
Bi-Deniable
Public-Key Encryption

Adam O’Neill1,2 Chris Peikert1 Brent Waters2

1Georgia Tech

2U Texas, Austin

CRYPTO 2011
17 Aug

1 / 13

Deniable Encryption [CDNO’97]

c = Encpk(“surpriz prty 4 big bro!”)

(Images courtesy xkcd.org)

What We Want: Bi-Deniability

1 Bob decrypts Alice’s message correctly, but . . .

2 Fake coins & keys “look as if” another message was encrypted.

?? Coercion is after the fact (cf. “uncoercible communication” [BT’94])

2 / 13

Deniable Encryption [CDNO’97]

c = Encpk(“surpriz prty 4 big bro!”)

!!

(Images courtesy xkcd.org)

What We Want: Bi-Deniability

1 Bob decrypts Alice’s message correctly, but . . .

2 Fake coins & keys “look as if” another message was encrypted.

?? Coercion is after the fact (cf. “uncoercible communication” [BT’94])

2 / 13

Deniable Encryption [CDNO’97]

c = DenEncpk(“surpriz prty 4 big bro!”)

(Images courtesy xkcd.org)

What We Want: Bi-Deniability

1 Bob decrypts Alice’s message correctly, but . . .

2 Fake coins & keys “look as if” another message was encrypted.

?? Coercion is after the fact (cf. “uncoercible communication” [BT’94])

2 / 13

Deniable Encryption [CDNO’97]

(fake!) (fake!)

c = DenEncpk(“surpriz prty 4 big bro!”)

(Images courtesy xkcd.org)

What We Want: Bi-Deniability

1 Bob decrypts Alice’s message correctly, but . . .

2 Fake coins & keys “look as if” another message was encrypted.

?? Coercion is after the fact (cf. “uncoercible communication” [BT’94])

2 / 13

Deniable Encryption [CDNO’97]

c = Encpk(“Dad is so lame!!!!”)

(Images courtesy xkcd.org)

What We Want: Bi-Deniability

1 Bob decrypts Alice’s message correctly, but . . .

2 Fake coins & keys “look as if” another message was encrypted.

?? Coercion is after the fact (cf. “uncoercible communication” [BT’94])

2 / 13

Deniable Encryption [CDNO’97]

c = Encpk(“Dad is so lame!!!!”)

(Images courtesy xkcd.org)

What We Want: Bi-Deniability

1 Bob decrypts Alice’s message correctly, but . . .

2 Fake coins & keys “look as if” another message was encrypted.

?? Coercion is after the fact (cf. “uncoercible communication” [BT’94])

2 / 13

Applications of Deniability

1 Anti-coercion: journalists, lawyers, whistle-blowers

2 Voting (?): can reveal any candidate, so can’t ‘sell’ vote

3 Implies selective-opening security [DNRS’99,BHY’09]

4 Implies noncommitting encryption for adaptive corruption [CFGN’96]

3 / 13

Applications of Deniability

1 Anti-coercion: journalists, lawyers, whistle-blowers

2 Voting (?): can reveal any candidate, so can’t ‘sell’ vote

3 Implies selective-opening security [DNRS’99,BHY’09]

4 Implies noncommitting encryption for adaptive corruption [CFGN’96]

3 / 13

Applications of Deniability

1 Anti-coercion: journalists, lawyers, whistle-blowers

2 Voting (?): can reveal any candidate, so can’t ‘sell’ vote

3 Implies selective-opening security [DNRS’99,BHY’09]

4 Implies noncommitting encryption for adaptive corruption [CFGN’96]

3 / 13

Applications of Deniability

1 Anti-coercion: journalists, lawyers, whistle-blowers

2 Voting (?): can reveal any candidate, so can’t ‘sell’ vote

3 Implies selective-opening security [DNRS’99,BHY’09]

4 Implies noncommitting encryption for adaptive corruption [CFGN’96]

3 / 13

Applications of Deniability

1 Anti-coercion: journalists, lawyers, whistle-blowers

2 Voting (?): can reveal any candidate, so can’t ‘sell’ vote

3 Implies selective-opening security [DNRS’99,BHY’09]

4 Implies noncommitting encryption for adaptive corruption [CFGN’96]

3 / 13

Prior Work

Theory [CDNO’97]

I Sender-deniable public-key encryption

I Receiver-deniability with interaction

I Bi-deniability via interaction w/ 3rd parties (one must remain uncoerced)

Practice: TrueCrypt, Rubberhose FS, . . .
I “Plausible deniability:” move along, no message here. . .

