Higher-order Differential Properties for Keccak and Luffa

Christina Boura^{1,2} Anne Canteaut¹ Christophe De Cannière³

¹SECRET Project-Team, INRIA, France ²Gemalto, France ³Katholieke Universiteit Leuven,Belgium

February 15, 2011

Outline

- Introduction
- New bound on the degree of iterated permutations
- Application to two SHA-3 candidates
 - Keccak
 - Luffa
- Conclusions

Outline

- Introduction
- 2 New bound on the degree of iterated permutations
- 3 Application to two SHA-3 candidates
 - Keccak
 - Luffa
- 4 Conclusions

Objective of this paper

- Study the algebraic degree of some hash function proposals and of their inner primitives.
- Use these results to construct higher-order differential distinguishers and zero-sum structures.

Previous work (related with the SHA-3 competition)

- Zero-sum Distinguishers for Keccak, Luffa and Hamsi.
 [Aumasson-Meier 09, Aumasson et al. 09, Boura-Canteaut 10]
- Higher-order differential attack on Luffa v1. [Watanabe et al. 10]

Bound on the degree of iterated permutations

Question

How to estimate the algebraic degree of an iterated permutation after r rounds?

Bound on the degree of iterated permutations

Question

How to estimate the algebraic degree of an iterated permutation after r rounds?

Trivial Bound

$$\deg(G\circ F)\leq \deg G\deg F$$

Bound on the degree of iterated permutations

Question

How to estimate the algebraic degree of an iterated permutation after r rounds?

Trivial Bound

$$\deg(G\circ F)\leq \deg G\deg F$$

[Canteaut-Videau 02]: Improvement when the Walsh spectrum of F is divisible by a high power of 2.

Outline

- Introduction
- 2 New bound on the degree of iterated permutations
- Application to two SHA-3 candidates
 - Keccak
 - Luffa
- Conclusions

Towards a new bound on the degree $(\deg F = 3)$

Towards a new bound on the degree $(\deg F = 3)$

If S is **balanced**, what is the degree of the product of k coordinates of S?

If S is **balanced**, what is the degree of the product of k coordinates of S?

Definition

If S is **balanced**, what is the degree of the product of k coordinates of S?

Definition

$$\begin{array}{c|c} k & \delta_k \\ \hline 1 & 3 \end{array}$$

If S is **balanced**, what is the degree of the product of k coordinates of S?

Definition

\boldsymbol{k}	δ_k
1	3
2	3
3	3

If S is **balanced**, what is the degree of the product of k coordinates of S?

Definition

$oldsymbol{k}$	δ_k
1	3
2	3
3	3
4	4

$$F$$
 permutation of \mathbb{F}_2^n : $\boldsymbol{\delta_k} = n$ iff $k = n$.

The new bound

Theorem. Let F be a function from \mathbb{F}_2^n into \mathbb{F}_2^n corresponding to the concatenation of m smaller Sboxes, S_1, \ldots, S_m , defined over $\mathbb{F}_2^{n_0}$. Then, for any function G from \mathbb{F}_2^n into \mathbb{F}_2^ℓ , we have

$$\deg(G\circ F)\leq n-\frac{n-\deg(G)}{\gamma}\;,$$

where

$$\gamma = \max_{1 \le i \le n_0 - 1} \frac{n_0 - i}{n_0 - \delta_i} \ .$$

Most notably, if all Sboxes are balanced, we have

$$\deg(G\circ F)\leq n-\frac{n-\deg(G)}{n_0-1}\ .$$

Problem

Multiply d output bits from S_1, S_2, S_3, S_4 in such a way that the degree of their product π , $\deg(\pi)$ is maximized.

Problem

Multiply d output bits from S_1, S_2, S_3, S_4 in such a way that the degree of their product π , $\deg(\pi)$ is maximized.

Definition

 $x_i = \#$ Sboxes for which exactly i coordinates are involved in π .

