
Malleable Proof Systems and Applications

Melissa Chase (MSR Redmond)
Markulf Kohlweiss (MSR Cambridge)
Anna Lysyanskaya (Brown University)
Sarah Meiklejohn (UC San Diego)

1

Twenty years ago, saw a strong emphasis on non-malleable cryptography
[DDN91,S99,dCIO98,BS99,...]

Non-malleable cryptography

2

Twenty years ago, saw a strong emphasis on non-malleable cryptography
[DDN91,S99,dCIO98,BS99,...]

Non-malleable cryptography

2

Twenty years ago, saw a strong emphasis on non-malleable cryptography
[DDN91,S99,dCIO98,BS99,...]

Non-malleable cryptography

2

Twenty years ago, saw a strong emphasis on non-malleable cryptography
[DDN91,S99,dCIO98,BS99,...]

Non-malleable cryptography

balance: $100

2

Twenty years ago, saw a strong emphasis on non-malleable cryptography
[DDN91,S99,dCIO98,BS99,...]

Non-malleable cryptography

Enc(“Transfer $10 to Alice”)

balance: $100

2

Twenty years ago, saw a strong emphasis on non-malleable cryptography
[DDN91,S99,dCIO98,BS99,...]

Non-malleable cryptography

Enc(“Transfer $10 to Alice”)

balance: $100

2

Twenty years ago, saw a strong emphasis on non-malleable cryptography
[DDN91,S99,dCIO98,BS99,...]

Non-malleable cryptography

Enc(“Transfer $10 to Alice”)

balance: $100

2

Twenty years ago, saw a strong emphasis on non-malleable cryptography
[DDN91,S99,dCIO98,BS99,...]

Non-malleable cryptography

Enc(“Transfer $10 to Alice”)

balance: $100

2

Twenty years ago, saw a strong emphasis on non-malleable cryptography
[DDN91,S99,dCIO98,BS99,...]

Non-malleable cryptography

Enc(“Transfer $10 to Alice”)

balance: $100

balance: $0

2

Twenty years ago, saw a strong emphasis on non-malleable cryptography
[DDN91,S99,dCIO98,BS99,...]

Non-malleable cryptography

balance: $100

Enc(“Transfer $1000 to Alice”)

balance: $0

2

Twenty years ago, saw a strong emphasis on non-malleable cryptography
[DDN91,S99,dCIO98,BS99,...]

Non-malleable cryptography

balance: $100

Enc(“Transfer $1000 to Alice”)

balance: $0

2

Twenty years ago, saw a strong emphasis on non-malleable cryptography
[DDN91,S99,dCIO98,BS99,...]

Non-malleable cryptography

balance: $100
balance: -$900

Enc(“Transfer $1000 to Alice”)

balance: $0

2

Twenty years ago, saw a strong emphasis on non-malleable cryptography
[DDN91,S99,dCIO98,BS99,...]

Non-malleable cryptography

balance: $100
balance: -$900

Enc(“Transfer $1000 to Alice”)

balance: $0
balance: $1000

2

Twenty years ago, saw a strong emphasis on non-malleable cryptography
[DDN91,S99,dCIO98,BS99,...]

Non-malleable cryptography

balance: $100
balance: -$900

Enc(“Transfer $1000 to Alice”)

balance: $0
balance: $1000

?!?!?!

2

Malleable cryptography

3

Recently, see more emphasis on malleable cryptography
[G09,BCCKLS09,DHLW10,F11,BF11,ABCHSW12]

Malleable cryptography

3

Recently, see more emphasis on malleable cryptography
[G09,BCCKLS09,DHLW10,F11,BF11,ABCHSW12]

Malleable cryptography

3

Recently, see more emphasis on malleable cryptography
[G09,BCCKLS09,DHLW10,F11,BF11,ABCHSW12]

Malleable cryptography

3

Recently, see more emphasis on malleable cryptography
[G09,BCCKLS09,DHLW10,F11,BF11,ABCHSW12]

Malleable cryptography

3

c1=Enc(m1),...,cn=Enc(mn)

Recently, see more emphasis on malleable cryptography
[G09,BCCKLS09,DHLW10,F11,BF11,ABCHSW12]

Malleable cryptography

what’s my
average mi?

3

c1=Enc(m1),...,cn=Enc(mn)

Recently, see more emphasis on malleable cryptography
[G09,BCCKLS09,DHLW10,F11,BF11,ABCHSW12]

Malleable cryptography

c=Enc((m1+...+mn)/n)

what’s my
average mi?

3

c1=Enc(m1),...,cn=Enc(mn)

Recently, see more emphasis on malleable cryptography
[G09,BCCKLS09,DHLW10,F11,BF11,ABCHSW12]

Has applications in cloud storage, outsourcing computation, search on
encrypted data, etc.

Malleable cryptography

c=Enc((m1+...+mn)/n)

what’s my
average mi?