Maybe OK for storage, but not so much for communication.

4 / 13

Prior Work

Theory [CDNO’97]

I Sender-deniable public-key encryption

I Receiver-deniability with interaction

I Bi-deniability via interaction w/ 3rd parties (one must remain uncoerced)

Practice: TrueCrypt, Rubberhose FS, . . .
I “Plausible deniability:” move along, no message here. . .

Maybe OK for storage, but not so much for communication.

4 / 13

This Work
1 Bi-deniable encryption: sender & receiver are simultaneously

coercible, and can reveal any message (chosen at coercion time).

Works in “multi-distributional” (flexible) model: DenGen & DenEnc
algorithms, equivocated as if Gen & Enc were run.

F True public-key schemes: non-interactive, no 3rd parties

F One generic construction [DN’00] & one using lattices [GPV’08]

F Both have |keys| > |messages| . . . but this is inherent [Nielsen’02]

2 “Plan-ahead” bi-deniability with short keys
(analogue of “somewhat non-committing” encryption [GWZ’09])

F Bounded number of alternative messages, decided in advance

F Sender & receiver automatically agree on fake message

3 Analogous solutions in the ID-based setting.

5 / 13

This Work
1 Bi-deniable encryption: sender & receiver are simultaneously

coercible, and can reveal any message (chosen at coercion time).

Works in “multi-distributional” (flexible) model: DenGen & DenEnc
algorithms, equivocated as if Gen & Enc were run.

F True public-key schemes: non-interactive, no 3rd parties

F One generic construction [DN’00] & one using lattices [GPV’08]

F Both have |keys| > |messages| . . . but this is inherent [Nielsen’02]

2 “Plan-ahead” bi-deniability with short keys
(analogue of “somewhat non-committing” encryption [GWZ’09])

F Bounded number of alternative messages, decided in advance

F Sender & receiver automatically agree on fake message

3 Analogous solutions in the ID-based setting.

5 / 13

This Work
1 Bi-deniable encryption: sender & receiver are simultaneously

coercible, and can reveal any message (chosen at coercion time).

Works in “multi-distributional” (flexible) model: DenGen & DenEnc
algorithms, equivocated as if Gen & Enc were run.

F True public-key schemes: non-interactive, no 3rd parties

F One generic construction [DN’00] & one using lattices [GPV’08]

F Both have |keys| > |messages| . . . but this is inherent [Nielsen’02]

2 “Plan-ahead” bi-deniability with short keys
(analogue of “somewhat non-committing” encryption [GWZ’09])

F Bounded number of alternative messages, decided in advance

F Sender & receiver automatically agree on fake message

3 Analogous solutions in the ID-based setting.

5 / 13

This Work
1 Bi-deniable encryption: sender & receiver are simultaneously

coercible, and can reveal any message (chosen at coercion time).

Works in “multi-distributional” (flexible) model: DenGen & DenEnc
algorithms, equivocated as if Gen & Enc were run.

F True public-key schemes: non-interactive, no 3rd parties

F One generic construction [DN’00] & one using lattices [GPV’08]

F Both have |keys| > |messages| . . . but this is inherent [Nielsen’02]

2 “Plan-ahead” bi-deniability with short keys
(analogue of “somewhat non-committing” encryption [GWZ’09])

F Bounded number of alternative messages, decided in advance

F Sender & receiver automatically agree on fake message

3 Analogous solutions in the ID-based setting.

5 / 13

This Work
1 Bi-deniable encryption: sender & receiver are simultaneously

coercible, and can reveal any message (chosen at coercion time).

Works in “multi-distributional” (flexible) model: DenGen & DenEnc
algorithms, equivocated as if Gen & Enc were run.

F True public-key schemes: non-interactive, no 3rd parties

F One generic construction [DN’00] & one using lattices [GPV’08]

F Both have |keys| > |messages| . . . but this is inherent [Nielsen’02]

2 “Plan-ahead” bi-deniability with short keys
(analogue of “somewhat non-committing” encryption [GWZ’09])

F Bounded number of alternative messages, decided in advance

F Sender & receiver automatically agree on fake message

3 Analogous solutions in the ID-based setting.
5 / 13

Subsequent Work

1 [DF’11] announced interactive, fully sender-deniable encryption

F Unfortunately, there is a fatal bug in deniability claim (& an attack)

F Obtaining full deniability remains an intriguing open problem!