Problem

Multiply d output bits from S_1, S_2, S_3, S_4 in such a way that the degree of their product π , $\deg(\pi)$ is maximized.

Definition

 $x_i = \#$ Sboxes for which exactly i coordinates are involved in π .

$$\deg(\pi) \le \max_{(x_1, x_2, x_3, x_4)} (\delta_1 x_1 + \delta_2 x_2 + \delta_3 x_3 + \delta_4 x_4)$$

with
$$x_1 + 2x_2 + 3x_3 + 4x_4 = d$$
.

d	x_4	x_3	x_2	x_1	$\deg(\pi)$
16	4	-	-	-	16
15					
14					
13					
12					
11					
10					
9					
:		:			:

d	x_4	x_3	x_2	x_1	$\deg(\pi)$
16	4	-	-	-	16
15	3	1	_	-	15
14					
13					
12					
11					
10					
9					
:	:		:	:	

d	x_4	x_3	x_2	x_1	$\deg(\pi)$
16	4	-	-	-	16
15	3	1	_	-	15
14	3	-	1	-	15
13					
12					
11					
10					
9					
:					:

d	x_4	x_3	x_2	x_1	$\deg(\pi)$
16	4	-	-	-	16
15	3	1	-	-	15
14	3	-	1	-	15
13	3	_	-	1	15
12	2	1	-	1	14
11	2	_	1	1	14
10	2	-	-	2	14
9	1	1	-	2	13
	•	:	:		

d	x_4	x_3	x_2	x_1	$\deg(\pi)$
16	4	-	-	-	16
15	3	1	-	-	15
14	3	-	1	-	15
13	3	_	-	1	15
12	2	1	-	1	14
11	2	_	1	1	14
10	2	-	-	2	14
9	1	1	-	2	13
			•		! !

$$16 - \deg(\pi) \geq \frac{16 - d}{3}$$

d	x_4	x_3	x_2	x_1	$\deg(\pi)$
16	4	-	-	-	16
15	3	1	-	-	15
14	3	-	1	-	15
13	3	-	-	1	15
12	2	1	-	1	14
11	2	_	1	1	14
10	2	_	-	2	14
9	1	1	-	2	13
:	•	:	:		

$$\deg(\pi) \leq 16 - \frac{16-d}{3}$$

Outline

- Introduction
- 2 New bound on the degree of iterated permutations
- Application to two SHA-3 candidates
 - Keccak
 - Luffa
- Conclusions

Keccak [Bertoni-Daemen-Peeters-Van Assche 08]

3rd round SHA-3 candidate Sponge construction

Keccak-f Permutation

- 1600-bit state, seen as a 3-dimensional $5 \times 5 \times 64$ matrix
- 24 rounds R.
- Nonlinear layer: 320 parallel applications of a 5×5 S-box χ
- $\deg \chi = 2$, $\deg \chi^{-1} = 3$

Zero-Sums and Zero-sum Partitions

- For block ciphers (known-key attack) [Knudsen Rijmen 07]
- For hash functions [Aumasson Meier 09, Boura Canteaut 10]

Definition [Zero-Sum]

Let $F:\mathbb{F}_2^n o \mathbb{F}_2^n$

A zero-sum for F of size K is a subset $\{x_1,\ldots,x_K\}\subset \mathbb{F}_2^n$ such that

$$\sum_{i=1}^{K} x_i = \sum_{i=1}^{K} F(x_i) = 0.$$

Zero-Sums and Zero-sum Partitions

- For block ciphers (known-key attack) [Knudsen Rijmen 07]
- For hash functions [Aumasson Meier 09, Boura Canteaut 10]

Definition [Zero-Sum]

Let $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$.

A zero-sum for F of size K is a subset $\{x_1,\ldots,x_K\}\subset \mathbb{F}_2^n$ such that

$$\sum_{i=1}^{K} x_i = \sum_{i=1}^{K} F(x_i) = 0.$$

Definition [Zero-sum Partition]

Let P be a permutation from \mathbb{F}_2^n into \mathbb{F}_2^n . A zero-sum partition for P of size $K=2^k$ is a collection of 2^{n-k} disjoint zero-sums.

