Constant-Rate
Oblivious Transfer
from Noisy Channels

Yuval Ishai

Eyal Kushilevitz
Rafail @strovsky
Manoj Prabhakaran
Amit Sahai

Jurg Wullschleger

Tuesday, August 23, 2011

I|V|oran
from Noisy Channels

Yuval Ishai

Eyal Kushilevitz
Rafail @strovsky
Manoj Prabhakaran
Amit Sahai

Jurg Wullschleger

Tuesday, August 23, 2011

Noisy Channel & Crypto

Tuesday, August 23, 2011

Noisy Channel & Crypto

From our point of view, an ideal
communication line is a sterile,
cryptographically uninteresting entity. Noise,
on the other hand, breeds disorder,
uncertainty, and confusion. Thus, it is the
cryptographer’s natural ally.

Claude Crépeau & Joe Kilian, 1938,

Tuesday, August 23, 2011

Noisy Channel & Crypto

Tuesday, August 23, 2011

Noisy Channel & Crypto

® Wyner’s wire-tap channel: information-theoretically
secret communication, without shared keys (w75

Tuesday, August 23, 2011

Noisy Channel & Crypto

® Wyner’s wire-tap channel: information-theoretically
secret communication, without shared keys (w75

® Oblivious Transfer from noisy channel [ck'ss]

Tuesday, August 23, 2011

Noisy Channel & Crypto

® Wyner’s wire-tap channel: information-theoretically
secret communication, without shared keys (w75

® Oblivious Transfer from noisy channel [ck'ss]

&)

Xo,X| b
(—
H Xb
—
_ 4
[R'8IW'83]

Tuesday, August 23, 2011

Noisy Channel & Crypto

® Wyner’s wire-tap channel: information-theoretically
secret communication, without shared keys (w75

® Oblivious Transfer from noisy channel [ck'ss]

&)

Xo,X| b
(—
ﬂ Xb
—
& 4
[R'81,W'83]

Tuesday, August 23, 2011

Noisy Channel & Crypto

® Wyner’s wire-tap channel: information-theoretically
secret communication, without shared keys (w75

® Oblivious Transfer from noisy channel [ck'ss]

® OT is complete for secure computation [K’ss]

&)

Xo,X| b
b
ﬂ Xb
e
& 4
[R'81,W'83]

Tuesday, August 23, 2011

Constant Rate

Tuesday, August 23, 2011

Constant Rate

® cf.Shannon’s Channel Coding Theorem: O(1) many uses of
BSC per bit of communication

Tuesday, August 23, 2011

Constant Rate

cf. Shannon’s Channel Coding Theorem: O(1) many uses of
BSC per bit of communication

How many uses of BSC per OT instance?

Tuesday, August 23, 2011

Constant Rate

® cf.Shannon’s Channel Coding Theorem: O(1) many uses of
BSC per bit of communication

® How many uses of BSC per OT instance?

o [ckes] O(k'!) to get a security error of 2%

Tuesday, August 23, 2011

Constant Rate

® cf.Shannon’s Channel Coding Theorem: O(1) many uses of
BSC per bit of communication

® How many uses of BSC per OT instance?

o [ckes] O(k'!) to get a security error of 2%
* [C97] O(K%)

Tuesday, August 23, 2011

Constant Rate

® cf.Shannon’s Channel Coding Theorem: O(1) many uses of
BSC per bit of communication

® How many uses of BSC per OT instance?

ckss] O(k'!) to get a security error of 2+
C97] O(K3)
cMwo4] O(k%7E)

Tuesday, August 23, 2011

Constant Rate

® cf. Shannon’s Channel Coding Theorem: O(1) many uses of
BSC per bit of communication

® How many uses of BSC per OT instance?

ckss] O(k'!) to get a security error of 2+
C97] O(K3)

cMwo4] O(k%7E)

HIKN08] O(1) for semi-honest security

Tuesday, August 23, 2011

Constant Rate

® cf. Shannon’s Channel Coding Theorem: O(1) many uses of
BSC per bit of communication

