The Torsion-Limit for Algebraic Function Fields and Its Application to Arithmetic Secret Sharing

> Ignacio Cascudo (CWI Amsterdam) Ronald Cramer (CWI & Leiden Univ.) Chaoping Xing (NTU Singapore)

CRYPTO 2011

Thursday, August 18, 2011

n-Codes

Let \mathbb{F}_q be a finite field, $k, n \in \mathbb{Z}_{\geq 1}$ (*k* "size of the secret", *n* "number of shares").

Definition (*n*-Code)

An *n*-code for \mathbb{F}_q^k is a \mathbb{F}_q -vector subspace

$$\mathcal{C} \subset \mathbb{F}_q^k imes \mathbb{F}_q^n$$

such that

・ 同 ト ・ ヨ ト ・ ヨ ト

SQC

2

n-Codes

Let \mathbb{F}_q be a finite field, $k, n \in \mathbb{Z}_{\geq 1}$ (*k* "size of the secret", *n* "number of shares").

Definition (*n*-Code)

An *n*-code for \mathbb{F}_q^k is a \mathbb{F}_q -vector subspace

$$\mathcal{C} \subset \mathbb{F}_q^k imes \mathbb{F}_q^n$$

such that

• The "secret" coordinate* of C can take any value in \mathbb{F}_q^k .

*Think of $\mathbf{x} \in C$ as $\mathbf{x} = (\mathbf{x}_0, x_1, \dots, x_n)$ where: $\mathbf{x}_0 \in \mathbb{F}_q^k$ secret "coordinate" $x_1, \dots, x_n \in \mathbb{F}_q$ share coordinates.

프 🖌 🛪 프 🛌

n-Codes

Let \mathbb{F}_q be a finite field, $k, n \in \mathbb{Z}_{\geq 1}$ (*k* "size of the secret", *n* "number of shares").

Definition (*n*-Code)

An *n*-code for \mathbb{F}_q^k is a \mathbb{F}_q -vector subspace

$$\mathcal{C} \subset \mathbb{F}_q^k imes \mathbb{F}_q^n$$

such that

- The "secret" coordinate* of C can take any value in \mathbb{F}_q^k .
- The *n* "share" coordinates of *C* jointly determine the secret coordinate.

*Think of $\mathbf{x} \in C$ as $\mathbf{x} = (\mathbf{x}_0, x_1, \dots, x_n)$ where: $\mathbf{x}_0 \in \mathbb{F}_q^k$ secret "coordinate" $x_1, \dots, x_n \in \mathbb{F}_q$ share coordinates.

프 🖌 🛪 프 🕨

Definition (*r*-reconstructing)

An *n*-code *C* for \mathbb{F}_q^k is *r*-reconstructing $(1 \le r \le n)$ if it holds that any *r* shares determine the secret.

Note that an *n*-code is *n*-reconstructing by definition.

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

SQC

Definition (*r*-reconstructing)

An *n*-code *C* for \mathbb{F}_q^k is *r*-reconstructing $(1 \le r \le n)$ if it holds that any *r* shares determine the secret.

Note that an *n*-code is *n*-reconstructing by definition.

Definition (*t*-Disconnected and *t*-Uniform *n*-Code)

An *n*-code *C* for \mathbb{F}_q^k is *t*-disconnected if t = 0, or else if $1 \le t < n$, the secret is "*independent*" of any *t* shares.

Definition (*r*-reconstructing)

An *n*-code *C* for \mathbb{F}_q^k is *r*-reconstructing $(1 \le r \le n)$ if it holds that any *r* shares determine the secret.

Note that an *n*-code is *n*-reconstructing by definition.

Definition (t-Disconnected and t-Uniform n-Code)

An *n*-code *C* for \mathbb{F}_q^k is *t*-disconnected if t = 0, or else if $1 \le t < n$, the secret is "*independent*" of any *t* shares.

If, additionally, any set of *t* shares is uniformly distributed in \mathbb{F}_q^t .

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $d \in \mathbb{Z}_{>0}$. For *C* an *n*-code for \mathbb{F}_q^k , let

$$\mathcal{C}^{*d} := \mathbb{F}_q < \{ \mathbf{c}^{(1)} * \ldots * \mathbf{c}^{(d)} : \mathbf{c}^{(1)}, \ldots, \mathbf{c}^{(d)} \in \mathcal{C} \} > 1$$

(where * denotes coordinatewise product)

Cascudo, Cramer, Xing The Torsion-Limit for Algebraic Function Fields and Its...