3

c1=Enc(m1),...,cn=Enc(mn)

Our contribution: controlled malleable cryptography

4

Methods for controlling malleability can provide a compromise between
functionality and security [PR08,BSW12]

Our contribution: controlled malleable cryptography

4

Methods for controlling malleability can provide a compromise between
functionality and security [PR08,BSW12]

• E.g., in cloud storage, only allowable transformation is the average

Our contribution: controlled malleable cryptography

4

Methods for controlling malleability can provide a compromise between
functionality and security [PR08,BSW12]

• E.g., in cloud storage, only allowable transformation is the average

• E.g., with bank account, mauling can only decrease amount

Our contribution: controlled malleable cryptography

4

Methods for controlling malleability can provide a compromise between
functionality and security [PR08,BSW12]

• E.g., in cloud storage, only allowable transformation is the average

• E.g., with bank account, mauling can only decrease amount

Our contribution: controlled malleable cryptography

In this work:

• Introduce notions of uncontrolled and controlled malleability for proofs

• Give two applications: CM-CCA security and compact verifiable shuffles

• Examine malleability within existing proof systems

4

Outline

5

Outline

5

Definitions

Outline

5

Definitions cm-NIZK construction

Outline

5

Definitions cm-NIZK construction

Applications

Outline

5

Definitions cm-NIZK construction

Applications Conclusions

Outline

5

Definitions cm-NIZK construction

Applications Conclusions

Definitions
Zero knowledge

Malleability
Controlled malleability

Derivation privacy

Notions of malleability for proofs

6

Notions of malleability for proofs

Example: take a proof π1 that b1 is a bit and a proof π2 that b2 is a bit, and
“maul” them somehow to get a proof that b1*b2 is a bit

6

Notions of malleability for proofs

Example: take a proof π1 that b1 is a bit and a proof π2 that b2 is a bit, and
“maul” them somehow to get a proof that b1*b2 is a bit

More generally, a proof is malleable with respect to T if there exists an algorithm
Eval that on input (T,{xi,πi}), outputs a proof π for T({xi})

6

Notions of malleability for proofs

Example: take a proof π1 that b1 is a bit and a proof π2 that b2 is a bit, and
“maul” them somehow to get a proof that b1*b2 is a bit

More generally, a proof is malleable with respect to T if there exists an algorithm
Eval that on input (T,{xi,πi}), outputs a proof π for T({xi})

• E.g., T = ×, xi = “bi is a bit”

6

Notions of malleability for proofs

Example: take a proof π1 that b1 is a bit and a proof π2 that b2 is a bit, and
“maul” them somehow to get a proof that b1*b2 is a bit

More generally, a proof is malleable with respect to T if there exists an algorithm
Eval that on input (T,{xi,πi}), outputs a proof π for T({xi})

• E.g., T = ×, xi = “bi is a bit”

If we want zero knowledge, need to make sure proofs are malleable only with
respect to operations under which the language is closed

• E.g., with bits, we run into trouble if we try to use T = +

6

Reconciling (controlled) malleability with soundness

7

Reconciling (controlled) malleability with soundness

What if we want to be able to maul proofs of knowledge only in certain ways?

7

Reconciling (controlled) malleability with soundness

What if we want to be able to maul proofs of knowledge only in certain ways?

• Define an allowable set of transformations T

7

Reconciling (controlled) malleability with soundness

What if we want to be able to maul proofs of knowledge only in certain ways?

• Define an allowable set of transformations T

• Next we look at simulation soundness [S99,dSdCOPS01]: adversary can’t
provide proofs of false statements, even with access to a simulation oracle
that can

7

Reconciling (controlled) malleability with soundness

What if we want to be able to maul proofs of knowledge only in certain ways?

• Define an allowable set of transformations T

• Next we look at simulation soundness [S99,dSdCOPS01]: adversary can’t
provide proofs of false statements, even with access to a simulation oracle
that can

• Even more, simulation-sound extractability [G06] says that in fact we can
always pull out a witness from any proof output by the adversary

7

Reconciling (controlled) malleability with soundness

What if we want to be able to maul proofs of knowledge only in certain ways?

• Define an allowable set of transformations T

• Next we look at simulation soundness [S99,dSdCOPS01]: adversary can’t
provide proofs of false statements, even with access to a simulation oracle
that can

• Even more, simulation-sound extractability [G06] says that in fact we can
always pull out a witness from any proof output by the adversary

• Our definition goes one step further: either we can pull out a witness, or it
was derived from a simulated proof under a transformation in T

7

Controlled-malleable SSE zero-knowledge proofs

8

High-level idea: extractor can pull out either a witness, or a previously queried
statement and a transformation from that statement to the new one

Controlled-malleable SSE zero-knowledge proofs

8

High-level idea: extractor can pull out either a witness, or a previously queried
statement and a transformation from that statement to the new one

Controlled-malleable SSE zero-knowledge proofs

8

High-level idea: extractor can pull out either a witness, or a previously queried
statement and a transformation from that statement to the new one

Controlled-malleable SSE zero-knowledge proofs

8

τeσ,τs,

High-level idea: extractor can pull out either a witness, or a previously queried
statement and a transformation from that statement to the new one

Controlled-malleable SSE zero-knowledge proofs

8

σ,τeτeσ,τs,

High-level idea: extractor can pull out either a witness, or a previously queried
statement and a transformation from that statement to the new one

Controlled-malleable SSE zero-knowledge proofs

8

σ,τe τeσ,τs,

High-level idea: extractor can pull out either a witness, or a previously queried
statement and a transformation from that statement to the new one

Controlled-malleable SSE zero-knowledge proofs

8

σ,τe τeσ,τs,Q

High-level idea: extractor can pull out either a witness, or a previously queried
statement and a transformation from that statement to the new one

Controlled-malleable SSE zero-knowledge proofs

8

σ,τe τe

xi

σ,τs,Q

High-level idea: extractor can pull out either a witness, or a previously queried
statement and a transformation from that statement to the new one

Controlled-malleable SSE zero-knowledge proofs

8

σ,τe τe

xi

πi

σ,τs,Q

High-level idea: extractor can pull out either a witness, or a previously queried
statement and a transformation from that statement to the new one

Controlled-malleable SSE zero-knowledge proofs

8

σ,τe τe

xi

πi
(x,π)

σ,τs,Q

High-level idea: extractor can pull out either a witness, or a previously queried
statement and a transformation from that statement to the new one

Controlled-malleable SSE zero-knowledge proofs

8

σ,τe τe

xi

πi
(w,x′,T)(x,π)

σ,τs,Q

High-level idea: extractor can pull out either a witness, or a previously queried
statement and a transformation from that statement to the new one

A wins if the proof verifies and x∉Q but (1) w≠⊥ but isn’t a valid witness,
(2) (x′,T)≠(⊥,⊥) but x′∉Q, x≠T(x′), or T is not in T, or (3) (w,x′,T)=(⊥,⊥,⊥)

Controlled-malleable SSE zero-knowledge proofs

8

σ,τe τe

xi

πi
(w,x′,T)(x,π)

σ,τs,Q

High-level idea: extractor can pull out either a witness, or a previously queried
statement and a transformation from that statement to the new one

A wins if the proof verifies and x∉Q but (1) w≠⊥ but isn’t a valid witness,
(2) (x′,T)≠(⊥,⊥) but x′∉Q, x≠T(x′), or T is not in T, or (3) (w,x′,T)=(⊥,⊥,⊥)

We call the proof CM-SSE (controlled malleable simulation sound extractable) if
any PPT adversary A has at most negligible probability in winning this game

Controlled-malleable SSE zero-knowledge proofs

8

σ,τe τe

xi

πi
(w,x′,T)(x,π)

σ,τs,Q

High-level idea: extractor can pull out either a witness, or a previously queried
statement and a transformation from that statement to the new one

A wins if the proof verifies and x∉Q but (1) w≠⊥ but isn’t a valid witness,
(2) (x′,T)≠(⊥,⊥) but x′∉Q, x≠T(x′), or T is not in T, or (3) (w,x′,T)=(⊥,⊥,⊥)

We call the proof CM-SSE (controlled malleable simulation sound extractable) if
any PPT adversary A has at most negligible probability in winning this game

If a proof is zero knowledge, CM-SSE, and strongly derivation private, then we
call it a cm-NIZK

Controlled-malleable SSE zero-knowledge proofs

8

σ,τe τe

xi

πi
(w,x′,T)

(like function privacy
for encryption)

(x,π)

σ,τs,Q

Outline

9

Cryptographic background Malleable NIZK construction

Applications Conclusions

Definitions
cm-NIZK construction

Generic construction
Efficient instantiation

How to construct cm-NIZKs

10

We will combine malleable NIWIPoKs with unforgeable signatures

How to construct cm-NIZKs

10

We will combine malleable NIWIPoKs with unforgeable signatures

cm-NIZK(x,w) = NIWIPoK{(x,(w,x′,T,σ)) s.t. either (x,w)∈R or Verify(vk,x′,σ)=1,
x=T(x′), and T is in T}

How to construct cm-NIZKs

10

We will combine malleable NIWIPoKs with unforgeable signatures

cm-NIZK(x,w) = NIWIPoK{(x,(w,x′,T,σ)) s.t. either (x,w)∈R or Verify(vk,x′,σ)=1,
x=T(x′), and T is in T}

How to construct cm-NIZKs

10

We will combine malleable NIWIPoKs with unforgeable signatures

cm-NIZK(x,w) = NIWIPoK{(x,(w,x′,T,σ)) s.t. either (x,w)∈R or Verify(vk,x′,σ)=1,
x=T(x′), and T is in T}

How to construct cm-NIZKs

10

Q τs=sk

We will combine malleable NIWIPoKs with unforgeable signatures

cm-NIZK(x,w) = NIWIPoK{(x,(w,x′,T,σ)) s.t. either (x,w)∈R or Verify(vk,x′,σ)=1,
x=T(x′), and T is in T}

How to construct cm-NIZKs

10

xi

Q τs=sk

We will combine malleable NIWIPoKs with unforgeable signatures

cm-NIZK(x,w) = NIWIPoK{(x,(w,x′,T,σ)) s.t. either (x,w)∈R or Verify(vk,x′,σ)=1,
x=T(x′), and T is in T}

How to construct cm-NIZKs

10

use witness (⊥,xi,id,σ)

xi

πi

Q τs=sk

We will combine malleable NIWIPoKs with unforgeable signatures

cm-NIZK(x,w) = NIWIPoK{(x,(w,x′,T,σ)) s.t. either (x,w)∈R or Verify(vk,x′,σ)=1,
x=T(x′), and T is in T}

How to construct cm-NIZKs

10

use witness (⊥,xi,id,σ)

xi

πi
(x,π)