The new bound applied on Keccak-f

Let ${m R}$ be the round function of Keccak-f and ${m R}^{-1}$ its inverse. For any ${m F}$,

$$\deg(F \circ R) \le 1600 - \frac{1600 - \deg(F)}{3}$$
$$\deg(F \circ R^{-1}) \le 1600 - \frac{1600 - \deg(F)}{3}$$

Observation [Duan-Lai 11] For $\chi^{-1}: \pmb{\delta_2} = \pmb{3}$ Then,

$$\deg(F \circ R^{-1}) \leq 1600 - \frac{1600 - \deg(F)}{2}$$

r	$\deg(R^r)$	$\deg(R^{-r})$
1	2	3
2	4	9
3	8	27
4	16	81
5	32	243
6	64	729
7	128	1164
8	256	1382
9	512	1491
10	1024	1545
11	1408	1572
12	1536	1586
13	1578	1593
14	1592	1596
15	1597	1598
16	1599	1599

Zero-Sum Partitions for the full Keccak-f (24 rounds)

Starting with any collection of 315 rows after the linear layer in the 12-th round, we get

zero-sum partitions of size 21575

for the full Keccak-f permutation.

Luffa [De Cannière, Sato and Watanabe 08]

- "Sponge-like" construction;
- Linear message injection function MI;
- Permutation P, splitted into w parallel 256-bit permutations Q_0, \ldots, Q_{w-1} :
- Q_j: 8-round permutation.
 Every round called Step;

The Step function:

- SubCrumb: 64 parallel 4×4 Sboxes of degree 3;
- MixWord: Linear layer mixing the 32-bit words two by two.

Figure: The Step function

The Step function:

- SubCrumb: 64 parallel 4×4 Sboxes of degree 3;
- MixWord: Linear layer mixing the 32-bit words two by two.

Figure: The Step function

Different Shox for Luffa v1 and Luffa v2!

Bound on the degree of Q_j for Luffa v1

For $r \leq 5$, bound by Watanabe et al.

$\deg x^r$
3
8
20
51
130

Bound on the degree of Q_j for Luffa v1

For $r \leq 5$, bound by Watanabe et al.

	_
r	$\deg x^r$
1	3
2	8
3	20
4	51
5	130
6	214
7	242
8	251

For $r \geq 6$, we apply,

$$\deg(\mathtt{Step}^{r+1}) \leq \frac{512 + \deg(\mathtt{Step}^r)}{3}$$

Higher-order differentials for the Luffa v1 hash function

- Degree of Luffa v1 hash function, applied to 256-bit messages is at most 251.
- ullet Distinguisher for **full** Luffa v1 with 2^{240} 1-block messages.

Improvement of the previous attack applied to Luffa v1 reduced to 7 steps out of 8. [Watanabe et al. 10]

An observation on the Sbox of Luffa v2

$$y_0 = 1 + x_0 + x_1 + x_1x_2 + x_0x_3 + x_1x_3 + x_0x_1x_3 + x_0x_2x_3$$

$$y_1 = x_0 + x_3 + x_0x_1 + x_1x_2 + x_0x_3 + x_1x_3 + x_0x_1x_3 + x_0x_2x_3$$

$$y_2 = 1 + x_1 + x_3 + x_0x_2 + x_1x_2 + x_1x_3 + x_2x_3 + x_0x_1x_2 + x_0x_1x_3$$

$$y_3 = 1 + x_1 + x_2 + x_0x_3 + x_0x_2 + x_1x_2 + x_1x_3 + x_2x_3 + x_0x_1x_2 + x_0x_1x_3$$

