Merkle Puzzles in a Quantum World

Kassem Kalach

LITQ, DIRO Université de Montréal

Joint work with			
Gilles Brassard	Université de Montréal		
Peter Høyer	University of Calgary		
Marc Kaplan	Université de Montréal		
Sophie Laplante	Université Paris-Sud		
Louis Salvail	Université de Montréal		
СВУРТО 2011			

CRYPTO 2011 Santa Barbara, California, USA 17 August 2011

Key Distribution Problem

Challenge

Make the eavesdropping effort grow as much as possible in the legitimate effort (query complexity).

The First Seminal Solution [Merkle74]

- By Ralph Merkle in 1974, as a project proposal in course on computer security (CS244) at UC Berkeley.
- Rejected by the Professor.
- Initially rejected, it was eventually published in 1978 by Communications of the ACM.

Ms. Susan L. Graham Computer Science Division-EECS University of California, Berkeley Berkeley, California 94720

Dear Ms. Graham,

Thank you very kindly of your communication of October 7 with the enclosed paper on "Secure Communications over Insecure Channels". I am sorry to have to inform you that the paper is not in the main stream of present cryptography thinking and I would not recommend that it be published in the Communications of the ACM, for the following reasons:

CACM Editor

http://merkle.com/1974

The First Seminal Solution [Merkle74] (...)

Based on the birthday paradox.

Nice Property

Merkle scheme is provably secure in the random oracle model in contrast with schemes based on the assumed difficulty of some mathematical problems (such as RSA and Diffie-Hellman).

Security Characteristic

A protocol is secure if the eavesdropping effort grows super-linearly with the legitimate effort.

Alice

X	Y
x_1	$f(x_1)$
	•
x_i	$f(x_i)$
•	•
x_N	$f(x_N)$

Find one element of X: $s \in_R \operatorname{Dom}(f)$ $f(s) \in Y$? No!

Alice

X	Y
x_1	$f(x_1)$
	•
x_i	$f(x_i)$
•	•
x_N	$f(x_N)$

Find one element of X: $s \in_R \operatorname{Dom}(f)$ $f(s) \in Y$? No!

X	Y
x_1	$f(x_1)$
	•
x_i	$f(x_i)$
•	•
x_N	$f(x_N)$

 $f(s) \in Y$? Yes! Achieved in O(N)queries, based on the birthday paradox.

S

 $s \in_R \operatorname{Dom}(f)$

Security of Merkle's Scheme

S

S

Eavesdropper needs $\Omega(N^2)$ queries to find s

No!

Every key exchange protocol in the random oracle model can be broken in $O(N^2)$ queries.

[Barak, Mahmoody 08].

Problem settled: $\Theta(N^2)$ is best possible

Key Distribution à la Merkle in a Quantum World

Preliminary: Grover's Algorithm & its Generalization (BBHT)

Grover [Grover 96]

BBHT [Boyer, Brassard, Høyer, Tapp 96].

Search problem

Consider a black-box function of domain of size N, and t > 0distinct images of this function. The problem is to invert one of them.

- **BBHT's algorithm solves this problem after about** $\sqrt{N/t}$ quantum queries.
- To invert a specific image (t = 1), Grover's algorithm finds the solution after about \sqrt{N} quantum queries.
- This is optimal [Bennett, Bernstein, Brassard, Vazirani 97] and Zalka 99].

Security of Merkle's Scheme in a Quantum World

Alice

S

S

Eavesdropper finds s in $O(\sqrt{N^2}) = O(N)$ using Grover.

Motivating Questions

- 1. Can the quadratic security of Merkle's scheme be restored if legitimate parties make use of quantum powers as well?
- 2. Can every key exchange protocol in the random oracle model be broken in O(N) quantum queries when legitimate parties are classical?

Quantum Merkle Puzzles [Brassard, Salvail 08]

Alice

X	Y
x_1	$f(x_1)$
•	• •
x_i	$f(x_i)$
•	• •
x_N	$f(x_N)$

Find one element of *X*.

Quantum Merkle Puzzles [Brassard, Salvail 08]

Security of Quantum Merkle Puzzles

Alice

S

S

Eavesdropper finds s in $O(\sqrt{N^3}) = O(N^{3/2})$ using Grover. This is optimal.

Our First Contribution

Can we do better?

Yes! We devised a quantum protocol and proved its security of

 $\Omega(N^{5/3})$

Improved Quantum Merkle Puzzles [Our 1st Contribution]

Alice

X	Y
x_1	$f(x_1)$
	• •
x_i	$f(x_i)$
•	• • •
x_N	$f(x_N)$

Find two elements of *X*.

Using BBHT, this can be done in $O\left(\sqrt{\frac{N^3}{N}}\right) = O(N)$

quantum queries.

Improved Quantum Merkle Puzzles [Our 1st Contribution]

Given *w*, use table and bitwise **XOR** to find the secret.

(s, s')

Alice and Bob share a secret in O(N) queries

Bob

 $|1\rangle$

 $|0\rangle$

Security Proof of Our 1st Contribution

- 1. We devised an $O(N^{5/3})$ -query quantum attack.
- 2. We proved a matching lower bound of $\Omega(N^{5/3})$ queries.

Optimal Quantum Attack

- Based on quantum walks on Johnson graph.
- Adaptation of Ambainis' algorithm for the element distinctness problem [Ambainis 03], which is optimal [Aaronson, Shi 04].
- Done in $O(N^{5/3})$ queries.

Element Distinctness Problem

Decide if a function *c* given as black-box is one-to-one.

Solved in $\Theta(N^{2/3})$ quantum queries, for a domain of size *N*.

Why do we get $O(N \cdot N^{2/3})$?

- The domain of c is X of size N.
- X is embedded randomly in N^3 elements.
- Each query to c requires $\Theta(N)$ queries using BBHT.

 Θ

Lower Bound Proof Sketch

- 1. We defined a search problem related to element distinctness;
- 2. We proved $\Omega(N^{5/3})$ lower bound for this search problem; and
- 3. We reduced this search problem to the eavesdropping strategy against our protocol.

Lower Bound Proof Sketch (...)

Crucial observation

The defined search problem is the composition of a variant of element distinctness on N elements, with SEARCHing each element in a set of size N^2 .

- One would like to apply the composition theorem due to
 - Høyer, Lee and Špalek [2007] and
 - Lee, Mittal, Reichardt and Špalek [2010].
- Not applicable in our case because it requires the inner function (SEARCH) to be Boolean!
- ✤ We proved a new composition theorem using similar techniques; in particular the quantum eavesdropping effort is in: $\Omega(N^{2/3} \cdot N) = \Omega(N^{5/3})$

Question (more challenging!)

Can every key exchange protocol in the random oracle model be broken in O(N) quantum queries when legitimate parties are classical?

No!!!

We devised a classical protocol and proved its security of

 $\Theta(N^{7/6})$

Classical Protocol Secure Against a Quantum Adversary [2nd Contr.]

Alice

X	Y
x_1	$f(x_1)$
•	•
x_i	$f(x_i)$
•••••••••••••••••••••••••••••••••••••••	• •
x_N	$f(x_N)$

Find two elements of *X*.

Achieved in *O*(*N*) queries, based on the birthday paradox.

$$(s,s')$$

Classical Protocol Secure Against a Quantum Adversary [2nd Contr.]

X	Y	Z
x_1	$f(x_1)$	$t(x_1)$
•	• •	•
x_i	$f(x_i)$	$t(x_i)$
•	• •	•
x_N	$f(x_N)$	$t(x_N)$

Find two elements of *X*.

Achieved in *O*(*N*) queries, based on the birthday paradox.

Given *w*, use table and bitwise XOR to find the secret.

(s, s')

 $w = t(s) \oplus t(s')$

Quantum eavesdropper finds the secret in $\Theta(N^{7/6})$ queries. (Same attack and lower bound techniques)

Conclusion, Conjectures and Open Questions

	Alice/Bob	Quantum Eve	Classical Eve needs $\Theta(N^2)$
Merkle's	Classical	Θ(N)	
Our classical protocol	Classical	Θ(N ^{7/6})	
Brassard & Salvail's	Quantum	Θ(N ^{3/2})	
Our quantum protocol		Θ(N ^{5/3})	

Compared to our two protocols in the proceedings:

- This classical protocol improves over the $\Theta(N^{13/12})$ protocol.
- This quantum protocol is new, but with the same security.

Bonus...

We proved a new composition theorem for quantum query complexity.

Conclusion, Conjectures and Open Questions (...)

First open question

Are our two protocols optimal?

We conjecture they are not!

- We discovered a sequence of quantum protocols in which our most efficient quantum attack tends to $\Theta(N^2)$ queries.
- We discovered a sequence of classical protocols in which our most efficient quantum attack tends to $\Theta(N^{3/2})$ queries.

Are these attacks optimal?

Conclusion, Conjectures and Open Questions (...)

Other open questions

- 1. Is there a quantum protocol that exactly achieves quadratic security?
- 2. Is there a quantum protocol that achieves better than quadratic security?!!!
- 3. What is the optimal classical protocol?

Thanks!