
Homomorphic Evaluation of the AES Circuit

Craig Gentry, Shai Halevi, Nigel P. Smart

IBM Research
and

University Of Bristol.

August 22, 2012

Craig Gentry, Shai Halevi, Nigel P. Smart
Homomorphic Evaluation of the AES Circuit Slide 1



Executive Summary

We present a working implementation of the (leveled) somewhat-HE
scheme of BGV.

The implementation can evaluate (in reality) upto about 60 levels.
I Essentially circuits of degree at least 260.
I Due to extra tricks the effective degree is much larger

We use this to evaluate the AES circuit homomorphically
I Establishing a benchmark against which other implementations

can be measured.

More importantly
I On the way we develop some general optimization techniques

Craig Gentry, Shai Halevi, Nigel P. Smart
Homomorphic Evaluation of the AES Circuit Slide 2



Why Evaluate AES?
First Answer: Why Not? It is as good as any other function

Second Answer: Homomorphically decrypting AES-encrypted
content could be important in some future applications

I Virus checking encrypted emails at a gateway

Third Answer: It presents a good design space to investigate FHE
techniques

I Various implementation techniques known
I Parallel nature of the computation
I Algebraic nature of the computation

Fourth Answer: Used as a bench mark in MPC
I Allows us to see how far off FHE is, compared to Yao and

general MPC.

Craig Gentry, Shai Halevi, Nigel P. Smart
Homomorphic Evaluation of the AES Circuit Slide 3



Why Evaluate AES?
First Answer: Why Not? It is as good as any other function

Second Answer: Homomorphically decrypting AES-encrypted
content could be important in some future applications

I Virus checking encrypted emails at a gateway

Third Answer: It presents a good design space to investigate FHE
techniques

I Various implementation techniques known
I Parallel nature of the computation
I Algebraic nature of the computation

Fourth Answer: Used as a bench mark in MPC
I Allows us to see how far off FHE is, compared to Yao and

general MPC.

Craig Gentry, Shai Halevi, Nigel P. Smart
Homomorphic Evaluation of the AES Circuit Slide 3



Why Evaluate AES?
First Answer: Why Not? It is as good as any other function

Second Answer: Homomorphically decrypting AES-encrypted
content could be important in some future applications

I Virus checking encrypted emails at a gateway

Third Answer: It presents a good design space to investigate FHE
techniques

I Various implementation techniques known
I Parallel nature of the computation
I Algebraic nature of the computation

Fourth Answer: Used as a bench mark in MPC
I Allows us to see how far off FHE is, compared to Yao and

general MPC.

Craig Gentry, Shai Halevi, Nigel P. Smart
Homomorphic Evaluation of the AES Circuit Slide 3



Why Evaluate AES?
First Answer: Why Not? It is as good as any other function

Second Answer: Homomorphically decrypting AES-encrypted
content could be important in some future applications

I Virus checking encrypted emails at a gateway

Third Answer: It presents a good design space to investigate FHE
techniques

I Various implementation techniques known
I Parallel nature of the computation
I Algebraic nature of the computation

Fourth Answer: Used as a bench mark in MPC
I Allows us to see how far off FHE is, compared to Yao and

general MPC.

Craig Gentry, Shai Halevi, Nigel P. Smart
Homomorphic Evaluation of the AES Circuit Slide 3



Why BGV?
First Answer: Why Not?

I Differences between BGV and (say) Brakerski’s scheme or the
NTRU based scheme are minor

I BGV/Brakerski/NTRU seem significantly better than the older
Integer/Ideal-Lattice based schemes.

Second Answer: Conceptually simpler
I NTRU and Brakerski schemes were not around when we

started the work.

It is not clear which of BGV, NTRU and Brakerski is more efficient in
practice.

I Each have different tradeoffs
I Need to duplicate the work in this paper for the other schemes

to determine the exact comparisons.

Craig Gentry, Shai Halevi, Nigel P. Smart
Homomorphic Evaluation of the AES Circuit Slide 4



Why BGV?
First Answer: Why Not?

I Differences between BGV and (say) Brakerski’s scheme or the
NTRU based scheme are minor

I BGV/Brakerski/NTRU seem significantly better than the older
Integer/Ideal-Lattice based schemes.

Second Answer: Conceptually simpler
I NTRU and Brakerski schemes were not around when we

started the work.

It is not clear which of BGV, NTRU and Brakerski is more efficient in
practice.

I Each have different tradeoffs
I Need to duplicate the work in this paper for the other schemes

to determine the exact comparisons.

Craig Gentry, Shai Halevi, Nigel P. Smart
Homomorphic Evaluation of the AES Circuit Slide 4



Why BGV?
First Answer: Why Not?