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Dac

Let $d \in \mathbb{Z}_{>0}$. For *C* an *n*-code for \mathbb{F}_q^k , let

$$\mathcal{C}^{*d} := \mathbb{F}_q < \{ \mathbf{c}^{(1)} * \ldots * \mathbf{c}^{(d)} : \mathbf{c}^{(1)}, \ldots, \mathbf{c}^{(d)} \in \mathcal{C} \} > 1$$

(where * denotes coordinatewise product)

Remark (Powering Need Not Preserve *n*-Code)

Let $C \subset \mathbb{F}_q^k \times \mathbb{F}_q^n$ be an n-code for S. Consider C^{*d} $(d \ge 2)$.

• Trivially, the secret coordinate of C^{*d} can take any value.

Sac

Let $d \in \mathbb{Z}_{>0}$. For *C* an *n*-code for \mathbb{F}_q^k , let

$$\mathcal{C}^{*d} := \mathbb{F}_q < \{ \mathbf{c}^{(1)} * \ldots * \mathbf{c}^{(d)} : \mathbf{c}^{(1)}, \ldots, \mathbf{c}^{(d)} \in \mathcal{C} \} > \mathbf{c}^{(d)} \}$$

(where * denotes coordinatewise product)

Remark (Powering Need Not Preserve n-Code)

Let $C \subset \mathbb{F}_q^k \times \mathbb{F}_q^n$ be an n-code for S. Consider C^{*d} $(d \ge 2)$.

- Trivially, the secret coordinate of C^{*d} can take any value.
- But: the share coordinates of C^{*d} need not determine the secret coordinate.

< 回 > < 回 > < 回 >

SQA

Let $d \in \mathbb{Z}_{>0}$. For *C* an *n*-code for \mathbb{F}_q^k , let

$$\mathcal{C}^{*d} := \mathbb{F}_q < \{ \mathbf{c}^{(1)} * \ldots * \mathbf{c}^{(d)} : \mathbf{c}^{(1)}, \ldots, \mathbf{c}^{(d)} \in \mathcal{C} \} > 1$$

(where * denotes coordinatewise product)

Remark (Powering Need Not Preserve n-Code)

Let $C \subset \mathbb{F}_q^k \times \mathbb{F}_q^n$ be an n-code for S. Consider C^{*d} $(d \ge 2)$.

- Trivially, the secret coordinate of C^{*d} can take any value.
- **But**: the share coordinates of C^{*d} need not determine the secret coordinate.
- Thus: C^{*d} need not be an *n*-code for \mathbb{F}_{q}^{k} .

・ロト ・ 同ト ・ ヨト ・ ヨト

Sac

Definition

An (n, t, d, r)-arithmetic secret sharing scheme for \mathbb{F}_q^k (over \mathbb{F}_q) is an *n*-code *C* for \mathbb{F}_q^k such that:

- **●** $t \ge 1, d \ge 2.$
- 2 The *n*-code *C* is *t*-disconnected.
- 3 C^{*d} is in fact an *n*-code for \mathbb{F}_q^k .
- The *n*-code C^{*d} is *r*-reconstructing.

Definition

An (n, t, d, r)-arithmetic secret sharing scheme for \mathbb{F}_q^k (over \mathbb{F}_q) is an *n*-code *C* for \mathbb{F}_q^k such that:

- **●** $t \ge 1, d \ge 2.$
- 2 The *n*-code *C* is *t*-disconnected.
- 3 C^{*d} is in fact an *n*-code for \mathbb{F}_q^k .
- The *n*-code C^{*d} is *r*-reconstructing.

The arithmetic SSS has *uniformity* if, in addition, the *n*-code *C* has *t*-uniformity.

Definition

An (n, t, d, r)-arithmetic secret sharing scheme for \mathbb{F}_q^k (over \mathbb{F}_q) is an *n*-code *C* for \mathbb{F}_q^k such that:

● $t \ge 1, d \ge 2.$

2 The *n*-code *C* is *t*-disconnected.

3 C^{*d} is in fact an *n*-code for \mathbb{F}_q^k .

• The *n*-code C^{*d} is *r*-reconstructing.

The arithmetic SSS has *uniformity* if, in addition, the *n*-code *C* has *t*-uniformity.

An (n, t, 2, n - t)-arithmetic SSS is a *t*-strong multiplicative linear SSS (Cramer/Damgaard/Maurer EUROCRYPT 2000). This notion is in turn generalized by arithmetic codices.

Sac

Asymptotics of Arithmetic Secret Sharing Schemes

Remark (Arithmetic SSS exist)

If $n + k \le q$ and d(t + k - 1) < n - t, then: Shamir (or Franklin/Yung for k > 1) schemes are (n, t, d, n - t)-arithmetic SSS with uniformity for \mathbb{F}_{a}^{k} .

(四) (三) (三)

Remark (Arithmetic SSS exist)

If $n + k \leq q$ and d(t + k - 1) < n - t, then:

Shamir (or Franklin/Yung for k > 1) schemes are (n, t, d, n - t)-arithmetic SSS with uniformity for \mathbb{F}_{a}^{k} .

Question (2006):

What happens if q is fixed and n is unbounded?

Can positive rates $(t = \Omega(n))$ be achieved?

(Note: We consider *d* constant, as otherwise $t = \Omega(n)$ is provably imposible).

・ 同 ト ・ ヨ ト ・ ヨ ト

Can positive rates $(t = \Omega(n))$ be achieved?

・ 同 ト ・ ヨ ト ・ ヨ ト

E na@

Can positive rates $(t = \Omega(n))$ be achieved?

Chen/Cramer (2006): Yes, if A(q) > 2d.* Includes q square with q > (2d + 1)² and all q very large.

*A(q) lhara's constant of \mathbb{F}_q

・ 「 ・ ・ ヨ ・ ・ 日 ・ ・

Can positive rates $(t = \Omega(n))$ be achieved?

- Chen/Cramer (2006): Yes, if A(q) > 2d.* Includes q square with $q > (2d + 1)^2$ and all q very large.
- Cascudo/Chen/Cramer/Xing(2009): For d = 2 and without uniformity, any finite field F_q.

*A(q) lhara's constant of \mathbb{F}_q

(周) (三) (三) (三) (0)

Original application: IT-secure multi-party computation, **malicious adversary case** (Cramer/Damgaard/Maurer 2000).

Asymptotical version of BenOr/Goldwasser/Wigderson88, Chaum/Crépeau/Damgaard88

・ 同 ト ・ ヨ ト ・ ヨ ト …

Dac

Original application: IT-secure multi-party computation, **malicious adversary case** (Cramer/Damgaard/Maurer 2000).

Asymptotical version of BenOr/Goldwasser/Wigderson88, Chaum/Crépeau/Damgaard88

But lately: Unexpected applications in *two-party cryptography*, usually via MPC-in-the-head paradigm:

"secure two-party computation" with small error and low communication.

"Players" are virtual processes!.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Jac.

- (STOC 2007) Ishai/Kushilevitz/Ostrovsky/Sahai: Zero knowledge from multi-party computation.
- (TCC 2008) Harnik/Ishai/Kushilevitz/BuusNielsen: OT-Combiners via Secure Computation.
- (CRYPTO 2008) Ishai/Prabhakaran/Sahai: Founding Cryptography on Oblivious Transfer - Efficiently.
- (FOCS 2009) Ishai/Kushilevitz/Ostrovsky/Sahai: *Extracting Correlations*. Requires uniformity.
- (CRYPTO 2011, Previous talk!) Ishai/Kushilevitz/Ostrovsky/Prabhakaran/Sahai/Wullschleger: *Constant-Rate Oblivious Transfer from Noisy Channels*.
- (2011) Cramer/Damgaard/Pastro: *Amortized Complexity of Zero Knowledge Proof of Multiplicative Relations*. Note: d > 2 here.

ヘロト ヘアト ヘビト ヘビト

Theorem (Cramer/Daza/Gracia/Jimenez/Leander/Marti/Padro, CRYPTO 05)

Let C be a (n, t, 2, n - t)-arithmetic SSS for \mathbb{F}_q^k over \mathbb{F}_q . Then C has efficient error correction of the secret in the presence of t faulty shares.

Theorem (Cramer/Daza/Gracia/Jimenez/Leander/Marti/Padro, CRYPTO 05)

Let C be a (n, t, 2, n - t)-arithmetic SSS for \mathbb{F}_q^k over \mathbb{F}_q . Then C has efficient error correction of the secret in the presence of t faulty shares.

