McEliece and Niederreiter Cryptosystems That Resist Quantum Fourier Sampling Attacks

Hang Dinh

Indiana University South Bend

joint work with

Cristopher Moore

University of New Mexico

Alexander Russell

University of Connecticut

Post-quantum cryptography

- Shor's quantum algorithms for Factoring and Discrete Logarithm break RSA, ElGamal, elliptic curve cryptography...
- Are there "post-quantum" cryptosystems?
 - cryptosystems we can carry out with classical computers
 - [unlike quantum cryptosystems, which require quantum facility]
 - which will remain secure even if and when quantum computers are built.

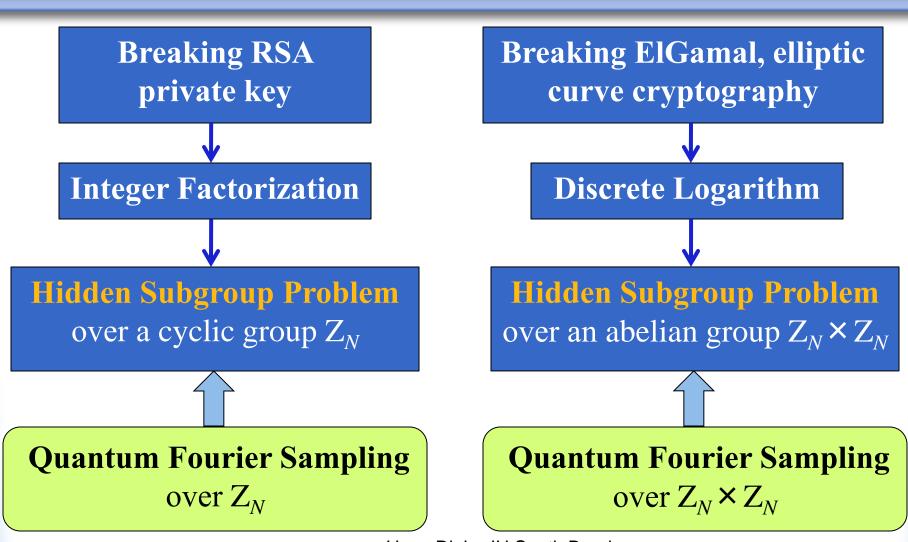
Post-quantum cryptography

- Candidates for post-quantum cryptosystems:
 - lattice-based
 - code-based (the McEliece system and its relatives)
 - hash-based
 - multivariate
 - secret-key cryptography
- Bernstein, 2009:
 - These systems are *believed* to resist quantum computers.
 - "Nobody has figured out a way to apply Shor's algorithm to any of these systems."

We show that

some McEliece and Niederreiter cryptosystems resist the natural analog of Shor's quantum attack.

