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Context: speed

What is the fastest
public-key encryption system
with security level > 207

How to evaluate candidates:

Encryption systems

Analyze
attack algorithms

Y
Systems with security > 2°

Analyze
encryption algorithms

Fastest systems with security > Db




Example of speed analysis

RSA (with small exponent,
reasonable padding, etc.):

Factoring n costs 2(/8 n)t/3+ell)

by the number-field sieve.
Conjecture: this is the
optimal attack against RSA.

Key size: Can take Ign € 6311

ensuring 218 n)t/3+ol) > 20,

Encryption: Fast exp
costs (Ign)1T°) bit operations.

Summary: RSA costs 6312(1)



ECC (with strong curve/F,
reasonable padding, etc.):

ECDL costs 2(1/2+0(1))lgq
by Pollard’s rho method.

Conjecture: this is the
optimal attack against ECC.

Can take Igg € (24 o(1))6.

Encryption: Fast scalar mult
costs (Ig q)2+0(1) — p2+o(1)

Summary: ECC costs 210(1),
Asymptotically faster than RSA.
Bonus: also 621°(1) decryption.



1978 McEliece system (with
length-n classical Goppa codes,
reasonable padding, etc.):

Conjecture: Fastest attacks
cost 2(/8 0(1))n/lgn_

Can take n € (1/8 + o(1))blgb.

Encryption: Matrix mult

Summary: McEliece costs 210(1).

Is this faster than ECC?
Need more detailed analysis.



ECC encryption:

©(lg q) operations in F,.
Each operation in F4 costs
O(lgqlglgqglglglgq).
Total ©(b°Igblglgb).

McEliece encryption,

with 1986 Niederreiter speedup:
©(n/lgn) additions in F7,
each costing ©(n).

Total ©(b° Igb).

McEliece is asymptotically faster.
Bonus: Much taster decryption.
Another bonus: Post-quantum.
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Algorithmic advances can
change this picture. Examples:

1. Speed up ECC: can reduce
lg lg b using 2007 Furer; maybe
someday eliminate Iglg 67

2. This paper: asymptotically
faster attack on McEliece.
“Ball-collision decoding.”

Need larger McEliece key sizes.

3. Ongoing: we're optimizing
“subfield AG"” variant of
McEliece. Conjecture:

Fastest attacks cost 2(aFo(1))n
encryption costs ©(b?).



Generic decoding algorithms

Some history: 1962 Prange;
1981 Clark (crediting Omura);
1988 Lee—Brickell: 1988 Leon:
1989 Krouk: 1989 Stern: 1989
Dumer; 1990 Coffey—Goodman;
1990 van Tilburg; 1991 Dumer;
1991 Coffey—Goodman—Farrell;
1993 Chabanne—Courteau; 1993
Chabaud; 1994 van Tilburg;
1994 Canteaut—Chabanne;

1998 Canteaut—Chabaud; 1998
Canteaut—Sendrier; 2008 B.—L.—
P.: 2009 Finiasz—Sendrier; 2010
P.; 2011 B.—L.—P, this paper.




A typical decoding problem

Input: 500-bit vector s; and a
900 x 500 matrix of bits.
Goal: Find 50 rows with xor s.
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Row randomization

Can arbitrarily permute rows

without changing problem.

Goal: Find 50 rows with xor s.
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Column normalization

Can also permute columns

without changing problem.

Goal: Find 50 rows with xor s.
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Column normalization

Can also permute columns
without changing problem.
Goal: Find 50 rows with xor s.

. 01111, 7™
..11001...1 7
..01101...| T3
... 10011...] 7900
.10010...| s=7T1®Or7D1T34D 17




Systematic form

Can ac

= Bul

C

C

one column to another.

an identity matrix.

Goal: Find 50 rows with xor s.

1000...0000
0100...0000
0010...0000
0000...0001
1010...1100
1101...0111
0110...0000




1962 Prange, basic
information-set decoding:
Maybe xor involves

none of last 400 rows.

If so, immediately see that

s has weight 50. Done!

If not, re-randomize and restart.



1962 Prange, basic
information-set decoding:
Maybe xor involves

none of last 400 rows.

If so, immediately see that
s has weight 50. Done!

If not, re-randomize and restart.

1988 Lee—Brickell:
More likely that xor involves

exactly 2 of last 400 rows.
Check for each 12, 7 whether
s @ r; ®r; has weight 43.
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1989 Leon, 1989 Krouk:
Check for each %, 7 whether
s @ r; ®r; has weight 48
with first 10 bits all zero.
Much faster to test,

not much loss in success chance.
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Check for each %, 7 whether

s @ r; ®r; has weight 48

with first 10 bits all zero.

Much faster to test,

not much loss in success chance.

1989 Stern, collision decoding;:
v/ speedup!

Find collisions between

first 10 bits of s ® r;

and first 10 bits of r;.

For each collision, check whether

s@®r; ®r; has weight 48.
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0 rows/10 1

46 rows/490

4 rows /400

Or s & 7y, SRR R

and rj, © - GB'rjp.

Optimize choice of p.

Of course, also optimize 10 etc.



New, ball-collision decoding:
Find collisions between (e.g.)
weight-1 Hamming ball around
first 10 bits of s & r;; ® 74, and
weight-1 Hamming ball around
first 10 bits of r;, & 7y, .

2 rows/10 1

44 rows /490

4 rows /400




Our main theorem:

For w rows of n x (n — k) matrix,
constant w/n, k/n as n — o0,
under standard assumptions,
optimized collision decoding

costs 2(ao(1))n 5nd

optimized ball-collision decoding
costs 2(&' ()7 with o' < a.

See cr.yp.to/ballcoll.html:
e proof of smaller exponents;

e conservative lower bounds:

e complete reference software.


http://cr.yp.to/ballcoll.html