® How many uses of BSC per OT instance?

ckss] O(k'!) to get a security error of 2+
C97] O(K3)

cMwo4] O(k?1E)

HIKN08] O(1) for semi-honest security

® Goal:To get O(1) (Can’t do better even given free noiseless
channels wwio],

Tuesday, August 23, 2011

Constant Rate

® cf. Shannon’s Channel Coding Theorem: O(1) many uses of
BSC per bit of communication

® How many uses of BSC_per OT instance?

| or more general noisy channels J
ckes] O(k'!) to get a security error of 2%

C97] O(K3)
cMwo4] O(k?1E)
HIKN08] O(1) for semi-honest security

® Goal:To get O(1) (Can’t do better even given free noiseless
channels (wwio])

Tuesday, August 23, 2011

Overview

Tuesday, August 23, 2011

Overview

® Plan: use IPS construction [IPS08] to compile a semi-
honest secure “inner protocol” and an honest-majority
secure “outer protocol” using a few string-OTs

Tuesday, August 23, 2011

Overview

® Plan: use IPS construction [IPS08] to compile a semi-
honest secure “inner protocol” and an honest-majority
secure “outer protocol” using a few string-OTs

® A modified compiler so that the inner-protocol can

use noisy channels. Requires inner protocol to be
“error tolerant”

Tuesday, August 23, 2011

-

Ove rVi eW Harder to detect

cheating in inner-
® Plan: use IPS construction [IPS'08] to compile a semi- protocol (by

honest secure “inner protocol” and an honest-majority |partial oblivious

secure “outer protocol” using a few string-OT's monitoring), as
there is a noisy

® A modified compiler so that the inner-protocol can |channel involved.

use noisy channels. Requires inner protocol to be -

“error tolerant” Will require the
inner-protocol to

be secure against
active corruption
of a small fraction
of channel instances

\ 4

Tuesday, August 23, 2011

-

Ove rVi eW Harder to detect

cheating in inner-
® Plan: use IPS construction [IPS'08] to compile a semi- protocol (by

honest secure “inner protocol” and an honest-majority |partial oblivious

secure “outer protocol” using a few string-OT's monitoring), as
there is a noisy

® A modified compiler so that the inner-protocol can |channel involved.

use noisy channels. Requires inner protocol to be -

“error tolerant” Will require the
inner-protocol to

® Constant-rate inner and outer protocols from |be secure against

literature [GMW’87+HIKN’08,DI'06+CC’06] active corruption
of a small fraction

of channel instances

- J

Tuesday, August 23, 2011

Overview

® Plan: use IPS construction [IPS08] to compile a semi-
honest secure “inner protocol” and an honest-majority
secure “outer protocol” using a few string-OTs

® A modified compiler so that the inner-protocol can

use noisy channels. Requires inner protocol to be -
“error tolerant”

® Constant-rate inner and outer protocols from
literature [GMW’87+HIKN’08,DI'06+CC’06]

® A constant-rate construction for string-OT from

-

Harder to detect
cheating in inner-
protocol (by
partial oblivious
monitoring), as
there is a noisy
channel involved.

Will require the
inner-protocol to
be secure against
active corruption
of a small fraction

noisy channel

Tuesday, August 23, 2011

-

of channel instances

J

String-OT

Tuesday, August 23, 2011

String-OT

® -bit string-OT with O(?)+poly(k) communication (over a noisy
channel)

Tuesday, August 23, 2011

String-OT

t-bit string-OT with O(Q+poly(k) communication (over a noisy
channel)

Previously, known from OT-like and erasure channels [BCW’03,IMN’06]

Tuesday, August 23, 2011

String-OT

® 7-bit string-OT with O(Q+poly(k) communication (over a noisy

Channel)[Previously, known from OT-like and erasure channels [BCW’03,IMN’06] J

® (Can use current constructions with a constant security
parameter to get “‘fuzzy’ OT:i.e., with constant security error