$$+ x_0x_1x_3$$

An observation on the Sbox of Luffa v2

$$y_0 = 1 + x_0 + x_1 + x_1x_2 + x_0x_3 + x_1x_3 + x_0x_1x_3 + x_0x_2x_3$$

$$y_1 = x_0 + x_3 + x_0x_1 + x_1x_2 + x_0x_3 + x_1x_3 + x_0x_1x_3 + x_0x_2x_3$$

$$y_2 = 1 + x_1 + x_3 + x_0x_2 + x_1x_2 + x_1x_3 + x_2x_3 + x_0x_1x_2 + x_0x_1x_3$$

$$y_3 = 1 + x_1 + x_2 + x_0x_3 + x_0x_2 + x_1x_2 + x_1x_3 + x_2x_3 + x_0x_1x_2 + x_0x_1x_3$$

$$+ x_0x_1x_3$$

$$d = y_0 + y_1 + y_2 + y_3 = 1 + x_1 + x_2 + x_0 x_1 + x_0 x_3$$

An observation on the Sbox of Luffa v2

$$y_0 = 1 + x_0 + x_1 + x_1x_2 + x_0x_3 + x_1x_3 + x_0x_1x_3 + x_0x_2x_3$$

$$y_1 = x_0 + x_3 + x_0x_1 + x_1x_2 + x_0x_3 + x_1x_3 + x_0x_1x_3 + x_0x_2x_3$$

$$y_2 = 1 + x_1 + x_3 + x_0x_2 + x_1x_2 + x_1x_3 + x_2x_3 + x_0x_1x_2 + x_0x_1x_3$$

$$y_3 = 1 + x_1 + x_2 + x_0x_3 + x_0x_2 + x_1x_2 + x_1x_3 + x_2x_3 + x_0x_1x_2 + x_0x_1x_3$$

$$+ x_0x_1x_3$$

The sum of the four coordinates is of degree 2!

 $d = y_0 + y_1 + y_2 + y_3 = 1 + x_1 + x_2 + x_0 x_1 + x_0 x_3$

Sum of 2 distinct monomials of degree 3 in 4 variables, x_i, x_j, x_k, x_ℓ , where $d = x_i + x_j + x_k + x_\ell$:

$$x_i x_j x_k + x_i x_j x_\ell = x_i x_j x_k + x_i x_j (x_i + x_j + x_k + d)$$

Sum of 2 distinct monomials of degree 3 in 4 variables, x_i, x_j, x_k, x_ℓ , where $d = x_i + x_j + x_k + x_\ell$:

$$x_{i}x_{j}x_{k} + x_{i}x_{j}x_{\ell} = x_{i}x_{j}x_{k} + x_{i}x_{j}(x_{i} + x_{j} + x_{k} + d)$$
$$= x_{i}x_{j}x_{k} + x_{i}x_{j} + x_{i}x_{j} + x_{i}x_{j}x_{k} + x_{i}x_{j}d$$

Sum of 2 distinct monomials of degree 3 in 4 variables, x_i, x_j, x_k, x_ℓ , where $d = x_i + x_j + x_k + x_l$:

$$x_{i}x_{j}x_{k} + x_{i}x_{j}x_{\ell} = x_{i}x_{j}x_{k} + x_{i}x_{j}(x_{i} + x_{j} + x_{k} + d)$$
$$= x_{i}x_{j}x_{k} + x_{i}x_{j} + x_{i}x_{j} + x_{i}x_{j}x_{k} + x_{i}x_{j}d$$

Sum of 2 distinct monomials of degree 3 in 4 variables, x_i, x_j, x_k, x_ℓ , where $d=x_i+x_j+x_k+x_l$:

$$x_i x_j x_k + x_i x_j x_\ell = x_i x_j x_k + x_i x_j (x_i + x_j + x_k + d)$$
$$= x_i x_j d$$

Sum of 2 distinct monomials of degree 3 in 4 variables, x_i, x_j, x_k, x_ℓ , where $d=x_i+x_j+x_k+x_l$:

$$x_i x_j x_k + x_i x_j x_\ell = x_i x_j x_k + x_i x_j (x_i + x_j + x_k + d)$$
$$= x_i x_j d$$