We generalize this:

Theorem

Let *C* be a (n, t, d, n - t)-arithmetic SSS for \mathbb{F}_q^k over \mathbb{F}_q . Then $C^{*(d-1)}$ has efficient error correction of the secret in the presence of t faulty shares.

In this paper:

- We introduce a new technique to construct algebraic geometric SSS.
- We define a new AG notion (torsion limit) and prove bounds for it.
- As a result we get (case d = 2):

Theorem

For q = 8,9 and all $q \ge 16$ there is an infinite family of (n, t, 2, n - t)-arithmetic SSS for \mathbb{F}_q^k over \mathbb{F}_q with *t*-uniformity where *n* is unbounded, $k = \Omega(n)$ and $t = \Omega(n)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

In this paper:

- We introduce a new technique to construct algebraic geometric SSS.
- We define a new AG notion (torsion limit) and prove bounds for it.
- As a result we get (case d = 2):

Theorem

For q = 8,9 and all $q \ge 16$ there is an infinite family of (n, t, 2, n - t)-arithmetic SSS for \mathbb{F}_q^k over \mathbb{F}_q with *t*-uniformity where *n* is unbounded, $k = \Omega(n)$ and $t = \Omega(n)$.

CC06 could only achieve this for *q* square, q > 49. Furthermore, in many cases, we achieve a larger rate t/n.

イロト イポト イヨト イヨト

SAR

Let *F* an algebraic function field over \mathbb{F}_q .

Definition

For *G* a divisor of *F*, $P_1, \ldots, P_n, Q_1, \ldots, Q_k$ rational places of *F*, $P_i, Q_j \notin \text{supp}G$, denote $D := \sum P_i + \sum Q_j$ and consider the AG-code:

 $C(G; D) = \{(f(Q_1), \dots, f(Q_k), f(P_1), \dots, f(P_n)) | f \in \mathcal{L}(G)\}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let *F* an algebraic function field over \mathbb{F}_q .

Definition

For *G* a divisor of *F*, $P_1, \ldots, P_n, Q_1, \ldots, Q_k$ rational places of *F*, $P_i, Q_j \notin \text{supp}G$, denote $D := \sum P_i + \sum Q_j$ and consider the AG-code:

$$C(G; D) = \{(f(Q_1), \ldots, f(Q_k), f(P_1), \ldots, f(P_n)) \mid f \in \mathcal{L}(G)\}$$

Remark

If
$$C = C(G; D)$$
, then $C^{*d} \subseteq C(dG; D)$.

ヘロト ヘアト ヘビト ヘビト

Arithmetic SSS from Algebraic Geometric Codes

For $A \subset \{1, ..., n\}$ with $A \neq \emptyset$, define $P_A = \sum_{j \in A} P_j \in \text{Div}(F)$. Let $K \in \text{Div}(F)$ be a canonical divisor.

Theorem

If the "Riemann-Roch system of equations"

$$\{\ell(dX - D + P_A + Q) = 0, \ \ell(K - X + P_A + Q) = 0\}_{A \subset \mathcal{I}^*, |A| = t}$$

has solution X := G, then C(G; D) is an (n, t, d, n-t)-arithmetic secret sharing scheme for \mathbb{F}_q^k over \mathbb{F}_q (with uniformity).

For $A \subset \{1, ..., n\}$ with $A \neq \emptyset$, define $P_A = \sum_{j \in A} P_j \in \text{Div}(F)$. Let $K \in \text{Div}(F)$ be a canonical divisor.

Theorem

If the "Riemann-Roch system of equations"

$$\{\ell(dX - D + P_A + Q) = 0, \ \ell(K - X + P_A + Q) = 0\}_{A \subset \mathcal{I}^*, |A| = t}$$

has solution X := G, then C(G; D) is an (n, t, d, n-t)-arithmetic secret sharing scheme for \mathbb{F}_q^k over \mathbb{F}_q (with uniformity).

In CC06: Strong conditions on *F* (large number rational places) \Rightarrow **any** divisor of a certain degree is a solution.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

Solvability of RR systems

Let *h* be the class number of *F*, A_r number of effective divisors of degree *r*.

Theorem

Consider the system:

$$\{\ell(d_iX+Y_i)=0\}_{i=1}^L.$$

If for some $s \in \mathbb{Z}$,

$$h > \sum_{i=1}^{L} A_{r_i(s)} \cdot |\mathcal{J}_F[d_i]|,$$

where $r_i(s) = d_i s + deg Y_i$, i = 1, ..., L, then the system has a solution G of degree s.