Q τs=sk

We will combine malleable NIWIPoKs with unforgeable signatures

cm-NIZK(x,w) = NIWIPoK{(x,(w,x′,T,σ)) s.t. either (x,w)∈R or Verify(vk,x′,σ)=1,
x=T(x′), and T is in T}

How to construct cm-NIZKs

10

use witness (⊥,xi,id,σ)

(Extractor for NIWIPoK)

xi

πi
(x,π)

Q τs=sk

We will combine malleable NIWIPoKs with unforgeable signatures

cm-NIZK(x,w) = NIWIPoK{(x,(w,x′,T,σ)) s.t. either (x,w)∈R or Verify(vk,x′,σ)=1,
x=T(x′), and T is in T}

How to construct cm-NIZKs

10

use witness (⊥,xi,id,σ)

(Extractor for NIWIPoK)

xi

πi
(x,π) (w,x′,T)

Q τs=sk

We will combine malleable NIWIPoKs with unforgeable signatures

cm-NIZK(x,w) = NIWIPoK{(x,(w,x′,T,σ)) s.t. either (x,w)∈R or Verify(vk,x′,σ)=1,
x=T(x′), and T is in T}

How to construct cm-NIZKs

10

use witness (⊥,xi,id,σ)

(Extractor for NIWIPoK)

xi

πi
(x,π) (w,x′,T,σ)

Q τs=sk

We will combine malleable NIWIPoKs with unforgeable signatures

cm-NIZK(x,w) = NIWIPoK{(x,(w,x′,T,σ)) s.t. either (x,w)∈R or Verify(vk,x′,σ)=1,
x=T(x′), and T is in T}

A wins if (1) w≠⊥ but isn’t a valid witness, (2) (x′,T)≠(⊥,⊥) but x′∉Q, x≠T(x′), or
T is not in T, or (3) (w,x′,T)=(⊥,⊥,⊥)

How to construct cm-NIZKs

10

use witness (⊥,xi,id,σ)

(Extractor for NIWIPoK)

xi

πi
(x,π) (w,x′,T,σ)

Q τs=sk

We will combine malleable NIWIPoKs with unforgeable signatures

cm-NIZK(x,w) = NIWIPoK{(x,(w,x′,T,σ)) s.t. either (x,w)∈R or Verify(vk,x′,σ)=1,
x=T(x′), and T is in T}

A wins if (1) w≠⊥ but isn’t a valid witness, (2) (x′,T)≠(⊥,⊥) but x′∉Q, x≠T(x′), or
T is not in T, or (3) (w,x′,T)=(⊥,⊥,⊥)

How to construct cm-NIZKs

10

use witness (⊥,xi,id,σ)

(Extractor for NIWIPoK)

xi

πi
(x,π) (w,x′,T,σ)

w≠⊥ but isn’t a valid witness

Q τs=sk

We will combine malleable NIWIPoKs with unforgeable signatures

cm-NIZK(x,w) = NIWIPoK{(x,(w,x′,T,σ)) s.t. either (x,w)∈R or Verify(vk,x′,σ)=1,
x=T(x′), and T is in T}

A wins if (1) w≠⊥ but isn’t a valid witness, (2) (x′,T)≠(⊥,⊥) but x′∉Q, x≠T(x′), or
T is not in T, or (3) (w,x′,T)=(⊥,⊥,⊥)

How to construct cm-NIZKs

10

use witness (⊥,xi,id,σ)

(Extractor for NIWIPoK)

xi

πi
(x,π) (w,x′,T,σ)

violates extractability
w≠⊥ but isn’t a valid witnessx

Q τs=sk

We will combine malleable NIWIPoKs with unforgeable signatures

cm-NIZK(x,w) = NIWIPoK{(x,(w,x′,T,σ)) s.t. either (x,w)∈R or Verify(vk,x′,σ)=1,
x=T(x′), and T is in T}

A wins if (1) w≠⊥ but isn’t a valid witness, (2) (x′,T)≠(⊥,⊥) but x′∉Q, x≠T(x′), or
T is not in T, or (3) (w,x′,T)=(⊥,⊥,⊥)

How to construct cm-NIZKs

10

use witness (⊥,xi,id,σ)

(Extractor for NIWIPoK)

xi

πi
(x,π) (w,x′,T,σ)

x x≠T(x′)

Q τs=sk

We will combine malleable NIWIPoKs with unforgeable signatures

cm-NIZK(x,w) = NIWIPoK{(x,(w,x′,T,σ)) s.t. either (x,w)∈R or Verify(vk,x′,σ)=1,
x=T(x′), and T is in T}

A wins if (1) w≠⊥ but isn’t a valid witness, (2) (x′,T)≠(⊥,⊥) but x′∉Q, x≠T(x′), or
T is not in T, or (3) (w,x′,T)=(⊥,⊥,⊥)

How to construct cm-NIZKs

10

use witness (⊥,xi,id,σ)

(Extractor for NIWIPoK)

xi

πi
(x,π) (w,x′,T,σ)

x xx≠T(x′)
violates extractability

Q τs=sk

We will combine malleable NIWIPoKs with unforgeable signatures

cm-NIZK(x,w) = NIWIPoK{(x,(w,x′,T,σ)) s.t. either (x,w)∈R or Verify(vk,x′,σ)=1,
x=T(x′), and T is in T}