2 “Fully receiver-/bi-deniable PKE is impossible” [BNNO’11]

F Formally: σ-bit secret key⇒ (1/σ)-distinguishable real vs. fake

F Don’t deny the impossibility — instead, be “flexible.”

6 / 13

Subsequent Work

1 [DF’11] announced interactive, fully sender-deniable encryption
F Unfortunately, there is a fatal bug in deniability claim (& an attack)

F Obtaining full deniability remains an intriguing open problem!

2 “Fully receiver-/bi-deniable PKE is impossible” [BNNO’11]

F Formally: σ-bit secret key⇒ (1/σ)-distinguishable real vs. fake

F Don’t deny the impossibility — instead, be “flexible.”

6 / 13

Subsequent Work

1 [DF’11] announced interactive, fully sender-deniable encryption
F Unfortunately, there is a fatal bug in deniability claim (& an attack)

F Obtaining full deniability remains an intriguing open problem!

2 “Fully receiver-/bi-deniable PKE is impossible” [BNNO’11]

F Formally: σ-bit secret key⇒ (1/σ)-distinguishable real vs. fake

F Don’t deny the impossibility — instead, be “flexible.”

6 / 13

“Flexible” Bi-Deniability

I ‘Normal’ Gen, Enc, Dec algorithms . . .
plus ‘deniable’ DenGen, DenEnc and ‘faking’ RecFake, SendFake.

I The following are indistinguishable for all bits b, b′:

(pk, sk)← Gen
c← Enc(pk, b; r)

View: (pk, c, sk, r)

(pk, fk)← DenGen
c← DenEnc(pk, b′; r)

sk∗ ← RecFake(fk, c, b)
r∗ ← SendFake(pk, r, b′, b)

View: (pk, c, sk∗, r∗)

(Even better, RecFake could output fake coins for Gen, instead of sk∗.)

I “Full” deniability requires equivocable Gen and Enc algs.

7 / 13

“Flexible” Bi-Deniability

I ‘Normal’ Gen, Enc, Dec algorithms . . .
plus ‘deniable’ DenGen, DenEnc and ‘faking’ RecFake, SendFake.

I The following are indistinguishable for all bits b, b′:

(pk, sk)← Gen
c← Enc(pk, b; r)

View: (pk, c, sk, r)

(pk, fk)← DenGen
c← DenEnc(pk, b′; r)

sk∗ ← RecFake(fk, c, b)
r∗ ← SendFake(pk, r, b′, b)

View: (pk, c, sk∗, r∗)

(Even better, RecFake could output fake coins for Gen, instead of sk∗.)

I “Full” deniability requires equivocable Gen and Enc algs.

7 / 13

“Flexible” Bi-Deniability

I ‘Normal’ Gen, Enc, Dec algorithms . . .
plus ‘deniable’ DenGen, DenEnc and ‘faking’ RecFake, SendFake.

I The following are indistinguishable for all bits b, b′:

(pk, sk)← Gen
c← Enc(pk, b; r)

View: (pk, c, sk, r)

(pk, fk)← DenGen
c← DenEnc(pk, b′; r)

sk∗ ← RecFake(fk, c, b)
r∗ ← SendFake(pk, r, b′, b)

View: (pk, c, sk∗, r∗)

(Even better, RecFake could output fake coins for Gen, instead of sk∗.)

I “Full” deniability requires equivocable Gen and Enc algs.

7 / 13

“Flexible” Bi-Deniability

I ‘Normal’ Gen, Enc, Dec algorithms . . .
plus ‘deniable’ DenGen, DenEnc and ‘faking’ RecFake, SendFake.

I The following are indistinguishable for all bits b, b′:

(pk, sk)← Gen
c← Enc(pk, b; r)

View: (pk, c, sk, r)

(pk, fk)← DenGen
c← DenEnc(pk, b′; r)

sk∗ ← RecFake(fk, c, b)
r∗ ← SendFake(pk, r, b′, b)

View: (pk, c, sk∗, r∗)

(Even better, RecFake could output fake coins for Gen, instead of sk∗.)

I “Full” deniability requires equivocable Gen and Enc algs.

7 / 13

“Flexible” Bi-Deniability

I ‘Normal’ Gen, Enc, Dec algorithms . . .
plus ‘deniable’ DenGen, DenEnc and ‘faking’ RecFake, SendFake.

I The following are indistinguishable for all bits b, b′:

(pk, sk)← Gen
c← Enc(pk, b; r)

View: (pk, c, sk, r)

(pk, fk)← DenGen
c← DenEnc(pk, b′; r)

sk∗ ← RecFake(fk, c, b)
r∗ ← SendFake(pk, r, b′, b)

View: (pk, c, sk∗, r∗)

(Even better, RecFake could output fake coins for Gen, instead of sk∗.)

I “Full” deniability requires equivocable Gen and Enc algs.

7 / 13

Is (Flexible) Deniability Meaningful?

Objection #1
I Everyone knows that the coins & message could be fake.

So who do we think we’re fooling?

Answer
I ‘Perfectly secret’ communication is inherently deniable. . .

. . . but most encryption introduces risk of coercion!

I Deniable encryption avoids this side-effect risk.

The purpose is not to ‘convince’ the coercer, but just to
preempt coercion in the first place.

8 / 13

Is (Flexible) Deniability Meaningful?

Objection #1
I Everyone knows that the coins & message could be fake.

So who do we think we’re fooling?

Answer
I ‘Perfectly secret’ communication is inherently deniable. . .

. . . but most encryption introduces risk of coercion!

I Deniable encryption avoids this side-effect risk.

The purpose is not to ‘convince’ the coercer, but just to
preempt coercion in the first place.

8 / 13

Is (Flexible) Deniability Meaningful?

Objection #1
I Everyone knows that the coins & message could be fake.

So who do we think we’re fooling?

Answer
I ‘Perfectly secret’ communication is inherently deniable. . .

. . . but most encryption introduces risk of coercion!

I Deniable encryption avoids this side-effect risk.

The purpose is not to ‘convince’ the coercer, but just to
preempt coercion in the first place.

8 / 13

Is (Flexible) Deniability Meaningful?

Objection #1
I Everyone knows that the coins & message could be fake.

So who do we think we’re fooling?

Answer
I ‘Perfectly secret’ communication is inherently deniable. . .

. . . but most encryption introduces risk of coercion!

I Deniable encryption avoids this side-effect risk.

The purpose is not to ‘convince’ the coercer, but just to
preempt coercion in the first place.

8 / 13

Is (Flexible) Deniability Meaningful?

Objection #2
I Wouldn’t the coercer request the coins of DenGen & DenEnc?

Answer
I He could, but users should just insist they ran Gen & Enc.

Two cases:

1 Coercer has no further recourse: all’s well.

2 Coercer punishes until he gets what he wants.
F Flexible deniability allows for “crying uncle” (proving true message)

F . . . But so does full deniability! Just use verifiable randomness.

F (Also calls into question the applicability to voting.)

9 / 13

Is (Flexible) Deniability Meaningful?

Objection #2
I Wouldn’t the coercer request the coins of DenGen & DenEnc?

Answer
I He could, but users should just insist they ran Gen & Enc.

Two cases:

1 Coercer has no further recourse: all’s well.

2 Coercer punishes until he gets what he wants.
F Flexible deniability allows for “crying uncle” (proving true message)

F . . . But so does full deniability! Just use verifiable randomness.

F (Also calls into question the applicability to voting.)

9 / 13

Is (Flexible) Deniability Meaningful?

Objection #2
I Wouldn’t the coercer request the coins of DenGen & DenEnc?

Answer
I He could, but users should just insist they ran Gen & Enc.

Two cases:

1 Coercer has no further recourse: all’s well.

2 Coercer punishes until he gets what he wants.
F Flexible deniability allows for “crying uncle” (proving true message)

F . . . But so does full deniability! Just use verifiable randomness.

F (Also calls into question the applicability to voting.)

9 / 13

Is (Flexible) Deniability Meaningful?

Objection #2
I Wouldn’t the coercer request the coins of DenGen & DenEnc?

Answer
I He could, but users should just insist they ran Gen & Enc.

Two cases:

1 Coercer has no further recourse: all’s well.

2 Coercer punishes until he gets what he wants.
F Flexible deniability allows for “crying uncle” (proving true message)

F . . . But so does full deniability! Just use verifiable randomness.

F (Also calls into question the applicability to voting.)

9 / 13

Is (Flexible) Deniability Meaningful?

Objection #2
I Wouldn’t the coercer request the coins of DenGen & DenEnc?

Answer
I He could, but users should just insist they ran Gen & Enc.

Two cases:

1 Coercer has no further recourse: all’s well.

2 Coercer punishes until he gets what he wants.
F Flexible deniability allows for “crying uncle” (proving true message)

F . . . But so does full deniability! Just use verifiable randomness.

F (Also calls into question the applicability to voting.)

9 / 13

Is (Flexible) Deniability Meaningful?

Objection #2
I Wouldn’t the coercer request the coins of DenGen & DenEnc?

Answer
I He could, but users should just insist they ran Gen & Enc.

Two cases:

1 Coercer has no further recourse: all’s well.

2 Coercer punishes until he gets what he wants.
F Flexible deniability allows for “crying uncle” (proving true message)

F . . . But so does full deniability! Just use verifiable randomness.

F (Also calls into question the applicability to voting.)

9 / 13

A Tool for Deniability: Translucent Sets [CDNO’97]

{0, 1}k = U

P
Public description pk with
secret ‘trapdoor’ sk.

Properties

1 Given only pk,
F Can efficiently sample from P (and from U, trivially).
F P-sample is pseudorandom: ‘looks like’ a U-sample. . .
F . . . so it can be ‘faked’ as a U-sample.

2 Given sk, can easily distinguish a P-sample from a U-sample.

I Many instantiations: trapdoor perms (RSA), DDH, lattices, . . .

10 / 13

A Tool for Deniability: Translucent Sets [CDNO’97]

{0, 1}k = U

P x
Public description pk with
secret ‘trapdoor’ sk.

Properties

1 Given only pk,
F Can efficiently sample from P (and from U, trivially).
F P-sample is pseudorandom: ‘looks like’ a U-sample. . .
F . . . so it can be ‘faked’ as a U-sample.

2 Given sk, can easily distinguish a P-sample from a U-sample.

I Many instantiations: trapdoor perms (RSA), DDH, lattices, . . .

10 / 13

A Tool for Deniability: Translucent Sets [CDNO’97]

{0, 1}k = U

P x
Public description pk with
secret ‘trapdoor’ sk.

Properties

1 Given only pk,
F Can efficiently sample from P (and from U, trivially).
F P-sample is pseudorandom: ‘looks like’ a U-sample. . .
F . . . so it can be ‘faked’ as a U-sample.

2 Given sk, can easily distinguish a P-sample from a U-sample.

I Many instantiations: trapdoor perms (RSA), DDH, lattices, . . .

10 / 13

A Tool for Deniability: Translucent Sets [CDNO’97]

{0, 1}k = U

P x
Public description pk with
secret ‘trapdoor’ sk.

Properties

1 Given only pk,
F Can efficiently sample from P (and from U, trivially).
F P-sample is pseudorandom: ‘looks like’ a U-sample. . .
F . . . so it can be ‘faked’ as a U-sample.

2 Given sk, can easily distinguish a P-sample from a U-sample.

I Many instantiations: trapdoor perms (RSA), DDH, lattices, . . .

10 / 13

Translucence for Deniability [CDNO’97]

U

P

sk

Normal: Enc(0) = UU Enc(1) = UP

Deniability
4 Alice can fake: PP→ UP→ UU

7 What about Bob?? His sk reveals the true message bits!

11 / 13

Translucence for Deniability [CDNO’97]

U

P

sk

Normal: Enc(0) = UU Enc(1) = UP

Deniable: Enc(0) = PP Enc(1) = UP

Deniability
4 Alice can fake: PP→ UP→ UU

7 What about Bob?? His sk reveals the true message bits!

11 / 13

Translucence for Deniability [CDNO’97]

U

P

sk

Normal: Enc(0) = UU Enc(1) = UP

Deniable: Enc(0) = PP Enc(1) = UP

Deniability
4 Alice can fake: PP→ UP→ UU

7 What about Bob?? His sk reveals the true message bits!

11 / 13

Translucence for Deniability [CDNO’97]

U

P

sk

Normal: Enc(0) = UU Enc(1) = UP

Deniable: Enc(0) = PP Enc(1) = UP

7

Deniability
4 Alice can fake: PP→ UP→ UU

7 What about Bob?? His sk reveals the true message bits!

11 / 13

Our Contribution: Bi-Translucent Sets

Properties

1 A pk has many sk, each inducing a slightly different P-test.

2 For a given P-sample x, most sk classify it correctly.

3 But given a P-sample x and the faking key fk,
can generate a ‘good-looking’ sk∗ that classifies x as a U-sample.

⇒ Bob can also fake P→ U!

