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Fully homomorphic encryption

• Homomorphic encryption:
• An encryption scheme is homomorphic when it supports

operations on encrypted data.

• Multiplicatively homomorphic: RSA.
• Given c1 = me

1 mod N, c2 = me
2 mod N, we have

(c1 · c2) = (m1 ·m2)e mod N

• Additively homomorphic: Paillier.
• Paillier: given c1 = gm1rN mod N2, c2 = gm2sN mod N2,

we have c1 · c2 = gm1+m2 · (rs)N mod N2.

• Fully homomorphic: homomorphic for both addition and
multiplication

• Open problem until Gentry’s breakthrough in 2009.
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Fully homomorphic public-key encryption

• We restrict ourselves to public-key encryption of a single bit:
• 0→ 203ef6124 . . . 23ab8716

• 1→ b327653c1 . . . db326516

• Fully homomorphic property
• Given E (b0) and E (b1), one can compute E (b0 ⊕ b1) and

E (b0 · b1) without knowing the private-key.

• Computing over a ring:
• Given a circuit with xors and ands, and encrypted input bits,

one can compute the output in encrypted form, without
knowing the private key.

• As a result: publicly compute any function on encrypted data
(or at least any function that can be represented as a boolean
circuit with polynomially many gates).
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What fully homomorphic encryption brings you
• You have a software that given the revenue, past income,

headcount, etc., of a company can predict its future stock
price.

• I want to know the future stock price of my company, but I
don’t want to disclose confidential information.

• And you don’t want to give me your software containing secret
formulas.

• Using homomorphic encryption:
• I encrypt all the inputs using fully homomorphic encryption

and send them to you in encrypted form.
• You process all my inputs, viewing your software as a circuit.
• You send me the result, still encrypted.
• I decrypt the result and get the predicted stock price.
• You didn’t learn any information about my company.

• More generally:
• Cool buzzwords like secure cloud computing.
• Cool mathematical challenges.
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Theory and practice
• Not many FHE schemes have been proposed yet:

• Breakthrough scheme of Gentry (STOC 2009).
• Conceptually simpler scheme of van Dijk, Gentry, Halevi and

Vaikuntanathan (DGHV) over the integers (Eurocrypt 2010).
• And that’s about it for now (but see the next talk!).

• . . . and they are important theoretical constructs, but far from
usable in practice.

• For DGHV: PK size around 260 bits.
• For Gentry’s scheme: hard to suggest parameters at all.

• Ongoing effort to get closer to practicality:
• For Gentry’s scheme: improvement by Smart and Vercauteren

(PKC 2010); implementation by Gentry and Halevi (Eurocrypt
2011). PK size: 2.3 GB. Ciphertext refresh: 30 minutes.

• For DGHV: this work. PK size: 800 MB. Ciphertext refresh:
15 minutes.

• (And very recently: exciting work by Gentry and others on
FHE “without bootstrapping”).
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Gentry’s technique

• To build a FHE scheme, start from the somewhat
homomorphic scheme, that is:

• Only a polynomial of small degree can be homomorphically
applied on ciphertexts.

• Otherwise the noise becomes too large and decryption
becomes incorrect.

• Then, “squash” the decryption procedure:
• express the decryption function as a low degree polynomial in

the bits of the ciphertext c and the secret key sk (equivalently
a boolean circuit of small depth).
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Ciphertext refresh
• Gentry’s breakthrough idea: refresh the ciphertext using the

decryption circuit homomorphically.
• Evaluate the decryption polynomial not on the bits of the

ciphertext c and the secret key sk , but homomorphically on
the encryption of those bits.

• Instead of recovering the bit plaintext m, one gets an
encryption of this bit plaintext, i.e. yet another ciphertext for
the same plaintext.

Decryption
Circuit

× +

+

Ciphertext bits Secret key bits
0 1 11 0 1 01

1
Plaintext

bit

⇒
Decryption

Circuit

× +

+

Ciphertext bits
Encryption of
secret key bits

0 1 11 ? ? ??

?
Encryption of
Plaintext bit

= Refreshed
Ciphertext
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Ciphertext refresh

• Refreshed ciphertext:
• If the degree of the decryption polynomial is small enough, the

resulting noise in this new ciphertext can be smaller than in
the original ciphertext

• Fully homomorphic encryption:
• Given two refreshed ciphertexts one can apply again the

homomorphic operation (either addition or multiplication),
which was not necessarily possible on the original ciphertexts
because of the noise threshold.