A wins if (1) w≠⊥ but isn’t a valid witness, (2) (x′,T)≠(⊥,⊥) but x′∉Q, x≠T(x′), or
T is not in T, or (3) (w,x′,T)=(⊥,⊥,⊥)

How to construct cm-NIZKs

10

use witness (⊥,xi,id,σ)

(Extractor for NIWIPoK)

xi

πi
(x,π) (w,x′,T,σ)

x x
T is not in T

Q τs=sk

We will combine malleable NIWIPoKs with unforgeable signatures

cm-NIZK(x,w) = NIWIPoK{(x,(w,x′,T,σ)) s.t. either (x,w)∈R or Verify(vk,x′,σ)=1,
x=T(x′), and T is in T}

A wins if (1) w≠⊥ but isn’t a valid witness, (2) (x′,T)≠(⊥,⊥) but x′∉Q, x≠T(x′), or
T is not in T, or (3) (w,x′,T)=(⊥,⊥,⊥)

How to construct cm-NIZKs

10

use witness (⊥,xi,id,σ)

(Extractor for NIWIPoK)

xi

πi
(x,π) (w,x′,T,σ)

x x
T is not in Txviolates extractability

Q τs=sk

We will combine malleable NIWIPoKs with unforgeable signatures

cm-NIZK(x,w) = NIWIPoK{(x,(w,x′,T,σ)) s.t. either (x,w)∈R or Verify(vk,x′,σ)=1,
x=T(x′), and T is in T}

A wins if (1) w≠⊥ but isn’t a valid witness, (2) (x′,T)≠(⊥,⊥) but x′∉Q, x≠T(x′), or
T is not in T, or (3) (w,x′,T)=(⊥,⊥,⊥)

How to construct cm-NIZKs

10

use witness (⊥,xi,id,σ)

(Extractor for NIWIPoK)

xi

πi
(x,π) (w,x′,T,σ)

x x
x (w,x′,T)=(⊥,⊥,⊥)

Q τs=sk

We will combine malleable NIWIPoKs with unforgeable signatures

cm-NIZK(x,w) = NIWIPoK{(x,(w,x′,T,σ)) s.t. either (x,w)∈R or Verify(vk,x′,σ)=1,
x=T(x′), and T is in T}

A wins if (1) w≠⊥ but isn’t a valid witness, (2) (x′,T)≠(⊥,⊥) but x′∉Q, x≠T(x′), or
T is not in T, or (3) (w,x′,T)=(⊥,⊥,⊥)

How to construct cm-NIZKs

10

use witness (⊥,xi,id,σ)

(Extractor for NIWIPoK)

xi

πi
(x,π) (w,x′,T,σ)

x x
x (w,x′,T)=(⊥,⊥,⊥)xviolates extractability

Q τs=sk

We will combine malleable NIWIPoKs with unforgeable signatures

cm-NIZK(x,w) = NIWIPoK{(x,(w,x′,T,σ)) s.t. either (x,w)∈R or Verify(vk,x′,σ)=1,
x=T(x′), and T is in T}

A wins if (1) w≠⊥ but isn’t a valid witness, (2) (x′,T)≠(⊥,⊥) but x′∉Q, x≠T(x′), or
T is not in T, or (3) (w,x′,T)=(⊥,⊥,⊥)

How to construct cm-NIZKs

10

use witness (⊥,xi,id,σ)

(Extractor for NIWIPoK)

xi

πi
(x,π) (w,x′,T,σ)

x (x′,T)≠(⊥,⊥) but x′∉Q x
x x

Q τs=sk

We will combine malleable NIWIPoKs with unforgeable signatures

cm-NIZK(x,w) = NIWIPoK{(x,(w,x′,T,σ)) s.t. either (x,w)∈R or Verify(vk,x′,σ)=1,
x=T(x′), and T is in T}

A wins if (1) w≠⊥ but isn’t a valid witness, (2) (x′,T)≠(⊥,⊥) but x′∉Q, x≠T(x′), or
T is not in T, or (3) (w,x′,T)=(⊥,⊥,⊥)

How to construct cm-NIZKs

10

use witness (⊥,xi,id,σ)

(Extractor for NIWIPoK)

xi

πi
(x,π) (w,x′,T,σ)

x (x′,T)≠(⊥,⊥) but x′∉Q x
x x violates extractabilityx

Q τs=sk

We will combine malleable NIWIPoKs with unforgeable signatures

cm-NIZK(x,w) = NIWIPoK{(x,(w,x′,T,σ)) s.t. either (x,w)∈R or Verify(vk,x′,σ)=1,
x=T(x′), and T is in T}

A wins if (1) w≠⊥ but isn’t a valid witness, (2) (x′,T)≠(⊥,⊥) but x′∉Q, x≠T(x′), or
T is not in T, or (3) (w,x′,T)=(⊥,⊥,⊥)

How to construct cm-NIZKs

10

use witness (⊥,xi,id,σ)

(Extractor for NIWIPoK)

xi

πi
(x,π) (w,x′,T,σ)

x (x′,T)≠(⊥,⊥) but x′∉Q x
x x violates extractabilityx

violates unforgeability

Q τs=sk

Instantiating this (relatively) efficiently

11

Instantiating this (relatively) efficiently

11

For the NIWIPoK, we use Groth-Sahai proofs [GS08]