Tuesday, August 23, 2011

String-OT

t-bit string-OT with O(Qeroly(k) communication (over a noisy

Channel)[Previously, known from OT-like and erasure channels [BCW’03,IMN’06] J

Can use current constructions with a constant security
parameter to get “‘fuzzy’ OT:i.e., with constant security error

® Challenge: change constant security error to negligible error

Tuesday, August 23, 2011

i o st i i UL I o ok SO

String-OT

t-bit string-OT with O(Qeroly(k) communication (over a noisy

Channel)[Previously, known from OT-like and erasure channels [BCW’03,IMN’06] J

Can use current constructions with a constant security
parameter to get “‘fuzzy’ OT:i.e., with constant security error

® Challenge: change constant security error to negligible error

® String-OT from fuzzy OT (or fuzzy OLE, in fact)

Tuesday, August 23, 2011

String-OT

® 7-bit string-OT with O(Q+paly(k) communication (over a noisy

Channel)[Previously, known from OT-like and erasure channels [BCW’03,IMN’06] J

® (Can use current constructions with a constant security
parameter to get “‘fuzzy’ OT:i.e., with constant security error

® Challenge: change constant security error to negligible error
12
AC

® String-OT from fuzzy OT (or fuzzy OLE#vfact oLe T

& AB+C -

~
B

Tuesday, August 23, 2011

String-OT

t-bit string-OT with O(Q+poly(k) communication (over a noisy

Channel)[Previously, known from OT-like and erasure channels [BCW’03,IMN’06] J

Can use current constructions with a constant security
parameter to get “‘fuzzy’ OT:i.e., with constant security error

® Challenge: change constant security error to negligible error
12
AC

® S5tring-OT from fuzzy OT (or fuzzy OLE#fact)C oLe R
< AB+C

5
® First, reinterpret fuzzy OLE as a perfect “shaky” OLE

~
B

Tuesday, August 23, 2011

String-OT

t-bit string-OT with O(Q+poly(k) communication (over a noisy

Channel)[Previously, known from OT-like and erasure channels [BCW’03,IMN’06] J

Can use current constructions with a constant security
parameter to get “‘fuzzy’ OT:i.e., with constant security error

® Challenge: change constant security error to negligible error
12
AC

® S5tring-OT from fuzzy OT (or fuzzy OLE#fact)C oLe R
< AB+C

5
® First, reinterpret fuzzy OLE as a perfect “shaky” OLE

~
B

® Next, use shaky OLE to get string-OT

Tuesday, August 23, 2011

Fuzzy and Shaky

Tuesday, August 23, 2011

Fuzzy and Shaky

® Fuzzy protocol: realizes F with a constant security error ¢
(statistical distance between ideal and real executions)

Tuesday, August 23, 2011

Fuzzy and Shaky

® Fuzzy protocol: realizes F with a constant security error ¢
(statistical distance between ideal and real executions)

® Shaky functionality: F(°) flips a 6-biased coin, and if heads, then

works as F, else (w/ prob c) surrenders to the adversary

Tuesday, August 23, 2011

Fuzzy and Shaky

Fuzzy protocol: realizes F with a constant security error ¢
(statistical distance between ideal and real executions)

Shaky functionality: F() flips a c-biased coin, and if heads, then
works as F, else (w/ prob c) surrenders to the adversary

Theorem
An e-fuzzy protocol for F is a perfectly secure protocol for F(©)

Tuesday, August 23, 2011

Fuzzy and Shaky

® Fuzzy protocol: realizes F with a constant security error ¢
(statistical distance between ideal and real executions)

® Shaky functionality: F(°) flips a 6-biased coin, and if heads, then
works as F, else (w/ prob c) surrenders to the adversary
[o = #rounds.|X||Y|e

¢ Theorem
An e-fuzzy protocol for F is a perfectly secure protocol for F(©)

Tuesday, August 23, 2011

Fuzzy and Shaky

Fuzzy protocol: realizes F with a constant security error ¢
(statistical distance between ideal and real executions)

