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Twenty years ago, saw a strong emphasis on non-malleable cryptography 
[DDN91,S99,dCIO98,BS99,...]

Non-malleable cryptography

balance: $100
balance: -$900

Enc(“Transfer $1000 to Alice”)

balance: $0
balance: $1000

?!?!?!
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Recently, see more emphasis on malleable cryptography 
[G09,BCCKLS09,DHLW10,F11,BF11,ABCHSW12]

Has applications in cloud storage, outsourcing computation, search on 
encrypted data, etc. 

Malleable cryptography

c=Enc((m1+...+mn)/n)

what’s my 
average mi?

3

c1=Enc(m1),...,cn=Enc(mn)
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Methods for controlling malleability can provide a compromise between 
functionality and security [PR08,BSW12]

• E.g., in cloud storage, only allowable transformation is the average

• E.g., with bank account, mauling can only decrease amount

Our contribution: controlled malleable cryptography

In this work:

• Introduce notions of uncontrolled and controlled malleability for proofs

• Give two applications: CM-CCA security and compact verifiable shuffles

• Examine malleability within existing proof systems 
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Notions of malleability for proofs

Example: take a proof π1 that b1 is a bit and a proof π2 that b2 is a bit, and 
“maul” them somehow to get a proof that b1*b2 is a bit

More generally, a proof is malleable with respect to T if there exists an algorithm 
Eval that on input (T,{xi,πi}), outputs a proof π for T({xi})

• E.g., T = ×, xi = “bi is a bit”

If we want zero knowledge, need to make sure proofs are malleable only with 
respect to operations under which the language is closed

• E.g., with bits, we run into trouble if we try to use T = +
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Reconciling (controlled) malleability with soundness

What if we want to be able to maul proofs of knowledge only in certain ways?

• Define an allowable set of transformations T

• Next we look at simulation soundness [S99,dSdCOPS01]: adversary can’t 
provide proofs of false statements, even with access to a simulation oracle 
that can

• Even more, simulation-sound extractability [G06] says that in fact we can 
always pull out a witness from any proof output by the adversary

• Our definition goes one step further: either we can pull out a witness, or it 
was derived from a simulated proof under a transformation in T
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High-level idea: extractor can pull out either a witness, or a previously queried 
statement and a transformation from that statement to the new one

A wins if the proof verifies and x∉Q but (1) w≠⊥ but isn’t a valid witness,         
(2) (x′,T)≠(⊥,⊥) but x′∉Q, x≠T(x′), or T is not in T, or (3) (w,x′,T)=(⊥,⊥,⊥)

We call the proof CM-SSE (controlled malleable simulation sound extractable) if 
any PPT adversary A has at most negligible probability in winning this game

If a proof is zero knowledge, CM-SSE, and strongly derivation private, then we 
call it a cm-NIZK

Controlled-malleable SSE zero-knowledge proofs
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For the NIWIPoK, we use Groth-Sahai proofs [GS08]

For the signature, we need a structure-preserving signature [AFGHO10,CK11] 
to integrate with GS proofs (verifying signature = verifying set of pairing product 
equations), this means we can instantiate based solely on Decision Linear

The efficiency of our scheme hinges on the efficiency of the signature and the 
representation of the transformation (depends on the transformation)

For the class of transformations, need it to contain the identity (for simulation)
and be closed under composition (for compactness): given proof for x = T1(x′), 
size won’t increase for T2(x) = T2°T1(x′)

In the paper, we examine the many ways in which GS proofs are malleable
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Expand our notion of controlled malleability from proofs to encryption to get 
CM-CCA security (inspired by HCCA [PR08] and related to targeted malleability 
[BSW12])

Give a generic construction for achieving CM-CCA-secure encryption: just 
define Enc(pk,m) = (c,π), where c is IND-CPA-secure and π is a cm-NIZK
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14

Users encrypt their individual values to yield a public set of ciphertexts {ci}

Individual mix servers permute and re-randomize ciphertexts

Final outcome is a set of ciphertexts 

Because values are shuffled, decryption won’t reveal whose vote is whose
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A verifiable shuffle [SK95,...,GL07]

. . .

π1 π2 πk

c1
c2
c3
c4
c5

c2

c5
c1
c4
c3

15

Problem: How do we know these mix servers are behaving honestly?

Each server now proves that it is honestly shuffling the ciphertexts, and so the 
shuffle is said to be verifiable

New problem: The size of this proof grows with the number of mix servers
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π(2)=Eval(T2,π) π(k)=Eval(Tk,π(k-1))
T2=(ϕ2,R2,pk2) Tk=(ϕk,Rk,pkk)

Initial mix server still outputs a fresh proof π, but now subsequent servers will 
“maul” this proof using permutation ϕi, re-randomization Ri, and public key pki

We call this shuffle compactly verifiable, as the last proof π(k) can now be used 
to verify the correctness of the whole shuffle (under an appropriate definition)

So if there are n ciphertexts and k servers, proof size can be O(n+k) vs. O(n*k)

• This bound isn’t just theoretical: in this paper we get O(n2+k) but in a 
recent result we use new methods to achieve O(n+k)
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Saw that there are useful applications: CM-CCA and compact shuffles 

Saw that Groth-Sahai proofs have meaningful malleability properties

Did a whole lot more at eprint.iacr.org/2012/012!

Conclusions and open problems

Thanks!
Any questions?
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