• Using this “ciphertext refresh” procedure the number of
homomorphic operations becomes unlimited and we get a fully
homomorphic encryption scheme.
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The DGHV scheme (simplified)
• Key generation:

• Generate a set of τ public integers:

xi = p · qi + ri , 1 ≤ i ≤ τ

and x0 = p · q0, where p is a secret prime.
• Size of p is η. Size of xi is γ. Size of ri is ρ.

• Encryption of a message m ∈ {0, 1}:
• Choose a random subset S ⊂ {1, 2, . . . , τ} and a random

integer r in (−2ρ
′
, 2ρ

′
), and output the ciphertext:

c = m + 2r + 2
∑
i∈S

xi mod x0

• Decryption:

c ≡ m + 2r + 2
∑
i∈S

ri (mod p)

• Output m← (c mod p) mod 2
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The DGHV scheme (contd.)
• Noise in ciphertext:

• c = m + 2 · r ′ mod p where r ′ = r +
∑
i∈S

ri

• r ′ is the noise in the ciphertext.
• It must remain < p for correct decryption.

• Homomorphic addition: c3 ← c1 + c2 mod x0

• c1 + c2 = m1 + m2 + 2(r ′1 + r ′2) mod p
• Works if noise r ′1 + r ′2 still less than p.

• Homomorphic multiplication: c3 ← c1 · c2 mod x0

• c1 · c2 = m1 ·m2 + 2(m1 · r ′2 + m2 · r ′1 + 2r ′1 · r ′2) mod p
• Works if noise r ′1 · r ′2 remains less than p.

• Somewhat homomorphic scheme
• Noise grows with every homomorphic addition or

multiplication.
• A limited number of homomorphic operations is supported.
• This limits the degree of the polynomial that can be applied on

ciphertexts.
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Parameter estimates

Security parameter λ.

• ρ : size of noise should be λ bits

• ρ′ : size of secondary noise 2λ bits

• η : size of p, ≈ λ2 bits

• γ : size of xi , ≈ λ5

• τ : number of elements (xi ’s) in the public key, γ + λ

Public key size ≈ γ2 ≈ λ10 (≈ 262 bits for λ = 72 bits of security).
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Reducing the public key size

• Encrypt using a quadratic form as opposed to a linear form in
DGHV:

• We start with a small numbers of xi ’s
• We combine them multiplicatively to generate the full public

key.

• Start with β pairs xi ,0, xj ,1. One can define β2 integers x ′i ,j
with:

x ′i ,j = xi ,0xj ,1 mod x0, 1 ≤ i , j ≤ β

• Encrypt using a linear combination of x ′i ,j with coefficients
bi ,j ∈ [0, 2α) as oppose to bits.

c = m + 2r + 2
∑

1≤i ,j≤β
bi ,j · xi ,0 · xj1 mod x0.

• We can take β ≈ λ2, hence PK size shrinks to 2β · γ ≈ λ7

bits!
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Security of the new scheme
• The proof of semantic security is mostly the same as in the

original DGHV paper. Main difficulty: showing that, for a
ciphertext c , bc/pe is statistically close to uniform in Zq0 .

• In DGHV: use the left-over hash lemma, and the fact that the
function family

h(~b) =
τ∑

i=1

bi · qi

is pairwise independent.
• In our scheme: use a slightly modified left-over hash lemma,

and the fact that the function family

h′(~b) =
∑

1≤i,j≤β

bi,j · qi,0 · qj,1

is “close enough” to being pairwise independent.

• This fact uses point counting on hyperbolic quadrics in Zq0 ,
and is the main technical contribution of this paper.
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Hardness assumption for semantic security

• Actual DGHV scheme: secure under the General Approximate
Common Divisor (GACD) assumption.

• Given polynomially many p · qi + ri , finding p is hard.

• Our scheme: secure under the Partial Approximate Common
Divisor (PACD) assumption.

• Given p · q0 and polynomially many p · qi + ri , finding p is hard.

• PACD is a stronger assumption, but Gentry and Halevi
suggested that no better attack is known on PACD than on
GACD (but more on that later).
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The squashed scheme from DGHV
• The basic decryption m← (c mod p) mod 2 cannot be

directly expressed as a boolean circuit of low depth.
• But it can be written as:

m← [c]2 ⊕ [bc · (1/p)e]2
and this formula can be used for ciphertext refresh if 1/p can
be put in a compact encrypted form in the public key.