Shaky functionality: F() flips a c-biased coin, and if heads, then
works as F, else (w/ prob c) surrenders to the adversary
[o = #rounds.|X||Y|e

Theorem
An e-fuzzy protocol for F is a perfectly secure protocol for F((©)

® As a composition theorem: Running n copies of an e-fuzzy
protocol gives about (1-6)n good copies of F (randomly
chosen)

Tuesday, August 23, 2011

Fuzzy to Shaky

Tuesday, August 23, 2011

Fuzzy to Shaky

® “Statistical security to Perfect security”

Tuesday, August 23, 2011

Fuzzy to Shaky

® “Statistical security to Perfect security”

® Works for UC-security (as well as standalone security)

Tuesday, August 23, 2011

Fuzzy to Shaky

® “Statistical security to Perfect security”

® Works for UC-security (as well as standalone security)

® Given a simulator for F with error g, build a perfect

simulator for F(©)

Tuesday, August 23, 2011

Fuzzy to Shaky

® “Statistical security to Perfect security”

® Works for UC-security (as well as standalone security)

® Given a simulator for F with error g, build a perfect

simulator for F(©)

Tuesday, August 23, 2011

zzy — Shaky: Example

Tuesday, August 23, 2011

Fuzzy — Shaky: Examp

® A degenerate functionality F

Tuesday, August 23, 2011

Fuzzy — Shaky: Example

® A degenerate functionality F

® Takes a bit from Bob as input; no output

Tuesday, August 23, 2011

® A degenerate functionality F

® Takes a bit from Bob as input; no output

0
® A fuzzy protocol:With probability 12 /_l

Bob sends his input to Alice, else L W v

Tuesday, August 23, 2011

® A degenerate functionality F

® Takes a bit from Bob as input; no output

® A fuzzy protocol:With probability 12 ¢_|

Bob sends his input to Alice, else L W v

® For corrupt Alice, simulator in the
ideal F execution sends 1 with

probability 2, and else a random bit

Tuesday, August 23, 2011

® A degenerate functionality F

® Takes a bit from Bob as input; no output

® A fuzzy protocol:With probability 12
Bob sends his input to Alice, else L

® For corrupt Alice, simulator in the
ideal F execution sends 1 with

probability 2, and else a random bit

Tuesday, August 23, 2011

® A degenerate functionality F

® Takes a bit from Bob as input; no output

® A fuzzy protocol:With probability 12 ¢_|

Bob sends his input to Alice, else L oo ® &0

Vo 15 (Y Vo Vo
® For corrupt Alice, simulator in the
ideal F execution sends | with
0 1

probability 2, and else a random bit

® 6 O
Va Vo & A

Tuesday, August 23, 2011

® A degenerate functionality F

® Takes a bit from Bob as input; no output

® A fuzzy protocol:With probability 12 ¢_|

Bob sends his input to Alice, else L oo 6

o 5 ® Voo
® For corrupt Alice, simulator in the
ideal F execution sends L with
probability 12, and else a random bit 0 1 0 1

® 0 O ® 0 O
% Yo Y Vo Vi

Tuesday, August 23, 2011

® A degenerate functionality F
® Takes a bit from Bob as input; no output4
%

Bob sends his input to Alice, else L oo 6

o 5 ® Voo
® For corrupt Alice, simulator in the
ideal F execution sends L with
probability 12, and else a random bit 0 1 0 1

Simulation error = 14 e el
§ % Yo Y Y% Vo o Vi

® A fuzzy protocol:With probability 12

Tuesday, August 23, 2011

0 1

Voueal/o L Voo
K%

® 0 O ® 0 O
% Y Y Vo Vi

Tuesday, August 23, 2011

Fuzzy-’Shaky Example

e Simulator for F{('2) in two parts:

Tuesday, August 23, 2011

Fuzzy — Shaky: Example

e Simulator for F{('2) in two parts:

® A part“dominated” both by the
protocol and the given simulation

Tuesday, August 23, 2011

Fuzzy — Shaky:

e Simulator for F{('2) in two parts:

® A part“dominated” both by the
protocol and the given simulation

Tuesday, August 23, 2011

Fuzzy — Shaky:

e Simulator for F{('2) in two parts:

® A part“dominated” both by the
protocol and the given simulation

e \
When F
((1/2))

\doesn’t fail

Tuesday, August 23, 2011

Fuzzy — Shaky:

e Simulator for F{('2) in two parts:

® A part“dominated” both by the
protocol and the given simulation

e \
When F
((1/2))

\doesn’t fail

Tuesday, August 23, 2011

Fuzzy — Shaky:

e Simulator for F{('2) in two parts:

® A part“dominated” both by the
protocol and the given simulation

e \
When F
((1/2))

\doesn’t fail

Tuesday, August 23, 2011

Fuzzy — Shaky:

e Simulator for F{('2) in two parts:

® A part“dominated” both by the
protocol and the given simulation

e \
When F
((1/2))

\doesn’t fail

1
When it fails}10 /2

Tuesday, August 23, 2011

Fuzzy to Shaky

Tuesday, August 23, 2011

Fuzzy to Shak

® Much more complicated when Alice has an input or output

Tuesday, August 23, 2011

Fuzzy to Shaky

® Much more complicated when Alice has an input or output

¢ Theorem
An e-fuzzy protocol for F is a perfectly secure protocol for F(®)

Tuesday, August 23, 2011

Fuzzy to Shaky

® Much more complicated when Alice has an input or output

e Theorem [o = #rounds. |X||Y|\8)
An e-fuzzy protocol for F is a perfectly secure protocol for F(®)

Tuesday, August 23, 2011

Fuzzy to Shaky

® Much more complicated when Alice has an input or output

e Theorem [o = #rounds. |X||Y|\8)
An e-fuzzy protocol for F is a perfectly secure protocol for F(®)

® Holds for any deterministic function F

Tuesday, August 23, 2011

Fuzzy to Shaky

Much more complicated when Alice has an input or output
[o= #rounds.|X]|Ye

Theorem
An e-fuzzy protocol for F is a perfectly secure protocol for F(®)

Holds for any deterministic function F

Simulator’s description is exponential in the fuzzy protocol’s
communication complexity

Tuesday, August 23, 2011

Fuzzy to Shaky

Much more complicated when Alice has an input or output
[c = #rounds.|X||Y|e

Theorem
An e-fuzzy protocol for F is a perfectly secure protocol for F(®)

Holds for any deterministic function F

Simulator’s description is exponential in the fuzzy protocol’s
communication complexity

® But for us, this is a constant: fuzzy OLE is a (non-constant
rate) OLE protocol instantiated with a constant security
parameter

Tuesday, August 23, 2011

aky OLE to String-OT

Tuesday, August 23, 2011

Shaky OLE to String-OT

® (Non-shaky) OLE to String-OT:

Tuesday, August 23, 2011

Shaky OLE to String-OT

® (Non-shaky) OLE to String-OT:

Bits of (x1-x0,x0) b (in all instances)

% Bits of (x1-x0)b +x0 = x»
Ext(xo) ® so, Ext(x1) ® s1 > Unmask s5

Tuesday, August 23, 2011

s

"

Shaky OLE to String-OT

® (Non-shaky) OLE to String-OT:

Bits of (x1-x0,x0) b (in all instances)
% Bits of (x1-x0)b +x0 = x»
Ext(xo) @ so, Ext(x1) @ s1 > Unmask s

® Alice “extracts’ fewer than n/2 bits from each of x¢ and x;
and sends Ext(xo) @ so and Ext(x1) ® s1 to Bob

Tuesday, August 23, 2011

Shaky OLE to String-OT

® (Non-shaky) OLE to String-OT:

Bits of (x1-x0,x0)