How Shor's algorithm works

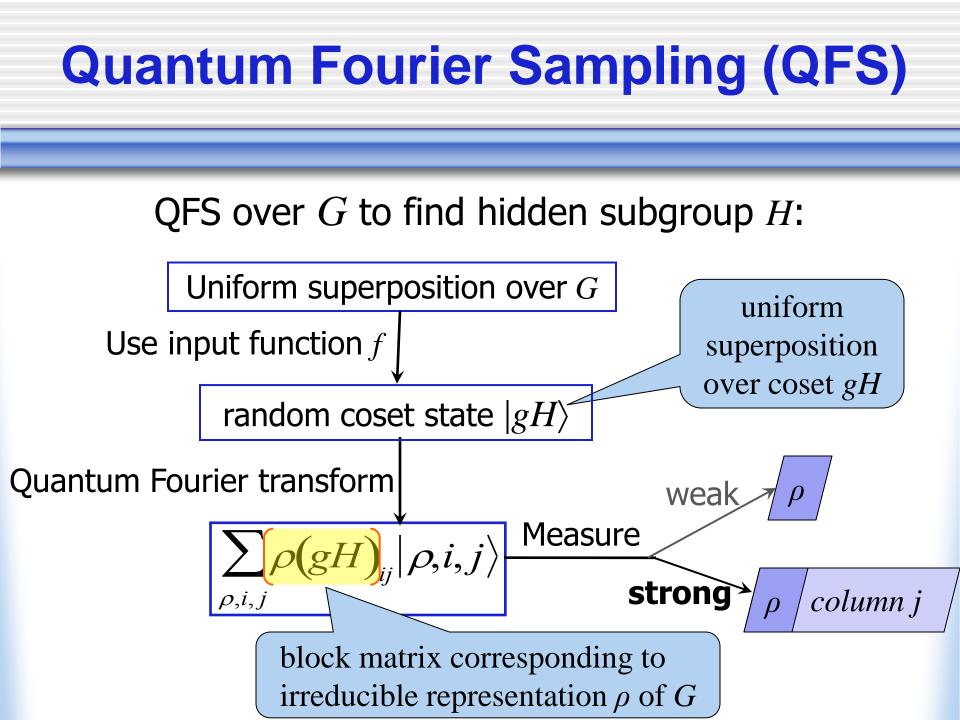


Hidden Subgroup Problem (HSP)

- HSP over a finite group G:
 - <u>Input</u>: function $f: G \rightarrow \{\blacksquare, \blacksquare, ...\}$ that *distinguishes* the left cosets of an unknown subgroup H < G

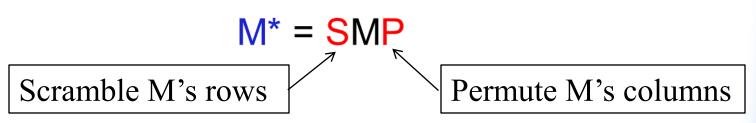
• <u>Output</u>: <u>*H*</u>

- Notable reductions to nonabelian HSP:
 - Unique Shortest Vector Problem \rightarrow HSP over D_n [Regev'04]
 - Graph Isomorphism \rightarrow HSP over S_n with $|H| \leq 2$



McEliece/Niederreiter Cryptosystems

- Private key:
 - M: $k \times n$ matrix over a finite field F_{q^l} containing F_q
 - P: $n \times n$ random permutation matrix
 - S: $k \times k$ random invertible matrix over F_q
- Public key includes the matrix



McEliece/Niederreiter Cryptosystems

McEliece system

- $F_q = F_{q^l}(l=1)$
- M is a generator matrix of an [n, k]-code over F_q.

 Originally used classical binary Goppa codes (q=2)

Niederreiter system

•
$$F_q \subseteq F_{q^l} (l \ge 1)$$

- M is a parity check matrix of an [*n*, *k*']-code *C* over F_{*q*}.
- Equivalent to the McEliece system using *C*, if

$$k' = n - lk$$
.

 Originally used rational Goppa codes (GRS codes)

Security of McEliece and Niederreiter Systems

- Two basic types of attacks
 - Decoding attacks [previous talk]
 - Attacks on private key [this talk]
 - Recover S, M, P from M*
- Security against known classical attacks
 - Still secure if using classical Goppa codes [EOS'07]
 - Broken if using rational Goppa codes (Ouch!)
 - Sidelnokov & Shestakov's attack factors SMP into S and MP.

McEliece/Niederreiter's security reduces to HSP

Scrambler-Permutation Problem

➢ Given: M and M* = SMP for some (S, P) ∈ GL_k(F_q) × S_n
➢ Find: S and P

HSP over the wreath product $(GL_k(F_q) \times S_n) \wr Z_2$ with a hidden subgroup characterized by → the column rank of matrix M, ands → the *automorphism group* of M: $Aut(M) = \{P \in S_n | \exists S \in GL_k(F_q): SMP=M\}$

Can this HSP be solved by strong QFS?

Our Answer (1)

- Strong QFS yields negligible information about hidden (S, P) if M is *good*, meaning
 - M has column rank $r \ge k o(\sqrt{n})/l$,
 - $|Aut(M)| \leq e^{o(n)}$, and
 - Minimal degree of Aut(M) is $\Omega(n)$.

the minimal number of points moved by a non-identity permutation in $\ensuremath{\textit{Aut}}(M)$

- Next question:
 - Are there matrices M satisfying the conditions above?

