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Introduction

Objective of this paper

@ Study the algebraic degree of some hash function proposals and of
their inner primitives.

@ Use these results to construct higher-order differential distinguishers
and zero-sum structures.

Previous work (related with the SHA-3 competition)

@ Zero-sum Distinguishers for Keccak, Luffa and Hamsi.
[Aumasson-Meier 09, Aumasson et al. 09, Boura-Canteaut 10]

@ Higher-order differential attack on Luffa v1. [Watanabe et al. 10]
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Introduction

Bound on the degree of iterated permutations

Question

How to estimate the algebraic degree of an iterated permutation
after r rounds?
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Introduction

Bound on the degree of iterated permutations

Question

How to estimate the algebraic degree of an iterated permutation
after r rounds?

Trivial Bound

deg(G o F') < deg Gdeg F

[Canteaut-Videau 02]: Improvement when the Walsh spectrum of
F is divisible by a high power of 2.
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Towards a new bound on the degree (deg /' = 3)
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New bound on the degree of iterated permutations

Question

If S is balanced, what is the degree
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New bound on the degree of iterated permutations

Question

If S is balanced, what is the degree

To Ty Ty T3 of the product of k coordinates of S?
Definition

Ok : maximum degree of the product

of k coordinates of S

S-Box 5

m

Yo Y1 Y2 Y3

F permutation of F3:
0 = n iff k = n.
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New bound on the degree of iterated permutations

The new bound

Theorem. Let F' be a function from F4 into F5 corresponding to the
concatenation of m smaller Sboxes, Si,...,S,,, defined over F5°. Then,
for any function G from F% into 5, we have

— deg(G
deg(G o F) Sn_n—eg()7
vy
where )
Ng — 1

= max ————— .
1<i<no—1mng — §;

Most notably, if all Sboxes are balanced, we have

n — deg(G) ‘

deg(Go F) <n —
’n,()—l
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New bound on the degree of iterated permutations

L L L T
Sh S Ss Sy

Problem

Multiply d output bits from Sy, S2, S3,.S4 in such a way that the
degree of their product 7, deg(7r) is maximized.
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New bound on the degree of iterated permutations

L L L T
Sh S Ss Sy

Problem

Multiply d output bits from Sy, S2, S3,.S4 in such a way that the
degree of their product 7, deg(7r) is maximized.

Definition

x; = # Sboxes for which exactly ¢ coordinates are involved in 7.

deg(‘rr) S max (51%1 —I— 62$2 -|— 63%3 —I— 54$4)

(wl sL2,T3 9:134)

with &1 + 225 + 3x3 + 424 = d.
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New bound on the degree of iterated permutations
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New bound on the degree of iterated permutations

S

S

Sa

S3
Il

16 — deg(m) >

d | x4 | x3 | 2 | 1 | deg(m)
16 | 4 - - - 16
15| 3 1 - - 15
14 | 3 - 1 - 15
13| 3 - - 1 15
12 | 2 1 - 1 14
11 2 - 1 1 14
10| 2 - - 2 14
9 1 1 - 2 13
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New bound on the degree of iterated permutations

S

S

S3
Il

d | x4 | x3 | 2 | 1 | deg(m)
16 | 4 - - - 16
15| 3 1 - - 15
1] 3| - 1|-] 15
Sy 133 -] -1]1 15
12 | 2 1 - 1 14
‘ ‘ 112 -]1]1 14
10| 2 - - 2 14
9 1 1 - 2 13
16 — d
deg(m) < 16 — :

11/28



Application to two SHA-3 candidates

Outline

© Application to two SHA-3 candidates



Application to two SHA-3 candidates Keccak

Keccak [Bertoni-Daemen-Peeters-Van Assche 08]

3rd round SHA-3 candidate P //
Sponge construction /// [y

Keccak-f Permutation

@ 1600-bit state, seen as a 3-dimensional ”i/ state
5 x 5 x 64 matrix T

@ 24 rounds R

@ Nonlinear layer: 320 parallel applications SRl
of a5 x5 S-box y I

@ degxy =2 degxy ' =3 e

13 /28



Application to two SHA-3 candidates Keccak

Zero-Sums and Zero-sum Partitions

@ For block ciphers (known-key attack) [Knudsen - Rijmen 07]

@ For hash functions [Aumasson - Meier 09, Boura - Canteaut 10]

Definition[Zero-Sum]
Let F : FY — F.