Ext(xo) @ so, Ext(x1) @ s1

b (in all instances)

% Bits of (x1-x0)b +x0 = x»

> Unmask sp

® Alice “extracts’ fewer than n/2 bits from each of x¢ and x;
and sends Ext(xo) @ so and Ext(x1) ® s1 to Bob

® But with shaky OLE, Alice may learn Bob’s input b (and Bob
may learn more than n/2 bits each of xpand x1)

Tuesday, August 23, 2011

Shaky OLE to String-OT

® (Non-shaky) OLE to String-OT:

Bits of (x1-x0,%0) | b (in all instances)

% Bits of (x1-x0)b +x0 = x»
Ext(xo) @ so, Ext(x1) @ s1 > Unmask s»

® Alice “extracts’ fewer than n/2 bits from each of x¢ and x;
and sends Ext(xo) @ so and Ext(x1) ® s1 to Bob

® But with shaky OLE, Alice may learn Bob’s input b (and Bob
may learn more than n/2 bits each of xpand x1)

® Fix:using a constant-rate encoding of xo, x1 and b

Tuesday, August 23, 2011

aky OLE to String-OT

Tuesday, August 23, 2011

Shaky OLE to String-OT

e Const. rate encodings Enc:”*—[F" and Enc?:F"—F" such that:

Tuesday, August 23, 2011

Shaky OLE to String-OT

e Const. rate encodings Enc:”*—[F" and Enc?:F"—F" such that:

e Enc(4) * Enc(B) + Enc*(C) € Enc’(4B+C)

Tuesday, August 23, 2011

Shaky OLE to String-OT

e Const. rate encodings Enc:”*—[F" and Enc?:F"—F" such that:

e Enc(4) * Enc(B) + Enc*(C) € Enc*(4B+C)

(co-ordinate wise mult.)

Tuesday, August 23, 2011

Shaky OLE to String-OT

e Const. rate encodings Enc:”*—[F" and Enc?:F"—F" such that:

e Enc(4) * Enc(B) + Enc*(C) € Enc*(4B+C)

(co-ordinate wise mult.)

® Error-correcting & Secret-sharing: For d = a (small) constant
fraction of n, Enc? allows (efficient) decoding up to d errors;
also, any d co-ordinates of Enc independent of the message

Tuesday, August 23, 2011

Shaky OLE to String-OT

e Const. rate encodings Enc:”*—[F" and Enc?:F"—F" such that:

e Enc(4) * Enc(B) + Enc*(C) € Enc*(4B+C)

(co-ordinate wise mult.)

® Error-correcting & Secret-sharing: For d = a (small) constant
fraction of n, Enc? allows (efficient) decoding up to d errors;
also, any d co-ordinates of Enc independent of the message

® Enc’is sufficiently randomizing: Enc’(A4) is uniform over an
n-m(1+0)-dimensional subspace of [

Tuesday, August 23, 2011

Shaky OLE to String-OT

e Const. rate encodings Enc:”*—[F" and Enc?:F"—F" such that:

e Enc(4) * Enc(B) + Enc*(C) € Enc*(4B+C)

(co-ordinate wise mult.)

® Error-correcting & Secret-sharing: For d = a (small) constant
fraction of n, Enc? allows (efficient) decoding up to d errors;
also, any d co-ordinates of Enc independent of the message

® Enc’is sufficiently randomizing: Enc’(A4) is uniform over an
n-m(1+0)-dimensional subspace of [

® |nstantiated from an “MPC-friendly code” (a.k.a codex) of
appropriate parameters [CC'06,IKOS'09, next talk]

Tuesday, August 23, 2011

aky OLE to String-OT

Tuesday, August 23, 2011

Enc(x1-x0), Enc?(xo) Enc(b)
5 Enc?((x1-x0)b + xo)

Decode x;

Ext(xo) ® so, Ext(x1) ® s1 > Unmask s5

Tuesday, August 23, 2011

s

"

Shaky OLE to String-OT

Enc(x1-x0), Enc?(xo) Enc(d)

