = 0 ■ Hash collision ⇒ MAC forgery

MAC forgery

Suppose we know that (N, M, T) is valid, then:

$$(N, M + Q, T)$$
 valid $\Leftrightarrow q(H) = 0$
 $\Leftrightarrow H \in \{x \in \mathbb{K} | q(x) = 0\}$

Similar observation made in [HP08]

Choosing q(x)

- Choosing q(x) is difficult
 - we don't know H, so we don't know whether q(H) = 0
- Forgery Probability: $\frac{\#\text{roots of } q}{|\mathbb{K}|}$
- Want q(x) with many roots:
 - high degree
 - no repeated roots

'The Naïve Approach'

Consider $\mathcal{D} \subseteq \mathbb{K}$, then:

$$q(x) = \prod_{\substack{H_i \in \mathcal{D} \\ \text{or } H_i = 0}} (x - H_i)$$

All known attacks against GCM can be described in terms of the q(x) that are used in the attacks

Ferguson: Attacks GCM when used with short tags

• Uses linearised polynomials • Relies on linearity of squaring in $\mathbb{F}_{2^{128}}$ • q(x) 'looks like' $x + x^2 + x^4 + \ldots + x^{2^{17}}$ • can keep track of roots using a matrix Joux: Attacks GCM when nonces are repeated • Need (N, M, T) and (N, M', T') valid (same N) • then $h_H(M) + h_H(M') = T + T'$ • so $h_H(M + M') - (T + T') = 0$ Saarinen: looks for subgroups of $\mathbb{F}_{2^{128}}$, so H with $H^t = 1$

•
$$H^t = 1 \Rightarrow H^{t+1} = H \Leftrightarrow \underbrace{H^{t+1} - H}_{q(H)} = 0$$

•
$$h_H(M) = M_1H + \ldots + M_{t+1}H^{t+1} + \ldots + M_mH^m$$

= $M_{t+1}H + \ldots + M_1H^{t+1} + \ldots + M_mH^m$
= $h_H(M')$

Suggested fix:

• use $\mathbb{F}_{2^{128}+12451}$: very few H with $H^{t+1} = H$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

It may be useful to have some control over the message that is forged So far we know that $M_i \rightarrow M_i + q_i$, for example:

- If M_i is additional authenticated data, then we know the value of the authenticated data in the forged message
- If Char(K) = 2 and M_i = P_i + E_k(CTR) is counter mode encrypted ciphertext, then we know that P_i → P_i + q_i

We can do better:

$$q(H) = 0 \Leftrightarrow \alpha q(H) = 0 \quad \forall \alpha \in \mathbb{K} \setminus \{0\}$$

- $M_i \rightarrow M_i + \alpha q_i$: we can choose any α we like
- For one message block, we can choose the value of $M_i + \alpha q_i$

Similar observation made in [S12]

In GCM:

$$M = \texttt{length} ||A_1|| \dots ||A_a||C_1|| \dots ||C_p|$$

length is only used to compute the hash (it's not sent)

- Pick a forgery polynomial q(x)
 Find the value of M₁ = length_M in the valid message
 - it correctly encodes the length of the message
- **3** Find the length of $(M + \alpha Q)$
 - we know M and Q
- 4 Choose $\alpha \in \mathbb{K}$:
 - so that $\text{length}_M \rightarrow \text{length}_M + \alpha q_1 = \text{length}_{M+\alpha Q}$

With a cycling attack:

- best we can do is a success probability of $\frac{m}{|\mathbb{K}|}$
- *m* is the length of the message in the valid (Message, Tag) pair

- Now we can increase the length of the message:
 - can achieve better success probabilities
 - with much shorter valid (Message, Tag) pair
- Now we have a success probability $\frac{\max\{m\}}{|\mathbb{K}|}$
 - max{m} is the maximum permissible message length
 - as in original security proofs for GCM

2 Forgeries

The identification of *weak keys* is an important part of the security assessment of any scheme.

Definition [HP08]

A set of keys ${\mathcal D}$ for a MAC algorithm is weak if:

- Forgery probability higher than otherwise expected
- Use can be detected:
 - \blacksquare by trying $< |\mathcal{D}|$ keys, and
 - using $< |\mathcal{D}|$ tag verification queries

Handschuh and Preneel 2008

$$\mathcal{D} = \{0\}$$
 is weak

Because
$$h_0(M) = 0 \quad \forall M$$

Saarinen 2012

•
$$\mathcal{D}_t = \{H|H^t = 1\}$$
 is weak

• Can swap M_i and $M_{i+\lambda t}$ to detect

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

We show that almost every subset of the keyspace is weak (for any hash function based on polynomial evaluation), in particular:

$$\mathcal{D}$$
 is weak if:
a $|\mathcal{D}| \ge 3$
b $|\mathcal{D}| \ge 2$ and $0 \in \mathcal{D}$

Method

Requires 1 valid tag, \leq 2 verification queries

- **1** Test if $H \in \mathcal{D} \cup \{0\}$
- **2** Test if H = 0, if necessary

Consequences

- These are properties of all polynomial hashes
 - not specific to GCM
- No 'safe' fields
 - SGCM not much better
 - does protect against some methods of finding good q(x)
- It is well known that message length is important
 - maximum permissible message length is what matters
 - also the size of the field is important
- All polynomial evaluation hashes have many weak keys
 - maybe it's better to talk of an unavoidable property from the algebraic structure, rather than the number of weak keys?
 - does having lots of weak keys make the algorithm weak?

The End - Thank You

These are properties of all polynomial hashes

- not specific to GCM
- No 'safe' fields
 - SGCM not much better
 - does protect against some methods of finding good q(x)
- It is well known that message length is important
 - maximum permissible message length is what matters
 - also the size of the field is important
- All polynomial evaluation hashes have many weak keys
 - maybe it's better to talk of an unavoidable property from the algebraic structure, rather than the number of weak keys?
 - does having lots of weak keys make the algorithm weak?