I Differences between BGV and (say) Brakerski’s scheme or the
NTRU based scheme are minor

I BGV/Brakerski/NTRU seem significantly better than the older
Integer/Ideal-Lattice based schemes.

Second Answer: Conceptually simpler
I NTRU and Brakerski schemes were not around when we

started the work.

It is not clear which of BGV, NTRU and Brakerski is more efficient in
practice.

I Each have different tradeoffs
I Need to duplicate the work in this paper for the other schemes

to determine the exact comparisons.

Craig Gentry, Shai Halevi, Nigel P. Smart
Homomorphic Evaluation of the AES Circuit Slide 4



BGV Basics

Ring: R = Z[X ]/Φm(X ), where m is a parameter to fix later.

Reduction: Rq = (R mod q) for integer q (not necessarily prime).

Secret key is element s ∈ R which is “small”
I The associated public key is an Ring-LWE tuple based on s
I This will not bother us here

We define a sequence of moduli (a.k.a. levels) q0 < q1 < . . . < qL−1

Craig Gentry, Shai Halevi, Nigel P. Smart
Homomorphic Evaluation of the AES Circuit Slide 5



BGV Basics

A ciphertext is a tuple c = (c0, c1, t)
I c0, c1 ∈ Rqt

Decryption via

(c0 − s · c1 (mod qt )) (mod 2)

to obtain message m ∈ R2.

Addition, multiplication, modulus switching etc as per normal BGV
I See later for optimizations though

Craig Gentry, Shai Halevi, Nigel P. Smart
Homomorphic Evaluation of the AES Circuit Slide 6



SIMD Operations

The parameter m is chosen so that Φm(X ) splits into ` factors of
degree d modulo 2

I For “sufficiently large” `.

Following Smart-Vercauteren R2 acts as ` copies of the finite field
F2d .

I Implies SIMD addition and multiplication operations on
ciphertexts

Following [LPR10, BGV12, GHS12a] we can also homomorphically
apply Galois automorphisms to the ciphertexts

I Squaring is “for free” (Frobenius action)
I Can move data from one plaintext slot to another “for free”

Craig Gentry, Shai Halevi, Nigel P. Smart
Homomorphic Evaluation of the AES Circuit Slide 7



SIMD Operations

The parameter m is chosen so that Φm(X ) splits into ` factors of
degree d modulo 2

I For “sufficiently large” `.

Following Smart-Vercauteren R2 acts as ` copies of the finite field
F2d .

I Implies SIMD addition and multiplication operations on
ciphertexts

Following [LPR10, BGV12, GHS12a] we can also homomorphically
apply Galois automorphisms to the ciphertexts

I Squaring is “for free” (Frobenius action)
I Can move data from one plaintext slot to another “for free”

Craig Gentry, Shai Halevi, Nigel P. Smart
Homomorphic Evaluation of the AES Circuit Slide 7



SIMD Operations

The parameter m is chosen so that Φm(X ) splits into ` factors of
degree d modulo 2

I For “sufficiently large” `.

Following Smart-Vercauteren R2 acts as ` copies of the finite field
F2d .

I Implies SIMD addition and multiplication operations on
ciphertexts

Following [LPR10, BGV12, GHS12a] we can also homomorphically
apply Galois automorphisms to the ciphertexts

I Squaring is “for free” (Frobenius action)
I Can move data from one plaintext slot to another “for free”

Craig Gentry, Shai Halevi, Nigel P. Smart
Homomorphic Evaluation of the AES Circuit Slide 7



Data Representation
Elements in Rqt can be held in many ways.

I e.g. as coefficients of a polynomial of degree φ(m)− 1 mod qt

We pick qt =
∏t

i=0 pi for small primes pi .
I Means mapping from mod qt to mod qt−1 is trivial
I Hold anything modulo qt via a CRT representation

We also pick pi so that m divides pi − 1.
I Means Fpi has an mth root of unity ζpi in it.

Then hold a polynomial modulo pi as the evaluation vector of the
polynomial evaluated at ζ j

pi
.

I Basically polynomial-CRT representation.

Combining both together an element in Rqt is held in a double-CRT
representation.

Craig Gentry, Shai Halevi, Nigel P. Smart
Homomorphic Evaluation of the AES Circuit Slide 8



Data Representation
Advantages:
In double-CRT multiplication (and addition) takes linear time

I Multiplication in polynomial representation is quadratic time.

Disadvantages:
Moving from double-CRT representation to polynomial
representation (resp. vice-versa) is more expensive and is
performed via

I FFT algorithm modulo p (resp. inverse-FFT)
I CRT (resp. polynomial reduction).