• Idea (Gentry, DGHV): use secret sharing. Represent 1/p as a
sparse subset sum:

b2κ/pe =
Θ∑
i=1

si · ui

with random κ-bit integers ui , and si ∈ {0, 1}. Publish the
ui ’s and encryptions of the si ’s.

• The decryption function can then be expressed as a
polynomial of low degree (30) in the si ’s.
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Compressing the public key (I)

• Setting parameters, κ should be chosen as Õ(λ5) bits.
• DGHV pick Θ = Õ(λ5) additional elements ui in the public

key, each of size κ = Õ(λ5) bits.
• We show that one can actually take Θ = Õ(λ3). But this still

gives a Õ(λ8)-bit public key for the squashed scheme, instead
of Õ(λ7) for the somewhat homomorphic scheme.

• Using a pseudo-random number generator:
• Generate Θ− 1 random integers ui ∈ [0, 2κ+1) for 2 ≤ i ≤ Θ,

using a pseudo-random generator f (se) where the seed se is
generated at random during key generation and made part of
the public key.

• Only u1 and se need to be stored in the public key.
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• DGHV pick Θ = Õ(λ5) additional elements ui in the public

key, each of size κ = Õ(λ5) bits.
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Compressing the public key (II)

• Problem left: there are also Θ other elements of length γ in
the public key, namely the encryptions of the si ’s.

• Gentry-Halevi trick:
• Instead of ~s = (s1, . . . , sΘ), use two bit vectors ~s(0) and ~s(1) of

length
√

Θ. ~s is then recovered on the fly as:

si,j = s
(0)
i · s

(1)
j

• The public key only needs to contain encryptions of the bits of
~s(0) and ~s(1).

• This brings down the size of this part of the public key to
about

√
Θ · γ = Õ(λ6.5). Full public key remains ≈ λ7 bits.

• We borrow additional optimizations from Gentry-Halevi to
further decrease key size and improve efficiency over DGHV:

• Generate the si ’s in a “boxed” manner to simplify the
decryption circuit.

• Use fewer bits of precision in the decryption process.
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How we picked concrete parameters

To propose concrete parameters for our schemes, we considered
known attacks and estimated their complexity in terms of CPU
cycles on a standard PC.

Attacks we considered:

• Brute force attack on the noise (with a refinement due to
Nguyen).

• Orthogonal lattice-based attack on the GACD problem.

• Lattice-based attack on the sparse subset-sum problem.
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Concrete parameters

Parameters λ ρ η γ β Θ

Toy 42 16 1088 1.6 · 105 12 144

Small 52 24 1632 0.86 · 106 23 533

Medium 62 32 2176 4.2 · 106 44 1972

Large 72 39 2652 19 · 106 88 7897

Parameters KeyGen Encrypt Expand Decrypt Recrypt PK size

Toy 4.38 s 0.05 s 0.03 s 0.01 s 1.92 s 0.95 MB
Small 36 s 0.79 s 0.46 s 0.01 s 10.5 s 9.6 MB
Medium 5 min 9 s 10 s 8.1 s 0.02 s 1 min 20 s 89 MB
Large 43 min 2 min 57 s 3 min 55 s 0.05 s 14 min 33 s 802 MB

Table: Concrete parameters and corresponding timings — SAGE
implementation on a single core of a 3 GHz Intel Core2 CPU.
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Concrete parameters

Parameters λ ρ η γ β Θ

Toy ≤ 38 16 1088 1.6 · 105 12 144

Small ≤ 46 24 1632 0.86 · 106 23 533

Medium ≤ 55 32 2176 4.2 · 106 44 1972

Large ≤ 67 39 2652 19 · 106 88 7897

However: new, more efficient attacks on the PACD and GACD
problems put up on eprint by Chen and Nguyen last week! In view
of these attacks, more conservative parameters should be picked to
reach the Gentry-Halevi security levels.

Another new attack by Cohn and Heninger should also be
considered (some work required to assess its bit complexity).
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Conclusion

• The conceptually simple DGHV fully homomorphic scheme
can be compressed into a scheme implementable on a
standard PC.

• But there is still a long way to go to achieve practicality.

• Ongoing progress:
• Exciting new developments by Brakerski, Gentry and

Vaikuntanathan!
• Can be applied to FHE over the integers (on eprint soon!).

• Simple trick to compress public keys much further (on eprint
now!).

• Possible to use polynomials of higher degree instead of
quadratic forms to achieve better efficiency.

• There is progress on attacking the underlying hard problems
as well.
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Thank you!
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