A zero-sum for F' of size K is a subset {z1,...,xx} C F} such that
K K
S =3 F) =0
1=1 =1
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Application to two SHA-3 candidates Keccak

Zero-Sums and Zero-sum Partitions

@ For block ciphers (known-key attack) [Knudsen - Rijmen 07]
@ For hash functions [Aumasson - Meier 09, Boura - Canteaut 10]

Definition[Zero-Sum]
Let F : FY — F.

A zero-sum for F' of size K is a subset {z1,...,xx} C F} such that
K K
S =3 F) =0
1=1 =1

Definition[Zero-sum Partition]
Let P be a permutation from F% into Fy. A zero-sum partition for
P of size K = 2F is a collection of 2"* disjoint zero-sums.
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Application to two SHA-3 candidates Keccak

The new bound applied on Keccak-f

Let R be the round function of Keccak-f and R™! its inverse.

For any F',

1600 — deg(F)
3
1600 — deg(F')
3

deg(F o R) < 1600 —

deg(F o R™') < 1600 —

Observation [Duan-Lai 11] For x™1 : 82 = 3
Then,

1600 — deg(F')

deg(F o R™') < 1600 — 5
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Application to two SHA-3 candidates

Keccak

7" deg(I{T)‘ deg(I{_T)‘

— =
’_‘ORDOO\IO\U'I#(AJI\)I—‘

== =
OB~ WN

2
4
8
16
32
64
128
256
512
1024
1408
1536
1578
1592
1597
1599

3
9
27
81
243
729
1164
1382
1491
1545
1572
1586
1593
1596
1598
1599
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Application to two SHA-3 candidates Keccak

Zero-Sum Partitions for the full Keccak-f (24 rounds)

Starting with any collection of 315 rows after the linear layer in the 12-th
round, we get

zero-sum partitions of size 2177

for the full Keccak-f permutation.
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Application to two SHA-3 candidates Luffa

Luffa [De Canniére, Sato and Watanabe 08|

@ “Sponge-like” construction;

@ Linear message injection

function Ml; ‘

@ Permutation P, splitted
into w parallel 256-bit L
permutations J 0, b—
Qo, -+ Qu—1;

® (Q; : 8-round permutation. 19—
Every round called Step;

Ao, F—
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Application to two SHA-3 candidates Luffa

The Step function:

@ SubCrumb: 64 parallel 4 x 4 Sboxes of degree 3;

@ MixWord: Linear layer mixing the 32-bit words two by two.

Y e I
Y S S SN S S S

SubCrumb (bit slice) ‘ |

SubCrumb (bit slice)

l

|

MixWord

MixWord ‘ | MixWord | | MixWord ‘

D

P,

(r) (r) (r) (r) (r) (r) (r
| a 0|| a 1|| a 2“ a 3‘| a 4|| a 5|| a6

(r)
a |

Figure: The Step function

AddConstant

32 bits
—L
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Application to two SHA-3 candidates Luffa

The Step function:
@ SubCrumb: 64 parallel 4 x 4 Sboxes of degree 3;

@ MixWord: Linear layer mixing the 32-bit words two by two.

(r-1) (r-1) (r-1) (r-1) (r-1) (r-1) (r-1) (r-1)
|“ 0||“ 1||“ ZH“ 3H“ 4||“ 5||“ r>||“ 7‘
| SubCrumb (bit slice) ‘ | SubCrumb (bit slice) ‘
| MixWord | | MixWord ‘ | MixWord | | MixWord ‘

taab) B T—

- - - - - - x 32 bits
(r) (r) (r) (r) (r) (r) (r
|“0||“1||“2H“3H“4||“5||“6 —L

(r)
a |

Figure: The Step function

Different Sbox for Luffa vl and Luffa v2!
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Application to two SHA-3 candidates Luffa

Bound on the degree of @); for Luffa v1
For » <5, bound by Watanabe et al.

deg x”
3
8
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Application to two SHA-3 candidates Luffa

Bound on the degree of @); for Luffa v1
For » <5, bound by Watanabe et al.

deg x”
3
8
20
51
130
214
242
251

O NO Ol WDN - S

For » > 6, we apply,

512 + deg(Step”)

deg(Step ) < ;
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Application to two SHA-3 candidates Luffa

Higher-order differentials for the Luffa v1 hash function

@ Degree of Luffa v1 hash function, applied to 256-bit messages is at
most 251.

@ Distinguisher for full Luffa v1 with 2240 1-block messages.