But polynomial representation seems necessary in some
sub-procedures of BGV

I Encryption, Decryption, Modulus Switching, Key Switching

We adapt sub-procedures to reduce the number of conversions.
Craig Gentry, Shai Halevi, Nigel P. Smart

Homomorphic Evaluation of the AES Circuit Slide 9



Modulus Switching

A modulus switch operation is to take a ciphertext modulo Q and
replace it with a ciphertext modulo Q′.

I Assume Q > Q′

At the same time we scale the noise by a down by factor of Q/Q′

This allows noise control and enables us to evaluate large degree
circuits.

We (basically) use the BGV modulus switch operation
I Modified to cope with our double-CRT representation
I Need to avoid as many FFT and inverse-FFT operations as

possible

Craig Gentry, Shai Halevi, Nigel P. Smart
Homomorphic Evaluation of the AES Circuit Slide 10



New KeySwitching
In various operations we have a ciphertext (d0,d1,d2, t), which
decrypts via,

d0 − s · d1 − s′ · d2 (mod qt ).

We would like to return it to decrypting via

c0 − s · c1 (mod qt )

Usual method is to hold lots of data in the public key and apply an
expensive binary decomposition step

I In practice memory is a problem
I Want to hold one set of data for all modulo qt

New trick:
I mod-switch upwards (increase the noise)
I Then do the keyswitch
I Then do a modulus switch to reduce the noise

Craig Gentry, Shai Halevi, Nigel P. Smart
Homomorphic Evaluation of the AES Circuit Slide 11



New KeySwitching: Public Key Data

Pick a large modulus P and in the public key put a quasi-encryption
of P · s′ modulo P · qL1

(bs,s′ ,as,s′) ∈ R2
P·qL−1

where
I as,s′ ∈ RP·qL−1

I Pick es,s′ from a small distribution
I bs,s′ = as,s′ · s + 2 · es,s′ + P · s′

Note this is also can be interpreted as an encryption of P · s′ modulo
P · qt for any 0 ≤ t < L.

I So we use the same data for every level

Craig Gentry, Shai Halevi, Nigel P. Smart
Homomorphic Evaluation of the AES Circuit Slide 12



New KeySwitching: Operation

Input : (d0,d1,d2)

To KeySwitch we set, modulo P · qt ,
I c′0 = P · d0 + bs,s′ · d2

I c′1 = P · d1 + as,s′ · d2.

The pair c′ = (c′0, c
′
1) is an encryption under s′ of the message m

with respect to the modulus P · qt .
I The noise is about P times what the original ciphertext noise

was

Now reduce modulus back to qt , and rescale the noise, by applying
a modulus switch to qt .

Craig Gentry, Shai Halevi, Nigel P. Smart
Homomorphic Evaluation of the AES Circuit Slide 13



KeySwitching Application
We use KeySwitching in two places:

Mult: An encryption of m ·m′ is given by the ciphertext
I d0 = c0 · c′0
I d1 = c0 · c′1 + c1 · c′0
I d2 = −c1 · c′1.

with respect to the keys s and s′ = s2.

Conjugation: For σ ∈ Gal an encryption of σ(m) is given by the
ciphertext

I d0 = σ(c0)

I d1 = 0
I d2 = σ(c1)

with respect to the keys s and s′ = σ(s).

Craig Gentry, Shai Halevi, Nigel P. Smart
Homomorphic Evaluation of the AES Circuit Slide 14



Level Switching

Each ciphertext also carries around a measure of how much noise it
has

This is updated on each operation

We switch a level when this becomes too large
I See paper for details

Mainly this happens just before the input to a multiplication gate.

We also do a Modswitch from level L− 1 down to level L− 2 on
encryption

I Useful to make sure invariants wrt noise estimates are
consistent

Craig Gentry, Shai Halevi, Nigel P. Smart
Homomorphic Evaluation of the AES Circuit Slide 15



Parameter Selection
We select the parameters for the various distributions and use the
Lindner-Peikert analysis of ring-LWE to fix key sizes.

We aim for 80-bit security levels and come up with the following
(rough) estimates for sizes:

L φ(m) log2(p0) log2(pi) log2(pL−1) log2(P)

10 9326 37.1 17.9 7.5 177.3
20 19434 38.1 18.4 8.1 368.8
30 29749 38.7 18.7 8.4 564.2
40 40199 39.2 18.9 8.6 762.2
50 50748 39.5 19.1 8.7 962.1
60 61376 39.8 19.2 8.9 1163.5
70 72071 40.0 19.3 9.0 1366.1
80 82823 40.2 19.4 9.1 1569.8
90 93623 40.4 19.5 9.2 1774.5

Craig Gentry, Shai Halevi, Nigel P. Smart
Homomorphic Evaluation of the AES Circuit Slide 16



Picking Finite Fields

The exact choise of the lattice dimension φ(m) is going to depend
on what finite fields F2n one wants to represent in ones application

Recall we want to implement AES.