- $x_0^r, x_1^r, x_2^r, x_3^r$ output words of r rounds of Step.
- $d^r = x_0^r + x_1^r + x_2^r + x_3^r.$

Sum of 2 distinct monomials of degree 3 in 4 variables, x_i, x_j, x_k, x_ℓ , where $d=x_i+x_j+x_k+x_l$:

$$x_i x_j x_k + x_i x_j x_\ell = x_i x_j x_k + x_i x_j (x_i + x_j + x_k + d)$$
$$= x_i x_j d$$

- $x_0^r, x_1^r, x_2^r, x_3^r$ output words of r rounds of Step.
- $d^r = x_0^r + x_1^r + x_2^r + x_3^r$.

Then,

$$\deg x_i^{r+1} \le 2 \max_j \deg x_j^r + \deg d^r$$

Sum of 2 distinct monomials of degree 3 in 4 variables, x_i, x_j, x_k, x_ℓ , where $d = x_i + x_j + x_k + x_\ell$:

$$x_i x_j x_k + x_i x_j x_\ell = x_i x_j x_k + x_i x_j (x_i + x_j + x_k + d)$$
$$= x_i x_j d$$

- $x_0^r, x_1^r, x_2^r, x_3^r$ output words of r rounds of Step.
- $d^r = x_0^r + x_1^r + x_2^r + x_3^r$.

Then,

$$\deg x_i^{r+1} \le 2 \max_j \deg x_j^r + \deg d^r$$

$$\deg d^{r+1} \le 2 \max_{j} \deg x_{j}^{r}$$

Upper bounds on the algebraic degree of Q_j in Luffa v2

r	$\deg x^r$	$\deg d^r$
1	3	2
2	8	6
3	22	16
4	60	44
5	164	120

Upper bounds on the algebraic degree of Q_j in Luffa v2

r	$\deg x^r$	$\deg d^r$
1	3	2
2	8	6
3	22	16
4	60	44
5	164	120
6	225	210
7	245	240
8	252	250

For $r \geq 6$, we apply,

$$\deg(\mathtt{Step}^{r+1}) \leq \frac{512 + \deg(\mathtt{Step}^r)}{3}$$

Higher-order differential distinguishers for Luffa v2

Results

- Degree of the compression function at most 252.
- All-zero higher-order differentials for the full compression function.

Not extendable to the hash function, because of the addition of a blank round for all the messages.

Outline

- Introduction
- 2 New bound on the degree of iterated permutations
- Application to two SHA-3 candidates
 - Keccak
 - Luffa
- Conclusions

Application to Grøstl-256

Permutation P

- 512-bit state, seen as an 8×8 matrix.
- 10 rounds of AES-like transformations.
- AES Sbox of degree 7.

Application to Grøstl-256

Permutation P

- 512-bit state, seen as an 8×8 matrix.
- 10 rounds of AES-like transformations.
- AES Sbox of degree 7.

Round	$\deg(R^r)$
1	7
2	49
3	343
4	487
5	508
6	511

Application to Grøstl-256

Permutation P

- 512-bit state, seen as an 8×8 matrix.
- 10 rounds of AES-like transformations.
- AES Sbox of degree 7.

Round	$\deg(R^r)$
1	7
2	49
3	343
4	487
5	508
6	511

Zero-sum partitions of size 2⁵⁰⁹.

Conclusions

- New bound on the degree of iterated permutations.
- Zero-sum distinguishers for the full Keccak-f permutation.
 (Contradiction of the so-called hermetic sponge strategy)
- All-zero higher-order differentials for the Luffa hash family.
- Application to AES-based candidates.

Conclusions

- New bound on the degree of iterated permutations.
- Zero-sum distinguishers for the full Keccak-f permutation.
 (Contradiction of the so-called hermetic sponge strategy)
- All-zero higher-order differentials for the Luffa hash family.
- Application to AES-based candidates.

Thank you for your attention!