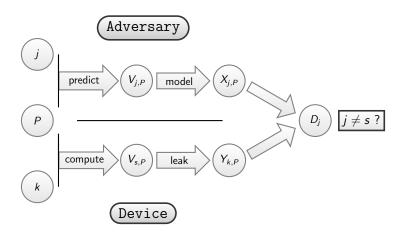
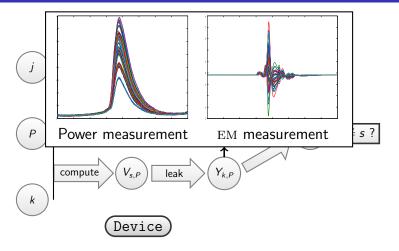
Generic Side-Channel Distinguishers: Improvements and Limitations


N. Veyrat-Charvillon and F-X. Standaert

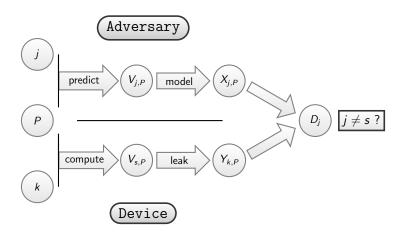
UCL Crypto Group, Université catholique de Louvain

CRYPTO 2011, August 16


ヘロト ヘロト ヘヨト ヘヨト

Evaluating Implementations With DPA Attacks

Main ingredients: leakage model & dependency test


Evaluating Implementations With DPA Attacks

Main ingredients: leakage model & dependency test

2/22

Evaluating Implementations With DPA Attacks

Main ingredients: leakage model & dependency test

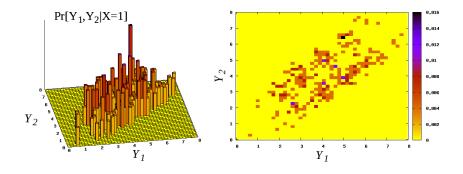
Ingredient 1: Leakage Models

Two adversarial scenarios:

- Profiled case: preliminary estimation of the leakage pdf
 - Gaussian distribution
 - Mixture model
 - . . .
- Non-profiled case: assumption on the leakages pdf (based on engineering intuition)
 - Hamming weight/distance
 - Linear (or quadratic, ...) function of bits
 - Identity function
 - **.**..

<ロ> (四) (四) (三) (三) (三)

Ingredient 2: Dependency Test


Different adversarial choices depending on:

- Number of samples used: univariate or multivariate
- Moment of the pdf exploited: mean, variance, ...
- Type of dependency tested: linear, monotonic, ...

Existing Tests: Efficiency vs. Genericity

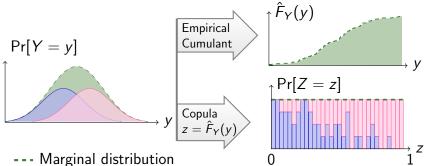
Pearson correlation	univariate	↑ Efficient
	mean	
	linear	
Spearman correlation	univariate	
	mean	
	monotonic	
Least Square Regression	multivariate	
	mean	
	MV linear	
Mutual information	multivariate	
	all moments	
	any dependency	[↓] Generic

Additional Concern: Choice of Parameters

- e.g. number of histogram bins
- (or kernel bandwidth, number of mixture components)

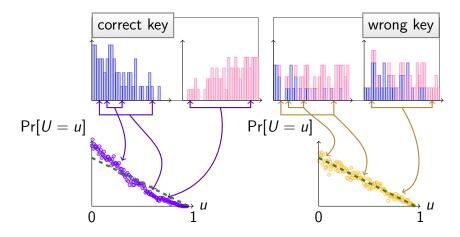
Open questions

- Question 1: can we design a generic side-channel distinguisher that is free of parameters?
- Question 2: can we evaluate side-channel attacks with non-profiled distinguishers only?