5 Enc?((x1-x0)b + xo)
Decode x5

Ext(xo) ® so, Ext(x1) @ s1 > Unmask s5

® Secure against Alice, since Bob can correct a constant fraction of
errors, and since a small fraction of Enc(b) reveals nothing of b

Tuesday, August 23, 2011

Shaky OLE to String-OT
{owew

Enc(x1-x0), Enc?(xo)

Ext(xo) ® so, Ext(x1) @ s1

Enc(b)

5 Enc?((x1-x0)b + xo)

Decode x;

> Unmask sp

® Secure against Alice, since Bob can correct a constant fraction of
errors, and since a small fraction of Enc(b) reveals nothing of b

® Secure against Bob, since he knows nothing of at least one of the
extracted strings (even given the other one, and all that he gets
in the protocol; relies on the randomization of Enc?(xo))

Tuesday, August 23, 2011

Summary

Tuesday, August 23, 2011

Summary

® Constant rate OT from BSC (and in fact, any noisy channel that gives OT)

Tuesday, August 23, 2011

Summary

® Constant rate OT from BSC (and in fact, any noisy channel that gives OT)

® Using (a slightly modified) IPS compiler [IPS’08] to compile:

Tuesday, August 23, 2011

Summary

® Constant rate OT from BSC (and in fact, any noisy channel that gives OT)

® Using (a slightly modified) IPS compiler [IPS’08] to compile:

® “Quter protocol” [Dros+cco6] for n instances of OT

Tuesday, August 23, 2011

Summary

® Constant rate OT from BSC (and in fact, any noisy channel that gives OT)

® Using (a slightly modified) IPS compiler [IPS’08] to compile:

® “Quter protocol” [Dros+cco6] for n instances of OT

® “Inner protocol” [GMW87+HIKN'08] for implementing its servers

Tuesday, August 23, 2011

Summary

® Constant rate OT from BSC (and in fact, any noisy channel that gives OT)

® Using (a slightly modified) IPS compiler [IPS’08] to compile:
“Outer protocol” [Dros+ccoé] for n instances of OT

“Inner protocol” [GMW’87+HIKN’08] for implementing its servers

For “watchlist channels” a new constant-rate protocol for string-OT
from noisy channel (previously, only from an erasure channel)

Tuesday, August 23, 2011

Summary

® Constant rate OT from BSC (and in fact, any noisy channel that gives OT)

® Using (a slightly modified) IPS compiler [IPS’08] to compile:

® “Quter protocol” [Dros+cco6] for n instances of OT

® “Inner protocol” [GMW87+HIKN'08] for implementing its servers

® For “watchlist channels” a new constant-rate protocol for string-OT
from noisy channel (previously, only from an erasure channel)

® Uses a homomorphic arithmetic encoding scheme

Tuesday, August 23, 2011

Summary

® Constant rate OT from BSC (and in fact, any noisy channel that gives OT)

® Using (a slightly modified) IPS compiler [IPS’08] to compile:

® “Quter protocol” [Dros+cco6] for n instances of OT

® “Inner protocol” [GMW87+HIKN'08] for implementing its servers

® For “watchlist channels” a new constant-rate protocol for string-OT
from noisy channel (previously, only from an erasure channel)

® Uses a homomorphic arithmetic encoding scheme

® Relies on “fuzzy to shaky” security

Tuesday, August 23, 2011

Summary

® Constant rate OT from BSC (and in fact, any noisy channel that gives OT)

® Using (a slightly modified) IPS compiler [IPS’08] to compile:

® “Quter protocol” [Dros+cco6] for n instances of OT

® “Inner protocol” [GMW87+HIKN'08] for implementing its servers

® For “watchlist channels” a new constant-rate protocol for string-OT
from noisy channel (previously, only from an erasure channel)

® Uses a homomorphic arithmetic encoding scheme

® Relies on “fuzzy to shaky” security

Tuesday, August 23, 2011

