
Tamper and Leakage Resilience
in the Split State Model�

Feng-Hao Liu �
Anna Lysyanskaya�

�
Brown University�

�
 �

I/O Access to a Device

User� Device for Ds(�)�

x�

Ds(x) �

x’�

Ds(x’) �

Secret s

Leakage/Side Channel Attack �
[Kocher96,HSHCP+08…]

Adversary � Device for Ds(�)�

Function g �

g(s)�

Secret s
Function g’�

g'(s) �

Tampering Attack [BS97,AARR02…]

Adversary � Device for Ds(�)�

Function f �

Secret s
f(s)�

Continuous L+T Attack [LL10,KKS11]

Adversary � Device for Ds(�)�

x�Function g �

Ds(x) �g(s)�

Function f �

Secret s
f(s)�

Remark: in this model, computations (updates) happen �
between the attacks, unlike the model of [MR04] �

Previous Work

•  Tampering only [GLMMR04,DPW10,CKM11] �

•  Leakage only [AGV09,NS09,KV09, �

 DHLW10,BKKV10,DLWW11...] �

•  Combined attack: �
– Negative results: [LL10] how to leak from the future if

have no randomness, even in very restricted attack
models�

–  Positive results: [KKS11] encryption and signatures if
have fresh randomness on update�

Where do you get fresh
randomness while under

attack??�

Our Goal�

•  An architecture that can tolerate leakage and
tampering attacks at the same time…�
�
– without assuming an on-device source of randomness�

–  under a reasonable restriction on the adversary’s
leakage and tampering power�

Our Main Result �
•  A compiler: given D, produces SecureD

Compiler�

Secret s Secret M

Ds(�)�
SecureDM(�)�

•  Identical I/O behavior�
•  SecureD is leakage and tamper

resilient in the �
split state model with a CRS�

�
To be defined�

The Split State Model
[DPW10,DLWW11,HL11…] �

Secret M1

Secret M2

Secret S

The two parts are attacked separately�

Secret S

Split State Model: Leakage

Adversary � Device for DM1,M2(�)�

Functions g1, g2 �

g1(M1), g2(M2)�

Secret M1

Secret M2

Secret M1

Secret M2

Adversary �
Device for DM1,M2(�)�

Functions f1, f2 �

f2(M2)�

Split State Model: Tampering

f1(M1)�

Towards Tamper-Resilience: �
Non-Malleable Code [DPW10] �

•  Encode s into C = (M1,M2) s.t. tampering is useless! �

•  Non-malleable code [DPW10]: “mauling” the code
does not reveal anything about the encoded secret �

Encode�s� C=Encode(s)�

 C �
- unchanged �

 Encode(s’) �
- unrelated s�

Non-Malleable Code�
•  Formally: for all f in F, all s, s’, �
 Tamper(f,s) ≈ Tamper(f,s’)�

Tamper(f,s) =� “same” if f(c) = c, where c ç Encode(s)�
�
Decode(f(c)) otherwise�

ppt �

CRS�
CRS�

Impossible in general, but �
•  [DPW10] construct them in SS RO model, unbounded functions�

•  We construct them in SS CRS model, poly-sized functions�

CRS�

NM Code Protects from Tampering Attack [DPW10]

C = Encode(s)

Function f � Decode(f(C))�
�

C’=Enc(000)

Decode(f(C’))�
�

Adversary’s view �
in real attack: �

Adversary’s view �
in a simulation:� Function f �

NM Code in the SS Model: �
Our Construction �

M1 = sk � M2 = (pk, C=Encpk(s), π) �Encode(s) = �

•  the encryption scheme is leakage-resilient �
•  unique pk for each sk, unique sk for each pk (*) �
•  π is a non-malleable (robust) NIZK PoK of sk �

and the decryption of C �

Robust NIZK PoK [DDOPS01]: even with access to a ZK simulator, Adv �
can only produce proofs whose witnesses can be extracted �
(similar to UC NIZK) �

Reduction �

Proof of Security of Our NM Code �
Suppose this is not a NM code. Then there exist s1, s2, f=(f1,f2)�
such that Tamper(f,s1) can be distinguished from Tamper(f,s2).�
�
Use that to break encryption: �
�
 �

Adv.�

Enc challenger: �
�
(pk,sk)<-Gen(1k)�
�
i <- {1,2} �
�
Ci <- Encrypt(si)�

pk �

leak(sk)�

Ci�

i’�

s1,s2 �

leak �

s1,s2,f �

CRS�

Tamper(f,si)�

i’�

Reduction computes Tamper(f,si) as follows:�
$M1 = sk, M2 = (pk,Ci,π) �
$recall f = (f1,f2) �
$M2’ = (pk’,C’,π’) = f2(M2); �

 if M2’≠M2 then: �
$ if π’ invalid, output NULL �
$ else extract (s’,sk’) from π’ �
$ if sk’ = f1(M1) output s’, else NULL �
$else if M2’=M2 : if f1(M1)=sk output “same” else NULL �

�

Suppose this is not a NM code. Then there exist s1, s2, f=(f1,f2)�
such that Tamper(f,s1) can be distinguished from Tamper(f,s2).�
�
Use that to distinguish: (pk, C1=Encpk(s1)) from (pk, C2=Encpk(s2)):�
�

Proof of Security of Our NM Code �

(Hopefully)
don’t need�

Use ZK
simulator�

Robust
NIZK Pok�

Use leakage�
query here�

Tamper(f,s) =�
“same” if f(c) = c, where c ç Encode(s)�
�
Decode(f(c)) otherwise�

Reduction �

Proof of Security of Our NM Code �
Suppose this is not a NM code. Then there exist s1, s2, f=(f1,f2)�
such that Tamper(f,s1) can be distinguished from Tamper(f,s2).�
�
Use that to break encryption: �
�
 �

Adv.�

Enc challenger: �
�
(pk,sk)<-Gen(1k)�
�
i <- {1,2} �

pk �

leak(sk)�

Ci�

i’�

s1,s2 �

leak �

s1,s2,f �

CRS�

Tamper(f,si)�

i’�

Reduction �

Proof of Security of Our NM Code �
Suppose this is not a NM code. Then there exist s1, s2, f=(f1,f2)�
such that Tamper(f,s1) can be distinguished from Tamper(f,s2).�
�
Use that to break encryption: �
�
 �

Adv.�

Enc challenger: �
�
(pk,sk)<-Gen(1k)�
�
i <- {1,2} �

pk �

leak(sk)�

Ci�

i’�

s1,s2 �

leak �

s1,s2,f, g �

CRS�

Tamper(f,si), g(M1), g(M2)�

i’�

Bonus!! Our NM code is also �
leakage-resilient in SS model! �

LR NM Codes => L+T Resilience�
•  A compiler: given D, produces SecureD

Compiler�

Secret s Secret M1

Ds(�)�
SecureDM1,M2(�)�

•  Identical I/O behavior�
•  SecureG is leakage and

tamper resilient in the �
split state model with a CRS�

�
Defined�

Secret M2

Our L+T Resilient Compiler: �
Construction 1 (Randomized)�

(M1,M2) = Encode(s) using �
the LR NM code�

Secret s

Ds(�)� SecureDM1,M2 (x): �
$ $s = Decode(M1,M2)�
$ $refresh: (M1,M2) <- Encode(s)�
$ $output Ds(x) �

�

Compiler�

Here use
randomness �

Secret M1

Secret M2

Our L+T Resilient Compiler: �
Construction 2 (Deterministic)�

(M1,M2) = Encode(s,seed) using �
the LR NM code�

Secret s

Ds(�)� SecureDM1,M2(x): �
 (s,seed) = Decode(M1,M2)�
 rand, seed’ = PRG(seed)�
 refresh: (M1,M2)= Encode(s,seed’) using rand as coins�
 output Ds(x) �
�

Compiler� Secret M1

Secret M2

CONCLUSION �
Traded off perfect randomness for SS model: �

$�
$- got L+T resilience for EVERY functionality�
$�
$- after-the-fact leakage and tampering �

 resilience (solved open problems of [HL11]) �
�

$- achieved simulation based security �

Of independent interest: new NM code �
(solved open problems of [DPW10])�

