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Main contribution 

Properties: 

 
 leakage-resilient 

 in the random oracle model 

We propose a secure scheme for  
 

deterministic key-evolution 
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Key-Evolution Schemes Resilient 
to Space Bounded Leakage 

CRYPTO 

cryptographic device 



Key-Evolution Schemes Resilient 
to Space Bounded Leakage 

cryptographic device 

Side channel information:  

 

  power consumption,  

  electromagnetic leaks,   

  timing information, 

   etc. 



Key-Evolution Schemes Resilient 
to Space Bounded Leakage 

cryptographic 

scheme 

(standard) black-box access 

additional access 

to the internal data 



Key-Evolution Schemes Resilient 
to Space Bounded Leakage 

Generally speaking we model: 

 

 
 Side-channel leakage 

 
 Leakage caused by malicious 

software (viruses etc.) 
 



Key-Evolution Schemes 
Resilient to Space Bounded 

Leakage 

K
3 

= f(K2)  

K
2 

= f(K1)  

K
1 

= f(K0)  

In each round the secret key K gets refreshed. 

key evolution function f has to 

be deterministic 

K
i+1

 = f(K
i
) 

(no refreshing with external 

randomness) 

K0  

also the refreshing procedure 

may cause leakage 

New leakage in every round 

Assumptions: 

K
4 

= f(K3)  



Previous work on leakage-
resilient key-evolution 

Kocher: 

 Leakage function cannot make any 
random oracle calls 

 Output length is bounded slightly 
smaller then |k| 



Previous work on leakage-
resilient key-evolution 

Yu Yu et al.: 

 Leakage not adaptive 

 Leakage function cannot evaluate hash 
function (modeled as usual by random 
oracle model) 



Previous work on leakage-
resilient key-evolution 

Dziembowski and Pietrzak: 

 “only computation leaks information” model, so 
data can leak if and and only if it is accessed 

 

  



Our approach 
middle-of-the-road approach 

Most prior “practical” papers 

 Simple and efficient 

 Intuitive notion of security without formal 
guarantees 

Most prior “theoretical” papers 
 Rigor and provable security 
 Strong restrictions, eg. 

 Only data actually used in 
computation can leak 

 



Modelling the leakage 

“Memory attacks”, “Bounded-Retrieval Model”: 

 

The adversary is allowed to learn any input-shrinking 
function f of the secret: 

K f f(K) 



Problem 

The function f can compute the “future keys”: 

K0 K1 K100 
. . . 

compute K100 and leak from it  

Moral: f has to be from a restricted class. 
 
Our solution: limit f computationally. 
 
 

we will assume that  
f is  

space bounded 



The Model 

big 

device 

read / write 
send/ receive

 

small 

memory 

unlimited 

limited 

the “small” adversary can observe the key evolution and even partially control it 

Security requirement: the “future keys” should remain secret. 



The adversary can “partially 
control“ the key-evolution 

K0 K1 K100 
. . . 

small small small 

The only thing that we require is that the 
key gets really evolved. 

Adversary can 
use his own 
algorithm for 
evolving keys 

Adversary can’t 
keep K0 in the 
memory and leak it 
bit by bit because he 
is forced to evolve 



The model 
remarks 

 Random oracle model 

 theoretical shortcoming 
 

 The leakage function that can make 
random oracle calls itself 
 

 We DO NOT rely on the assumption 
that only data used in the computation 
can leak 



The model 
remarks 

Secure against even against restricted 
active attacks 

 Model seems to be too strong in this 
case.  
 
However now it protects also against 
implementation errors. 

 

 



We work in Random Oracle 
Model 

Why isn't it obvious?! 

Consider a following hash function: 

 

Key 0 

Key 1 

Hash (RO) 

PRG 

You can leak here! 



Another wrong idea 

Key 0 

Key T 

RO call 

Key 1 

Each key is 
divided into 
blocks that 
evaluates 
independently 
using RO 



Our solution 
Only the compression function is modelled as a random oracle. 

 

Key 0 

Key 1 
= f(Key 0) 

This is f 
REMARKS: 
1. 1. Additional 

rows 
between 
keys 

2. 2. It is cyclic 

Note: this requires almost no additional space. 



Our result 

 We show that f described above is 
secure key-evolution scheme in our 
model 

 c  - amount of bits that the adversary 
can retrieve in each round 

 s – space that adversary can use 
(includes K) 

  We need: 

4c + s ≤ 3 |K| / 2 



A pinch of the proof 

We define some specific game to be played on acyclic 
graph with black and red pebbles 

 

Some rules describing when it is legal to move a pebble 
or to put new pebble on the graph  

How do I play? 
DETAILS IN THE PAPER 

Goal: put a pebble on some specific vertices 

Number of pebbles you can use is limited 

When you achieve some intermediate goal vertex – you 
get some new pebbles ≈ new round operation 

Forget the model. 
For a moment we 
play a game. 



Pebble game 
Real adversary with 
random oracle 

A pinch of the proof 

World A World B 

Connection 

GOAL! 

memory 

Small 
adversary 

Big 
adversary 

RO call 

Key in 
memory 
inside 

Key in 
memory 
outside 

Random Oracle 

read/write 

rounds 



A pinch of the proof 

Intuition: It is hard to pebble 
top row with limited number of 
pebbles 

... 

... 

... 

... 

Key 0 

Key 1 

Pebbling game corresponding to our 
construction f: 

You saw this graph 
before. But – it used 
to be a graph of the 
order of calling RO. 
Now it is a graph for 
a game. 



A pinch of the proof 

Remark: Connection is not trivial! 

Intermediate keys are not atoms 
 
For example an adversary may delete 
just few last bits of each key and “guess” 
those when needed (so in fact adversary 
may put just a part of pebble on a vertex) 
 
The proof should somehow include 
above possibility 

 



Thank you! 


