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Leakage/Side Channel Attack
[Kocher96,HSHCP+08...]

Function ¢’

Secret s

g"(s‘)

Adversary Device FOI" DS(.)



Tampering Attack [BS97,AARRO2...]

Adversary Device FOI" DS(.)



Continuous L+T Attack [LL10,KKSI11]
f(s)

~ /. .\

g(s)

Adversary Device for Ds(‘)

Remark: in this model, computations (updates) happen
between the attacks, unlike the model of [MR0O4]



Previous Work

e Tampering only [GLMMRO04,DPW10,CKMI1]

e Leakage only [AGV09,NSO9,KVOS9,
DHLWI10,BKKV10,DLWWI1...]

e Combined attack:

- Negative results: [LL10] how to leak from the future if
have no randomness, even in very restricted attack
models

- Positive results: [KKS11] encryption and signatures if
have fresh randomness on update



Where do you get fresh
randomness while under
attack??



Our Goal

® An architecture that can tolerate leakage and
tampering attacks at the same time...

- without assuming an on-device source of randomness

- under a reasonable restriction on the adversary’s
leakage and tampering power



Our Main Result

e A compiler: given D, produces SecureD

|—> [Compiler } —l

Identical I/O behavior
SecureD is leakage and tamper |

resilient in the 4
split state model with a CRS ™

A\

\

To be defined SecureDy(*)




The Split State Model
[DPWI10,DLWWI11 HL11...]

Secret M,

o = B

St ?—i'
Vet e o

The two parts are attacked separately



Split State Model: Leakage

Functions g, gz>
< (M), go(M,)

Adversary Device for Dy ma(*)




Split State Model: Tampering

(M)

Secrer Mg
f(M,)

Adversary
Device for Dy, ma(®)



Towards Tamper-Resilience:
Non-Malleable Code [DPWI10]

e Encode s into C = (M ,M,) s.t. tampering is useless!

e Non-malleable code [DPWI10]: “mauling” the code
does not reveal anvthing about the encoded secret
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e Formally: for

Tamper(f,s) = |
A\
CRS

on-Malleable Code

all finF, all s, s,

~ /
Tcu*fpp?r (f,s) = Tamper(f,s’)

—

“same” if f(c) = ¢, where ¢ € Enggde(s)

CRS

Impossible in g

Decode(f(c)) otherwise
A\
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CRS

eneral, but

 [DPWI0] construct them in SS RO model, unbounded functions

* We construct them in SS CRS model, poly-sized functions



NM Code Protects from Tampering Attack [DPW10]

C-= E}Qe(s)

Adversary's view Decode(f(C))

in real attack:

C'=Eng{000)

Adversary's view

in a simulation: Decode(f(C"))




NM Code in the SS Model:
QOur Construction

Encode(s) = |M;=skK M, = (pk, C=E”Cpk(5), )

* the encryption scheme is leakage-resilient
* unique pk for each sk, unique sk for each pk (*)
1 is a non-malleable (robust) NIZK PoK of sk

and the decryption of C

Robust NIZK PoK [DDOPSO01]: even with access to a ZK simulator, Adv
can only produce proofs whose witnesses can be extracted

(similar to UC NIZK)



Proof of Security of Our NM Code

Suppose this is not a NM code. Then there exist s,, s,, f=(f,f,)
such that Tamper(f,s,) can be distinguished from Tamper(f,s,).

Use that to break encryption:

Reduction < pK Enc challenger:

CRS leak > (pk,sk)<-Gen(1k)
sl,sz,F> K I <|€0k(5k)
<
Tamper(F,si) \\ 51,52 >

B C

= =




N [ N

Proof (= "

Suppose this| Tamper(f.s) =—

such that Tar Decode(f(c)) otherwise

N L

~

“same” if f(c) = ¢, where ¢ € Encode(s)

)

Use th¢(Hopefully) . (pk, ci=Enc,,(s))) from (pk, C,=Enc,(s,)):

dont need

Reduc’rlon M)u’res Tamper(f,s

M, =[5KI Mz-(pkcl<‘:

recall f=(f,f,)

Use ZK
simulator

= (pk’,C', 1) = f,(M,);
if M,"tM, then:
if 7" invalid, output NULL

if
else if M,’=

else extract (s',sk’) from .<:

ou’rpu’r S', lea NI

query here

Robust
NIZK Pok

Use leakage |) |




Proof of Security of Our NM Code

Suppose this is not a NM code. Then there exist s,, s,, f=(f,f,)
such that Tamper(f,s,) can be distinguished from Tamper(f,s,).

Use that to break encryption:

Reduction < pK Enc challenger:

CRS / leak > (pk,sk)<-Gen(1¥)
N <leak(sk)
S,,S > (

I <= 41,2
Tamper(F,si) \\ 51452 > .2}

B C

= =




Proof of Security of Our NM Code

Suppose this is not a NM code. Then there exist s,, s,, f=(f,f,)
such that Tamper(f,s,) can be distinguished from Tamper(f,s,).

Bonus!! Our NM code is also
Use that to break € |ggkage-resilient in SS modell

Reduction lenger:

<V leak > (pk,sk)<-Gen(1¥)

leak(sk)

s, > i <- {1,2}
<




LR NM Codes => L+T Resilience

e A compiler: given D, produces SecureD

|—> [Compiler } —l

SecretS f « Identical I/O behavior

. * SecureG is leakage and
tamper resilient in the
split state model with a CRS

A\




Our L+T Resilient Compiler:
Construction 1 (Randomized)

Secret S [Compiler J
& - T

(M;,M,) = Encode(s) using
the LR NM code

SecureDyy, . (X):

output D¢(x)

s = Decode(M ,M,)
refresh: (M;,M,) <- Encode(s)

Here use

randomness




Our L+T Resilient Compiler:
Construction 2 (Deterministic)

Secret S ‘ [Compiler J

& T

. o= o (M;,M,) = Encode(s,seed) using < '
the LR NM code .

SecureDy; w(X):
(s,seed) = Decode(M,M,)
rand, seed’ = PRG(seed)
refresh: (M;,M,)= Encode(s,seed’) using rand as coins
output D¢(x)




CONCLUSION

Traded off perfect randomness for SS model:
- got L+T resilience for EVERY functionality

- after-the-fact leakage and tampering
resilience (solved open problems of [HL11])

- achieved simulation based security

Of independent interest: new NM code
(solved open problems of [DPW10])