Instantiating this (relatively) efficiently

11

For the NIWIPoK, we use Groth-Sahai proofs [GS08]

For the signature, we need a structure-preserving signature [AFGHO10,CK11]
to integrate with GS proofs (verifying signature = verifying set of pairing product
equations), this means we can instantiate based solely on Decision Linear

Instantiating this (relatively) efficiently

11

For the NIWIPoK, we use Groth-Sahai proofs [GS08]

For the signature, we need a structure-preserving signature [AFGHO10,CK11]
to integrate with GS proofs (verifying signature = verifying set of pairing product
equations), this means we can instantiate based solely on Decision Linear

The efficiency of our scheme hinges on the efficiency of the signature and the
representation of the transformation (depends on the transformation)

Instantiating this (relatively) efficiently

11

For the NIWIPoK, we use Groth-Sahai proofs [GS08]

For the signature, we need a structure-preserving signature [AFGHO10,CK11]
to integrate with GS proofs (verifying signature = verifying set of pairing product
equations), this means we can instantiate based solely on Decision Linear

The efficiency of our scheme hinges on the efficiency of the signature and the
representation of the transformation (depends on the transformation)

For the class of transformations, need it to contain the identity (for simulation)
and be closed under composition (for compactness): given proof for x = T1(x′),
size won’t increase for T2(x) = T2°T1(x′)

Instantiating this (relatively) efficiently

11

For the NIWIPoK, we use Groth-Sahai proofs [GS08]

For the signature, we need a structure-preserving signature [AFGHO10,CK11]
to integrate with GS proofs (verifying signature = verifying set of pairing product
equations), this means we can instantiate based solely on Decision Linear

The efficiency of our scheme hinges on the efficiency of the signature and the
representation of the transformation (depends on the transformation)

For the class of transformations, need it to contain the identity (for simulation)
and be closed under composition (for compactness): given proof for x = T1(x′),
size won’t increase for T2(x) = T2°T1(x′)

In the paper, we examine the many ways in which GS proofs are malleable

Outline

12

Cryptographic background cm-NIZK construction

Applications Conclusions

Definitions

Applications
Boosting encryption security
Compactly verifiable shuffles

CM-CCA security

13

CM-CCA security

13

Expand our notion of controlled malleability from proofs to encryption to get
CM-CCA security (inspired by HCCA [PR08] and related to targeted malleability
[BSW12])

CM-CCA security

13

Expand our notion of controlled malleability from proofs to encryption to get
CM-CCA security (inspired by HCCA [PR08] and related to targeted malleability
[BSW12])

CM-CCA security

13

Expand our notion of controlled malleability from proofs to encryption to get
CM-CCA security (inspired by HCCA [PR08] and related to targeted malleability
[BSW12])

KeyGen

Enc(pk,m)

Dec(sk,c)

Real

CM-CCA security

13

Expand our notion of controlled malleability from proofs to encryption to get
CM-CCA security (inspired by HCCA [PR08] and related to targeted malleability
[BSW12])

KeyGen

Enc(pk,m)

Dec(sk,c)

SimKeyGen
Real Simulated

CM-CCA security

13

Expand our notion of controlled malleability from proofs to encryption to get
CM-CCA security (inspired by HCCA [PR08] and related to targeted malleability
[BSW12])

KeyGen

Enc(pk,m)

Dec(sk,c)

SimKeyGen
E(pk,m)

c = SimEnc(pk,τ)
add (m,c) to Q

return c

D(sk,c)
(c′,T) = SimExt(sk,c)

if ∃i s.t. c′=ci∈Q and T∈T return T(mi)
else return Dec(sk,c)

Real Simulated

Q

CM-CCA security

13

Expand our notion of controlled malleability from proofs to encryption to get
CM-CCA security (inspired by HCCA [PR08] and related to targeted malleability
[BSW12])

KeyGen

Enc(pk,m)

Dec(sk,c)

SimKeyGen
E(pk,m)

c = SimEnc(pk,τ)
add (m,c) to Q

return c

D(sk,c)
(c′,T) = SimExt(sk,c)

if ∃i s.t. c′=ci∈Q and T∈T return T(mi)
else return Dec(sk,c)

Real SimulatedWhich
world?

Q

CM-CCA security

13

Expand our notion of controlled malleability from proofs to encryption to get
CM-CCA security (inspired by HCCA [PR08] and related to targeted malleability
[BSW12])

Give a generic construction for achieving CM-CCA-secure encryption: just
define Enc(pk,m) = (c,π), where c is IND-CPA-secure and π is a cm-NIZK

KeyGen

Enc(pk,m)

Dec(sk,c)

SimKeyGen
E(pk,m)

c = SimEnc(pk,τ)
add (m,c) to Q

return c

D(sk,c)
(c′,T) = SimExt(sk,c)

if ∃i s.t. c′=ci∈Q and T∈T return T(mi)
else return Dec(sk,c)

Real SimulatedWhich
world?

Q

A shuffle

14

A shuffle

c1
c2
c3
c4
c5

14

Users encrypt their individual values to yield a public set of ciphertexts {ci}

A shuffle

c1
c2
c3
c4
c5

14

Users encrypt their individual values to yield a public set of ciphertexts {ci}

A shuffle

c1
c2
c3
c4
c5

14

Users encrypt their individual values to yield a public set of ciphertexts {ci}

Individual mix servers permute and re-randomize ciphertexts

A shuffle

c1
c2
c3
c4
c5

14

Users encrypt their individual values to yield a public set of ciphertexts {ci}

Individual mix servers permute and re-randomize ciphertexts

A shuffle

c1
c2
c3
c4
c5

14

Users encrypt their individual values to yield a public set of ciphertexts {ci}

Individual mix servers permute and re-randomize ciphertexts

A shuffle

c1
c2
c3
c4
c5

14

Users encrypt their individual values to yield a public set of ciphertexts {ci}

Individual mix servers permute and re-randomize ciphertexts

A shuffle

c1
c2
c3
c4
c5

14

Users encrypt their individual values to yield a public set of ciphertexts {ci}

Individual mix servers permute and re-randomize ciphertexts

A shuffle

c1
c2
c3
c4
c5

14

Users encrypt their individual values to yield a public set of ciphertexts {ci}

Individual mix servers permute and re-randomize ciphertexts

A shuffle

c1
c2
c3
c4
c5

14

Users encrypt their individual values to yield a public set of ciphertexts {ci}

Individual mix servers permute and re-randomize ciphertexts

A shuffle

c1
c2
c3
c4
c5

14

Users encrypt their individual values to yield a public set of ciphertexts {ci}

Individual mix servers permute and re-randomize ciphertexts

A shuffle

c1
c2
c3
c4
c5

14

Users encrypt their individual values to yield a public set of ciphertexts {ci}

Individual mix servers permute and re-randomize ciphertexts

A shuffle

. . .
c1
c2
c3
c4
c5

14

Users encrypt their individual values to yield a public set of ciphertexts {ci}

Individual mix servers permute and re-randomize ciphertexts

A shuffle

. . .
c1
c2
c3
c4
c5

14

Users encrypt their individual values to yield a public set of ciphertexts {ci}

Individual mix servers permute and re-randomize ciphertexts

A shuffle

. . .
c1
c2
c3
c4
c5

14

Users encrypt their individual values to yield a public set of ciphertexts {ci}

Individual mix servers permute and re-randomize ciphertexts

A shuffle

. . .
c1
c2
c3
c4
c5

c2

c5
c1
c4
c3

14

Users encrypt their individual values to yield a public set of ciphertexts {ci}

Individual mix servers permute and re-randomize ciphertexts

Final outcome is a set of ciphertexts

A shuffle

. . .
c1
c2
c3
c4
c5

c2

c5
c1
c4
c3

14

Users encrypt their individual values to yield a public set of ciphertexts {ci}

Individual mix servers permute and re-randomize ciphertexts

Final outcome is a set of ciphertexts

Because values are shuffled, decryption won’t reveal whose vote is whose

A verifiable shuffle [SK95,...,GL07]

15

A verifiable shuffle [SK95,...,GL07]

15

Problem: How do we know these mix servers are behaving honestly?

A verifiable shuffle [SK95,...,GL07]

c1
c2
c3
c4
c5

15

Problem: How do we know these mix servers are behaving honestly?

A verifiable shuffle [SK95,...,GL07]

c1
c2
c3
c4
c5

15

Problem: How do we know these mix servers are behaving honestly?

A verifiable shuffle [SK95,...,GL07]

c1
c2
c3
c4
c5

15

Problem: How do we know these mix servers are behaving honestly?

A verifiable shuffle [SK95,...,GL07]

π1

c1
c2
c3
c4
c5

15

Problem: How do we know these mix servers are behaving honestly?

A verifiable shuffle [SK95,...,GL07]

π1

c1
c2
c3
c4
c5

15

Problem: How do we know these mix servers are behaving honestly?

A verifiable shuffle [SK95,...,GL07]

π1

c1
c2
c3
c4
c5

15

Problem: How do we know these mix servers are behaving honestly?

A verifiable shuffle [SK95,...,GL07]

π1 π2

c1
c2
c3
c4
c5

15

Problem: How do we know these mix servers are behaving honestly?

A verifiable shuffle [SK95,...,GL07]

. . .

π1 π2

c1
c2
c3
c4
c5

15

Problem: How do we know these mix servers are behaving honestly?

A verifiable shuffle [SK95,...,GL07]

. . .

π1 π2

c1
c2
c3
c4
c5

c2

c5
c1
c4
c3

15

Problem: How do we know these mix servers are behaving honestly?

A verifiable shuffle [SK95,...,GL07]

. . .

π1 π2 πk

c1
c2
c3
c4
c5

c2

c5
c1
c4
c3

15

Problem: How do we know these mix servers are behaving honestly?

A verifiable shuffle [SK95,...,GL07]

. . .

π1 π2 πk

c1
c2
c3
c4
c5

c2

c5
c1
c4
c3

15

Problem: How do we know these mix servers are behaving honestly?

Each server now proves that it is honestly shuffling the ciphertexts, and so the
shuffle is said to be verifiable

A verifiable shuffle [SK95,...,GL07]

. . .