Our Contributions

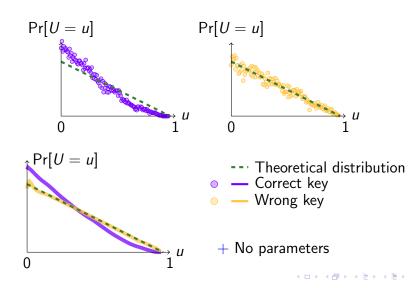
- w.r.t. question 1, a new distinguisher based on:
 - 1 leakage space reduction through copulas
 - 2 dimensionality reduction using spacings
 - 3 non-parametric uniformity test
- w.r.t. question 2: empirical evaluations showing:
 - 1 the efficiency of the new generic test
 - 2 the necessity of profiled security evaluations

<ロ> (日) (日) (日) (日) (日)


The new distinguisher

Tool 1: Leakage Space Reduction

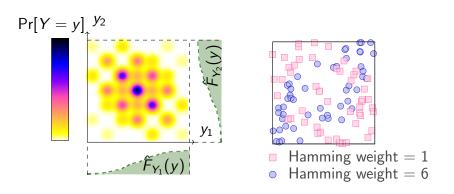
- Conditional distribution $X_{i,P} = 0$
- Conditional distribution $X_{i,P} = 1$
- + Cumulants are easier to estimate than pdfs
- Projected marginal distribution is uniform


Tool 2: Leakage Partition and Distance Sampling

+ Wrong key candidates should behave like uniform

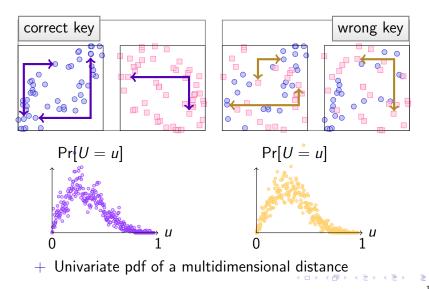
+ All model values contribute to the estimation

Tool 3: Smoothing and Evaluation

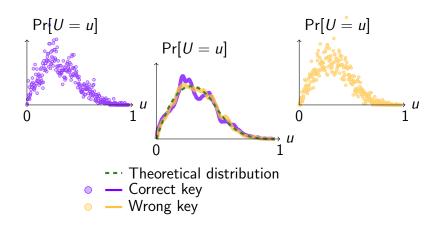


New Generic Test

Experiments

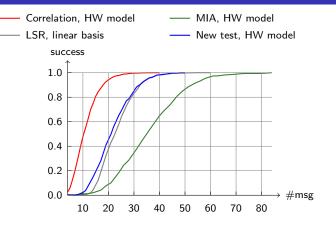

Conclusions

2D case: Leakage Space Reduction

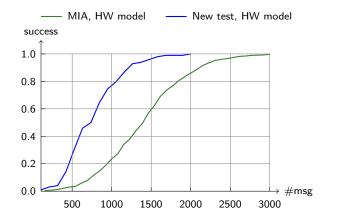


+ Copula transform preserves multivariate dependencies

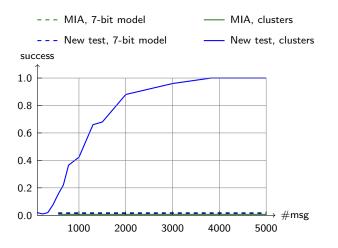
2D case: Leakage Partition and Distance Sampling


2D case: Smoothing and Evaluation

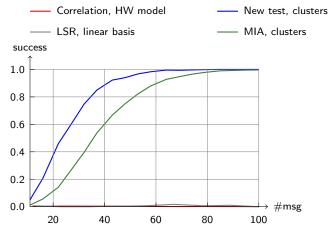
Experimental Results


Univariate Hamming Weight Leakages

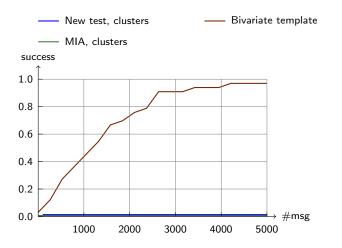
• Specific distinguishers are more efficient


(日) (同) (日) (日)

Hamming Weight Leakage, Bivariate Dependency


• New test exploits samples efficiently (compared to MIA)

CMOS 65 nm Measurements, Bivariate Dependency


• Leakage model hard to infer from engineering intuition

Dual-Rail Simulations, Univariate Dependency

Non-linear leakage functions can be exploited

Dual-Rail Simulations, Bivariate Dependency

• Profiling is needed to evaluate protected implementations

- **1** SCAs = efficiency vs. genericity tradeoff ('simple' dependencies are easier to exploit)
 - New generic test completely free of parameters
- 2 Profiling is needed for security evaluations
 - Dependency tests can be generic
 - ... but not leakage models (so far)
 - (Eurocrypt 2009 evaluation framework)

Open question: do highly non-linear leakage functions exist in practice? (or can non-linearity be used as a design criteria)