?? Instantiation idea: in [GPV’08] IBE, authority can induce an
“oblivious decryption error” via carefully chosen skid

12 / 13

Our Contribution: Bi-Translucent Sets

Properties

1 A pk has many sk, each inducing a slightly different P-test.

2 For a given P-sample x, most sk classify it correctly.

3 But given a P-sample x and the faking key fk,
can generate a ‘good-looking’ sk∗ that classifies x as a U-sample.

⇒ Bob can also fake P→ U!

?? Instantiation idea: in [GPV’08] IBE, authority can induce an
“oblivious decryption error” via carefully chosen skid

12 / 13

Our Contribution: Bi-Translucent Sets
x

Properties

1 A pk has many sk, each inducing a slightly different P-test.

2 For a given P-sample x, most sk classify it correctly.

3 But given a P-sample x and the faking key fk,
can generate a ‘good-looking’ sk∗ that classifies x as a U-sample.

⇒ Bob can also fake P→ U!

?? Instantiation idea: in [GPV’08] IBE, authority can induce an
“oblivious decryption error” via carefully chosen skid

12 / 13

Our Contribution: Bi-Translucent Sets
x

Properties

1 A pk has many sk, each inducing a slightly different P-test.

2 For a given P-sample x, most sk classify it correctly.

3 But given a P-sample x and the faking key fk,
can generate a ‘good-looking’ sk∗ that classifies x as a U-sample.

⇒ Bob can also fake P→ U!

?? Instantiation idea: in [GPV’08] IBE, authority can induce an
“oblivious decryption error” via carefully chosen skid

12 / 13

Our Contribution: Bi-Translucent Sets
x

Properties

1 A pk has many sk, each inducing a slightly different P-test.

2 For a given P-sample x, most sk classify it correctly.

3 But given a P-sample x and the faking key fk,
can generate a ‘good-looking’ sk∗ that classifies x as a U-sample.

⇒ Bob can also fake P→ U!

?? Instantiation idea: in [GPV’08] IBE, authority can induce an
“oblivious decryption error” via carefully chosen skid

12 / 13

Our Contribution: Bi-Translucent Sets
x

Properties

1 A pk has many sk, each inducing a slightly different P-test.

2 For a given P-sample x, most sk classify it correctly.

3 But given a P-sample x and the faking key fk,
can generate a ‘good-looking’ sk∗ that classifies x as a U-sample.

⇒ Bob can also fake P→ U!

?? Instantiation idea: in [GPV’08] IBE, authority can induce an
“oblivious decryption error” via carefully chosen skid 12 / 13

Extensions and Open Questions

1 Basic scheme does bit-by-bit encryption to fresh public keys.
(But this is inherent for complete equivocability.)

‘Plan-ahead’ deniability: encrypt & equivocate a short symmetric
key that conceals one of 2+ possible long messages

2 Full deniability (unified Gen and Enc), possibly with interaction /
trusted setup?

Thanks!

Full version: ePrint #2011/352

13 / 13

Extensions and Open Questions

1 Basic scheme does bit-by-bit encryption to fresh public keys.
(But this is inherent for complete equivocability.)

‘Plan-ahead’ deniability: encrypt & equivocate a short symmetric
key that conceals one of 2+ possible long messages

2 Full deniability (unified Gen and Enc), possibly with interaction /
trusted setup?

Thanks!

Full version: ePrint #2011/352

13 / 13

Extensions and Open Questions

1 Basic scheme does bit-by-bit encryption to fresh public keys.
(But this is inherent for complete equivocability.)

‘Plan-ahead’ deniability: encrypt & equivocate a short symmetric
key that conceals one of 2+ possible long messages

2 Full deniability (unified Gen and Enc), possibly with interaction /
trusted setup?

Thanks!

Full version: ePrint #2011/352

13 / 13

Extensions and Open Questions

1 Basic scheme does bit-by-bit encryption to fresh public keys.
(But this is inherent for complete equivocability.)

‘Plan-ahead’ deniability: encrypt & equivocate a short symmetric
key that conceals one of 2+ possible long messages

2 Full deniability (unified Gen and Enc), possibly with interaction /
trusted setup?

Thanks!

Full version: ePrint #2011/352

13 / 13

