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Noisy Channel & Crypto

From our point of view, an ideal
communication line is a sterile,
cryptographically uninteresting entity. Noise,
on the other hand, breeds disorder,
uncertainty, and confusion. Thus, it is the
cryptographer’s natural ally.

Claude Crépeau & Joe Kilian, 1938,
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Noisy Channel & Crypto

® Wyner’s wire-tap channel: information-theoretically
secret communication, without shared keys (w75

® Oblivious Transfer from noisy channel [ck'ss]

® OT is complete for secure computation [K’ss]
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Constant Rate

® cf. Shannon’s Channel Coding Theorem: O(1) many uses of
BSC per bit of communication

® How many uses of BSC_per OT instance?

| or more general noisy channels J
ckes]  O(k'!) to get a security error of 2%

C97] O(K3)
cMwo4]  O(k?1E)
HIKN08]  O(1) for semi-honest security

® Goal:To get O(1) (Can’t do better even given free noiseless
channels (wwio])
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Overview

® Plan: use IPS construction [IPS08] to compile a semi-
honest secure “inner protocol” and an honest-majority
secure “outer protocol” using a few string-OTs

® A modified compiler so that the inner-protocol can

use noisy channels. Requires inner protocol to be -
“error tolerant”

® Constant-rate inner and outer protocols from
literature [GMW’87+HIKN’08,DI'06+CC’06]

® A constant-rate construction for string-OT from

-

Harder to detect
cheating in inner-
protocol (by
partial oblivious
monitoring), as
there is a noisy
channel involved.

Will require the
inner-protocol to
be secure against
active corruption
of a small fraction

noisy channel
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String-OT

t-bit string-OT with O(Q+poly(k) communication (over a noisy

Channel)[ Previously, known from OT-like and erasure channels [BCW’03,IMN’06] J

Can use current constructions with a constant security
parameter to get “‘fuzzy’ OT:i.e., with constant security error

® Challenge: change constant security error to negligible error
12
AC

® S5tring-OT from fuzzy OT (or fuzzy OLE#fact)C oLe R
< AB+C

5
® First, reinterpret fuzzy OLE as a perfect “shaky” OLE

~
B

® Next, use shaky OLE to get string-OT
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Fuzzy and Shaky

Fuzzy protocol: realizes F with a constant security error ¢
(statistical distance between ideal and real executions)

Shaky functionality: F() flips a c-biased coin, and if heads, then
works as F, else (w/ prob c) surrenders to the adversary
[ o = #rounds.|X||Y|e

Theorem
An e-fuzzy protocol for F is a perfectly secure protocol for F((©)

® As a composition theorem: Running n copies of an e-fuzzy
protocol gives about (1-6)n good copies of F (randomly
chosen)
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® A degenerate functionality F
® Takes a bit from Bob as input; no output4
%

Bob sends his input to Alice, else L oo 6

o 5 ® Voo
® For corrupt Alice, simulator in the
ideal F execution sends L with
probability 12, and else a random bit 0 1 0 1

Simulation error = 14 e el
§ % Yo Y Y% Vo o Vi

® A fuzzy protocol:With probability 12
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Fuzzy — Shaky:

e Simulator for F{('2) in two parts:

® A part“dominated” both by the
protocol and the given simulation

e \
When F
((1/2))

\doesn’t fail

1
When it fails}10 /2
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Fuzzy to Shaky

Much more complicated when Alice has an input or output
[ c = #rounds.|X||Y|e

Theorem
An e-fuzzy protocol for F is a perfectly secure protocol for F(®)

Holds for any deterministic function F

Simulator’s description is exponential in the fuzzy protocol’s
communication complexity

® But for us, this is a constant: fuzzy OLE is a (non-constant
rate) OLE protocol instantiated with a constant security
parameter
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Shaky OLE to String-OT

® (Non-shaky) OLE to String-OT:

Bits of (x1-x0,%0) | b (in all instances)

% Bits of (x1-x0)b +x0 = x»
Ext(xo) @ so, Ext(x1) @ s1 > Unmask s»

® Alice “extracts’ fewer than n/2 bits from each of x¢ and x;
and sends Ext(xo) @ so and Ext(x1) ® s1 to Bob

® But with shaky OLE, Alice may learn Bob’s input b (and Bob
may learn more than n/2 bits each of xpand x1)

® Fix:using a constant-rate encoding of xo, x1 and b
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e Const. rate encodings Enc:”*—[F" and Enc?:F"—F" such that:

e Enc(4) * Enc(B) + Enc*(C) € Enc*(4B+C)

( co-ordinate wise mult. )

® Error-correcting & Secret-sharing: For d = a (small) constant
fraction of n, Enc? allows (efficient) decoding up to d errors;
also, any d co-ordinates of Enc independent of the message

® Enc’is sufficiently randomizing: Enc’(A4) is uniform over an
n-m(1+0)-dimensional subspace of [

® |nstantiated from an “MPC-friendly code” (a.k.a codex) of
appropriate parameters [CC'06,IKOS'09, next talk]
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Shaky OLE to String-OT

Enc(x1-x0), Enc?(xo) Enc(d)

5 Enc?((x1-x0)b + xo)
Decode x5

Ext(xo) ® so, Ext(x1) @ s1 > Unmask s5

® Secure against Alice, since Bob can correct a constant fraction of
errors, and since a small fraction of Enc(b) reveals nothing of b
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Shaky OLE to String-OT
{owew

Enc(x1-x0), Enc?(xo)

Ext(xo) ® so, Ext(x1) @ s1

Enc(b)

5 Enc?((x1-x0)b + xo)

Decode x;

> Unmask sp

® Secure against Alice, since Bob can correct a constant fraction of
errors, and since a small fraction of Enc(b) reveals nothing of b

® Secure against Bob, since he knows nothing of at least one of the
extracted strings (even given the other one, and all that he gets
in the protocol; relies on the randomization of Enc?(xo))
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