Our Answer (2)

Matrix M is good if it is of the form:

$$M = S \begin{bmatrix} v_1 & v_2 & \cdots & v_n \\ v_1 \alpha_1 & v_2 \alpha_2 & \cdots & v_n \alpha_n \\ \vdots & \vdots & \ddots & \vdots \\ v_1 \alpha_1^{k-1} & v_2 \alpha_2^{k-1} & \cdots & v_n \alpha_n^{k-1} \end{bmatrix} \qquad \begin{array}{ll} S \in \operatorname{GL}_k(\operatorname{F}_{q^l}), \\ v_i \in \operatorname{F}_{q^l} - \{0\}, \\ \alpha_i \in \operatorname{F}_{q^l} \cup \{\infty\}, \\ \alpha_i \text{'s are distinct.} \end{array}$$

1

١

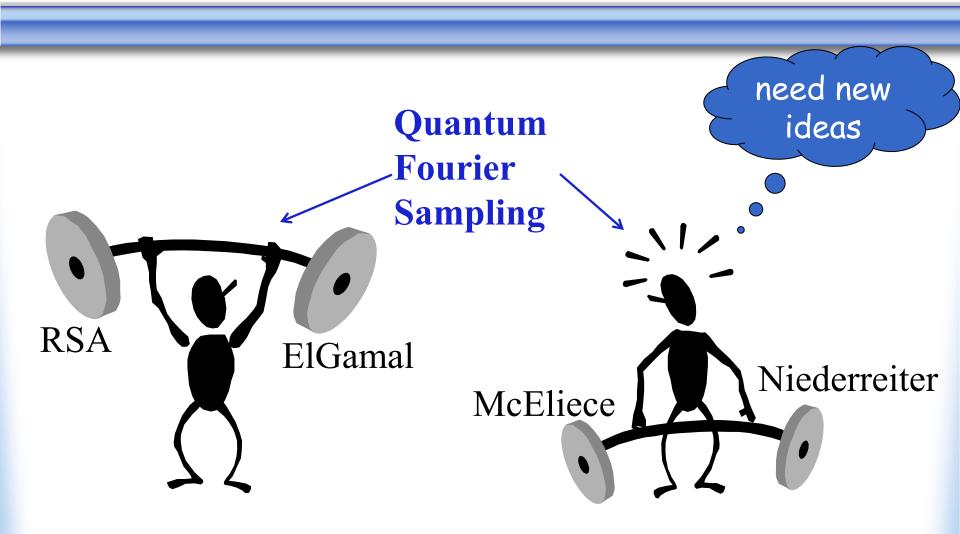
- In particular, these are
 - generator matrices of rational Goppa [n, k]-codes over F_{a^l} .
 - parity check matrices of classical Goppa codes of length n over <u>subfield</u> F_q.

Conclusion

- The following cryptosystems resist the natural analog of Shor's QFS attack:
 - McEliece systems using rational Goppa codes
 - Niederreiter systems using classical Goppa codes.
 - In general, any McEliece/Niederreiter system using linear codes with good generator/parity check matrices.

<u>Warning</u>: This neither rules out other quantum (or classical) attacks nor violates a natural hardness assumption.

Conclusion (Moral)



Open Questions

• What are other linear codes that possess good generator/parity check matrices?

- Can these cryptosystems resist stronger quantum attacks, e.g., multiple-register QFS attacks?
 - Hallgren et al., 2006: subgroups of order 2 require highly-entangled measurements of many coset states.
 - Does this hold for subgroups of order > 2?

Questions?

• Thank you all for staying till the last minute!

Parameters

 In case of Niederreiter systems using a classical *q*-ary Goppa code *C*, we need

$$q^{k^2} \le n^{0.2n}$$
 and $q^{3l} \le e^{o(n)}$

Typically, n = q^l, then we only need k² ≤ 0.2nl,
 which implies C must have large dimension:

dim
$$C \ge n - kl \ge n - \sqrt{0.2n} l^{3/2}$$