Improvement of the previous attack applied to Luffa vl reduced to
7 steps out of 8. [Watanabe et al. 10]
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Application to two SHA-3 candidates Luffa

An observation on the Sbox of Luffa v2

Yo
n
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Application to two SHA-3 candidates Luffa

An observation on the Sbox of Luffa v2

Yo
n
Y2
Y3

14+ x4+ 1 + 2129 + x93 + T123 + ToX1 XT3 +

To + T3 + Tox1 + X122 + Tpx3 + T1X3 + ToxL1X3 +

1+ x1 + 23+ 2029 + 2129 + X123 + T3 + ToL1T2 + oL L3
14z 4+ zo + o3 + X922 + T122 + X173 + Toxsz + Tox1 T2

LoL1xL3

d = yo+y1+y2t+ys = 1+x1+x9+20T1 +T0T3

The sum of the four coordinates is of degree 2!
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Application to two SHA-3 candidates Luffa

Algebraic degree of the (); permutation

Sum of 2 distinct monomials of degree 3 in 4 variables, z;, z, xy, ¢, where
d:a:¢+a:j+a?k+xl:

TiTjTp + TiTjTy = XiX;Tk + .Z‘Z.Z‘J(.Z‘Z +z;+ )+ d)
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Application to two SHA-3 candidates Luffa

Algebraic degree of the (); permutation

Sum of 2 distinct monomials of degree 3 in 4 variables, z;, z, xy, ¢, where
d:332'—|—33j+.1‘k—|—3;‘l:

TiTjTp + TiT;Ty = XiX;TE + .Z‘Z.Z‘J(QBZ + x5+ + d)

= XiTjTk + x5 + 2325 + 2728 + .Z‘Z‘.Z‘jd
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Application to two SHA-3 candidates Luffa

Algebraic degree of the (); permutation

Sum of 2 distinct monomials of degree 3 in 4 variables, z;, z, xy, ¢, where
d:332'—|—33j+.1‘k—|—3;‘l:

Ty + iy = 22T + 2w (v 4+ x5 + o+ d)
= +xir; + wiwy + + xix5d
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Application to two SHA-3 candidates Luffa

Algebraic degree of the (); permutation

Sum of 2 distinct monomials of degree 3 in 4 variables, z;, z, xy, ¢, where
d:a:¢+a:j+a?k+xl:

TiTjT + TixTjTy = TixTjTf + 332333(3;‘1 +z;+ 7z + d)

= a:z-a:jd

o x(, ], x5, x5 output words of r rounds of Step.
o d' =uxp+x] + x5 + x5.
Then,
deg2’ ™! <2 D deg x; + degd"

deg ™! < 2max deg T
J
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Application to two SHA-3 candidates Luffa

Upper bounds on the algebraic degree of Q); in Luffa v2

r | degx” degd”
1 3 2

2 8 6

3 22 16

4 60 44
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Application to two SHA-3 candidates Luffa

Upper bounds on the algebraic degree of Q); in Luffa v2

r | degx” degd”
1 3 2

2 8 6

3 22 16

4 60 44

5 164 120

6 225 210

7 245 240

8 252 250

For r > 6, we apply,

512 + deg(Step”)
3

deg(Step”‘H) <
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Application to two SHA-3 candidates Luffa

Higher-order differential distinguishers for Luffa v2

Results

@ Degree of the compression function at most 252.

@ All-zero higher-order differentials for the full compression function.

Not extendable to the hash function, because of the addition of a
blank round for all the messages.
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Permutation P

@ 512-bit state, seen as an
8 X 8 matrix.

@ 10 rounds of AES-like
transformations.

@ AES Sbox of degree 7.
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Application to Grgstl-256

Permutation P

@ 512-bit state, seen as an
8 X 8 matrix.

@ 10 rounds of AES-like
transformations.

@ AES Sbox of degree 7.

Round

deg(R")

SO RN

49
343
487
508
511
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Conclusions

Application to Grgstl-256

. Round | deg(R")
Permutation P 1 7
_ 2 49
@ 512-bit state, seen as an 3 343
8 X 8 matrix. 4 487
@ 10 rounds of AES-like 5 508
transformations. 6 511

@ AES Sbox of degree 7.

Zero-sum partitions of size 2°7%.
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@ New bound on the degree of iterated permutations.

@ Zero-sum distinguishers for the full Keccak-f permutation.

(Contradiction of the so-called hermetic sponge strategy)

@ All-zero higher-order differentials for the Luffa hash family.

@ Application to AES-based candidates.
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Conclusions

@ New bound on the degree of iterated permutations.

@ Zero-sum distinguishers for the full Keccak-f permutation.
(Contradiction of the so-called hermetic sponge strategy)

@ All-zero higher-order differentials for the Luffa hash family.
@ Application to AES-based candidates.

Thank you for your attention!
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