・ 同 ト ・ ヨ ト ・ ヨ ト

SQR

- Bounds on A_r/h were obtained in several works in coding theory.
- |*J_F[d]*| not previously studied in that context (as far as we know).
- This is because the role of $|\mathcal{J}_F[d]|$ is linked to the requirements on C^{*d} .

(ロ) (同) (三) (三) (三) (0) (0)

The Torsion Limit

For F/\mathbb{F}_q a function field, and $r \in \mathbb{Z}_{>1}$ we consider the *r*-torsion point group in \mathcal{J}_F , i.e., $\mathcal{J}_F[r] := \{[D] \in \mathcal{J}_F : r[D] = 0\}$.

Definition

For a family $\mathcal{F} = \{F/\mathbb{F}_q\}$ of function fields with $g(F) \to \infty$, we define its *r*-torsion limit:

$$J_r(\mathcal{F}) := \liminf_{F \in \mathcal{F}} rac{\log_q |\mathcal{J}_F[r]|}{g(F)}$$

・ 同 ト ・ 臣 ト ・ 臣 ト …

The Torsion Limit

For F/\mathbb{F}_q a function field, and $r \in \mathbb{Z}_{>1}$ we consider the *r*-torsion point group in \mathcal{J}_F , i.e., $\mathcal{J}_F[r] := \{[D] \in \mathcal{J}_F : r[D] = 0\}$.

Definition

For a family $\mathcal{F} = \{F/\mathbb{F}_q\}$ of function fields with $g(F) \to \infty$, we define its *r*-torsion limit:

$$J_r(\mathcal{F}) := \liminf_{F \in \mathcal{F}} rac{\log_q |\mathcal{J}_F[r]|}{g(F)}.$$

Definition

For a prime power q and a real $a \in (0, A(q)]$, let \mathfrak{F} the (non-empty) set of families $\mathcal{F} = \{F/\mathbb{F}_q\}$ with $g(F) \to \infty$ and $\lim \frac{|\mathbb{P}^{(1)}|(F)}{g(F)} \ge a$. Then define, for $r \in \mathbb{Z}_{>1}$,

$$J_r(q, a) := \liminf_{\mathcal{F} \in \mathfrak{F}} J_r(\mathcal{F}).$$

Theorem

Fix \mathbb{F}_q and $d \geq 2$. Suppose $A(q) > 1 + J_d(q, A(q))$.

Then there is an infinite family of (n, t, d, n - t)-arithmetic SSS for \mathbb{F}_{q}^{k} over \mathbb{F}_{q} with t-uniformity such that

- $n \to \infty$, $k = \Omega(n)$ and $t = \Omega(n)$.
- C,..., C^{*(d-1)} have efficient t-error correction for the secret.

Upper bounds for *r*-torsion limit, *r* prime

Theorem

Let \mathbb{F}_q be a finite field and let r > 1 be a prime. (i) If $r \mid (q-1)$, then $J_r(q, A(q)) \le \frac{2}{\log_r q}$. (ii) If $r \nmid (q-1)$, then $J_r(q, A(q)) \le \frac{1}{\log_r q}$ (iii) If q is square and $r \mid q$, then $J_r(q, \sqrt{q} - 1) \le \frac{1}{(\sqrt{q} + 1)\log_r q}$.

Conclusions

- Arithmetic SSS are an important abstract primitive in IT secure cryptography.
- Asymptotics have become important: recent applications in two party cryptography.

イロト イ理ト イヨト ・ ヨト

E DQC

Conclusions

- Arithmetic SSS are an important abstract primitive in IT secure cryptography.
- Asymptotics have become important: recent applications in two party cryptography.
- Algebraic geometry seem only handle to obtain good asymptotic constructions.
- Probabilistic methods do not seem to work! (as opposed to code theory).

・ 同 ト ・ ヨ ト ・ ヨ ト …

Dac

Conclusions

- Arithmetic SSS are an important abstract primitive in IT secure cryptography.
- Asymptotics have become important: recent applications in two party cryptography.
- Algebraic geometry seem only handle to obtain good asymptotic constructions.
- Probabilistic methods do not seem to work! (as opposed to code theory).
- Results: More general definitions and framework, new methodology to construct AG-SSS, existential results not known to be possible before, new notion of torsion limit and upper bounds for it.

・ 同 ト ・ ヨ ト ・ ヨ ト

Dac