π1 π2 πk

c1
c2
c3
c4
c5

c2

c5
c1
c4
c3

15

Problem: How do we know these mix servers are behaving honestly?

Each server now proves that it is honestly shuffling the ciphertexts, and so the
shuffle is said to be verifiable

New problem: The size of this proof grows with the number of mix servers

Using malleability to shrink the overall proof size

16

. . .
c1
c2
c3
c4
c5

c2

c5
c1
c4
c3

Using malleability to shrink the overall proof size

16

. . .

π

c1
c2
c3
c4
c5

c2

c5
c1
c4
c3

Initial mix server still outputs a fresh proof π, but now subsequent servers will
“maul” this proof using permutation ϕi, re-randomization Ri, and public key pki

Using malleability to shrink the overall proof size

16

. . .

π

c1
c2
c3
c4
c5

c2

c5
c1
c4
c3

Initial mix server still outputs a fresh proof π, but now subsequent servers will
“maul” this proof using permutation ϕi, re-randomization Ri, and public key pki

Using malleability to shrink the overall proof size

16

. . .

π

c1
c2
c3
c4
c5

c2

c5
c1
c4
c3

π(2)=Eval(T2,π)
T2=(ϕ2,R2,pk2)

Initial mix server still outputs a fresh proof π, but now subsequent servers will
“maul” this proof using permutation ϕi, re-randomization Ri, and public key pki

Using malleability to shrink the overall proof size

16

. . .

π

c1
c2
c3
c4
c5

c2

c5
c1
c4
c3

π(2)=Eval(T2,π)
T2=(ϕ2,R2,pk2)

Initial mix server still outputs a fresh proof π, but now subsequent servers will
“maul” this proof using permutation ϕi, re-randomization Ri, and public key pki

Using malleability to shrink the overall proof size

16

. . .

π

c1
c2
c3
c4
c5

c2

c5
c1
c4
c3

π(2)=Eval(T2,π)
T2=(ϕ2,R2,pk2) Tk=(ϕk,Rk,pkk)

Initial mix server still outputs a fresh proof π, but now subsequent servers will
“maul” this proof using permutation ϕi, re-randomization Ri, and public key pki

Using malleability to shrink the overall proof size

16

. . .

π

c1
c2
c3
c4
c5

c2

c5
c1
c4
c3

π(2)=Eval(T2,π) π(k)=Eval(Tk,π(k-1))
T2=(ϕ2,R2,pk2) Tk=(ϕk,Rk,pkk)

Initial mix server still outputs a fresh proof π, but now subsequent servers will
“maul” this proof using permutation ϕi, re-randomization Ri, and public key pki

We call this shuffle compactly verifiable, as the last proof π(k) can now be used
to verify the correctness of the whole shuffle (under an appropriate definition)

Using malleability to shrink the overall proof size

16

. . .

π

c1
c2
c3
c4
c5

c2

c5
c1
c4
c3

π(2)=Eval(T2,π) π(k)=Eval(Tk,π(k-1))
T2=(ϕ2,R2,pk2) Tk=(ϕk,Rk,pkk)

Initial mix server still outputs a fresh proof π, but now subsequent servers will
“maul” this proof using permutation ϕi, re-randomization Ri, and public key pki

We call this shuffle compactly verifiable, as the last proof π(k) can now be used
to verify the correctness of the whole shuffle (under an appropriate definition)

So if there are n ciphertexts and k servers, proof size can be O(n+k) vs. O(n*k)

Using malleability to shrink the overall proof size

16

. . .

π

c1
c2
c3
c4
c5

c2

c5
c1
c4
c3

π(2)=Eval(T2,π) π(k)=Eval(Tk,π(k-1))
T2=(ϕ2,R2,pk2) Tk=(ϕk,Rk,pkk)

Initial mix server still outputs a fresh proof π, but now subsequent servers will
“maul” this proof using permutation ϕi, re-randomization Ri, and public key pki

We call this shuffle compactly verifiable, as the last proof π(k) can now be used
to verify the correctness of the whole shuffle (under an appropriate definition)

So if there are n ciphertexts and k servers, proof size can be O(n+k) vs. O(n*k)

• This bound isn’t just theoretical: in this paper we get O(n2+k) but in a
recent result we use new methods to achieve O(n+k)

Outline

17

Cryptographic background cm-NIZK construction

Applications Conclusions

Definitions

Conclusions

Conclusions and open problems

18

We defined notions of malleability for proof systems

Conclusions and open problems

18

We defined notions of malleability for proof systems

Saw that there are useful applications: CM-CCA and compact shuffles

Conclusions and open problems

18

We defined notions of malleability for proof systems

Saw that there are useful applications: CM-CCA and compact shuffles

Saw that Groth-Sahai proofs have meaningful malleability properties

Conclusions and open problems

18

We defined notions of malleability for proof systems

Saw that there are useful applications: CM-CCA and compact shuffles

Saw that Groth-Sahai proofs have meaningful malleability properties

Did a whole lot more at eprint.iacr.org/2012/012!

Conclusions and open problems

18

We defined notions of malleability for proof systems

Saw that there are useful applications: CM-CCA and compact shuffles

Saw that Groth-Sahai proofs have meaningful malleability properties

Did a whole lot more at eprint.iacr.org/2012/012!

Conclusions and open problems

Thanks!
Any questions?

18