There are two natural choices for the underlying finite field F2n

I F28

I F2

To realise one of these settings we require n to divide d and m to
divide 2d − 1.

I A small number of prime factors of m are preferred.
I Want to maximise the number of SIMD slots ` = φ(m)/d .

Craig Gentry, Shai Halevi, Nigel P. Smart
Homomorphic Evaluation of the AES Circuit Slide 17



Example Parameters : n = 8

L m N = φ(m) (d , `)
10 11441 10752 (48,224)
20 34323 21504 (48,448)
30 31609 31104 (72,432)
40 54485 40960 (64,640)
50 59527 51840 (72,720)
60 68561 62208 (72,864)
70 82603 75264 (56,1344)
80 92837 84672 (56,1512)
90 124645 98304 (48,2048)

Craig Gentry, Shai Halevi, Nigel P. Smart
Homomorphic Evaluation of the AES Circuit Slide 18



Example Parameters : n = 1

L m N = φ(m) (d , `)
10 11023 10800 (45,240)
20 34323 21504 (48,448)
30 32377 32376 (57,568)
40 42799 42336 (21,2016)
50 54161 52800 (60,880)
60 85865 63360 (60,1056)
70 82603 75264 (56,1344)
80 101437 85672 (42,2016)
90 95281 94500 (45,2100)

Craig Gentry, Shai Halevi, Nigel P. Smart
Homomorphic Evaluation of the AES Circuit Slide 19



AES Implementation
We developed three implementations:

I Packed Representation: One AES state packed into a single
ciphertext (byte wise)

I Byte-Sliced: 16 ciphertexts needed to represent one AES state
I Bit-Sliced: 128 ciphertexts needed to represent one AES state

In all variants we could process multiple AES states in one operation
due to the SIMD operations.

For the Bit-Sliced implementation used the low depth circuit of
Boyar-Peralta

For the two Byte oriented implementations used the algebraic
structure of the S-Box.

I The only non-linear component

Craig Gentry, Shai Halevi, Nigel P. Smart
Homomorphic Evaluation of the AES Circuit Slide 20



Byte Oriented S-Box

Recall Frobenius is essentially for free (in terms of noise/levels).

Following Rivain and Prouff (CHES 2010) one S-Box application can
be implemented via:

Level
Input: ciphertext c t

// Compute c254 = c−1

1. c2 ← c� 2 t // Frobenius X 7→ X2

2. c3 ← c× c2 t + 1 // Multiplication
3. c12 ← c3 � 4 t + 1 // Frobenius X 7→ X4

4. c14 ← c12 × c2 t + 2 // Multiplication
5. c15 ← c12 × c3 t + 2 // Multiplication
6. c240 ← c15 � 16 t + 2 // Frobenius X 7→ X16

7. c254 ← c240 × c14 t + 3 // Multiplication

// Affine transformation over F2

8. c′
2j ← c254 � 2j for j = 0, 1, 2, . . . , 7 t + 3 // Frobenius X 7→ X2j

9. c′′ ← γ +
∑7

j=0 γj × c′
2j t + 3.5 // Linear combination over F28

Note: Level is an estimate as levels are consumed dynamically

Craig Gentry, Shai Halevi, Nigel P. Smart
Homomorphic Evaluation of the AES Circuit Slide 21



Results
Run on BlueCrystal, IBM machine owned by Uni Bristol

I Run on one core with 256GB RAM

Packed Byte-Sliced Bit-Sliced
Number Levels Needed 60 50 60

Key Generation 43mn 22mn 20mn
FHE Encrpt AES State 2mn 25mn 1h

FHE Encrypt AES Key Schedule 23mn 4h 150h

Evaluate AES Round 1 7h 12h

Evaluate AES Round 9 2h 5h

Evaluate AES Round 10 28mn 4h

Evaluate AES Encrypt 34h 65h
Number SIMD Blocks 54 720 1056

Time Per Block 37mn 5mn

Craig Gentry, Shai Halevi, Nigel P. Smart
Homomorphic Evaluation of the AES Circuit Slide 22



Any Questions ?

Craig Gentry, Shai Halevi, Nigel P. Smart
Homomorphic Evaluation of the AES Circuit Slide 23


