
Key-Evolution Schemes
Resilient to Space Bounded

Leakage

Stefan Dziembowski

Tomasz Kazana

Daniel Wichs

Main contribution

Properties:

 leakage-resilient

 in the random oracle model

We propose a secure scheme for

deterministic key-evolution

Outline

1. Key-Evolution Schemes Resilient to
Space Bounded Leakage

2. Key-Evolution Schemes Resilient to
Space Bounded Leakage

3. Previous results in the area

4. The model

5. Random Oracle Model – remarks

6. Result and proof techniques

Key-Evolution Schemes Resilient
to Space Bounded Leakage

CRYPTO

cryptographic device

Key-Evolution Schemes Resilient
to Space Bounded Leakage

cryptographic device

Side channel information:

 power consumption,

 electromagnetic leaks,

 timing information,

 etc.

Key-Evolution Schemes Resilient
to Space Bounded Leakage

cryptographic

scheme

(standard) black-box access

additional access

to the internal data

Key-Evolution Schemes Resilient
to Space Bounded Leakage

Generally speaking we model:

 Side-channel leakage

 Leakage caused by malicious

software (viruses etc.)

Key-Evolution Schemes
Resilient to Space Bounded

Leakage

K
3

= f(K2)

K
2

= f(K1)

K
1

= f(K0)

In each round the secret key K gets refreshed.

key evolution function f has to

be deterministic

K
i+1

 = f(K
i
)

(no refreshing with external

randomness)

K0

also the refreshing procedure

may cause leakage

New leakage in every round

Assumptions:

K
4

= f(K3)

Previous work on leakage-
resilient key-evolution

Kocher:

 Leakage function cannot make any
random oracle calls

 Output length is bounded slightly
smaller then |k|

Previous work on leakage-
resilient key-evolution

Yu Yu et al.:

 Leakage not adaptive

 Leakage function cannot evaluate hash
function (modeled as usual by random
oracle model)

Previous work on leakage-
resilient key-evolution

Dziembowski and Pietrzak:

 “only computation leaks information” model, so
data can leak if and and only if it is accessed

Our approach
middle-of-the-road approach

Most prior “practical” papers

 Simple and efficient

 Intuitive notion of security without formal
guarantees

Most prior “theoretical” papers
 Rigor and provable security
 Strong restrictions, eg.

 Only data actually used in
computation can leak

Modelling the leakage

“Memory attacks”, “Bounded-Retrieval Model”:

The adversary is allowed to learn any input-shrinking
function f of the secret:

K f f(K)

Problem

The function f can compute the “future keys”:

K0 K1 K100
. . .

compute K100 and leak from it

Moral: f has to be from a restricted class.

Our solution: limit f computationally.

we will assume that
f is

space bounded

The Model

big

device

read / write
send/ receive

small

memory

unlimited

limited

the “small” adversary can observe the key evolution and even partially control it

Security requirement: the “future keys” should remain secret.

The adversary can “partially
control“ the key-evolution

K0 K1 K100
. . .

small small small

The only thing that we require is that the
key gets really evolved.

Adversary can
use his own
algorithm for
evolving keys

Adversary can’t
keep K0 in the
memory and leak it
bit by bit because he
is forced to evolve

The model
remarks

 Random oracle model

 theoretical shortcoming

 The leakage function that can make
random oracle calls itself

 We DO NOT rely on the assumption
that only data used in the computation
can leak

The model
remarks

Secure against even against restricted
active attacks

 Model seems to be too strong in this
case.

However now it protects also against
implementation errors.

We work in Random Oracle
Model

Why isn't it obvious?!

Consider a following hash function:

Key 0

Key 1

Hash (RO)

PRG

You can leak here!

Another wrong idea

Key 0

Key T

RO call

Key 1

Each key is
divided into
blocks that
evaluates
independently
using RO

Our solution
Only the compression function is modelled as a random oracle.

Key 0

Key 1
= f(Key 0)

This is f
REMARKS:
1. 1. Additional

rows
between
keys

2. 2. It is cyclic

Note: this requires almost no additional space.

Our result

 We show that f described above is
secure key-evolution scheme in our
model

 c - amount of bits that the adversary
can retrieve in each round

 s – space that adversary can use
(includes K)

 We need:

4c + s ≤ 3 |K| / 2

A pinch of the proof

We define some specific game to be played on acyclic
graph with black and red pebbles

Some rules describing when it is legal to move a pebble
or to put new pebble on the graph

How do I play?
DETAILS IN THE PAPER

Goal: put a pebble on some specific vertices

Number of pebbles you can use is limited

When you achieve some intermediate goal vertex – you
get some new pebbles ≈ new round operation

Forget the model.
For a moment we
play a game.

Pebble game
Real adversary with
random oracle

A pinch of the proof

World A World B

Connection

GOAL!

memory

Small
adversary

Big
adversary

RO call

Key in
memory
inside

Key in
memory
outside

Random Oracle

read/write

rounds

A pinch of the proof

Intuition: It is hard to pebble
top row with limited number of
pebbles

...

...

...

...

Key 0

Key 1

Pebbling game corresponding to our
construction f:

You saw this graph
before. But – it used
to be a graph of the
order of calling RO.
Now it is a graph for
a game.

A pinch of the proof

Remark: Connection is not trivial!

Intermediate keys are not atoms

For example an adversary may delete
just few last bits of each key and “guess”
those when needed (so in fact adversary
may put just a part of pebble on a vertex)

The proof should somehow include
above possibility

Thank you!

