
Introduction Generalized Sponge Serial MDS PHOTON Security Conclusion

The PHOTON Family of Lightweight Hash
Functions

Jian Guo, Thomas Peyrin, Axel Poschmann

CRYPTO 2011, 15 August 2011



Introduction Generalized Sponge Serial MDS PHOTON Security Conclusion

Outline

Introduction and Motivation

Generalized Sponge Construction

Efficient Serially Computable MDS Matrices

The PHOTON Family of Lightweight Hash Functions

The Security of PHOTON

Conclusion and Following Work



Introduction Generalized Sponge Serial MDS PHOTON Security Conclusion

Outline

Introduction and Motivation

Generalized Sponge Construction

Efficient Serially Computable MDS Matrices

The PHOTON Family of Lightweight Hash Functions

The Security of PHOTON

Conclusion and Following Work



Introduction Generalized Sponge Serial MDS PHOTON Security Conclusion

Lightweight hash functions

Why do we need lightweight hash functions ?

• RFID device authentication and privacy

• in most of the privacy-preserving RFID protocols proposed, a
hash function is required

• a basic RFID tag may have a total gate count of anywhere from
1000-10000 gates, with only 200-2000 gates budgeted for security

Main goal of PHOTON:
• minimize the hardware footprint

• hardware throughput and software performances are not the
most important criterias, but they must be acceptable



Introduction Generalized Sponge Serial MDS PHOTON Security Conclusion

Current picture

Standardized or SHA-3 hash functions are too big:
• MD5 (8001 GE), SHA-1 (6122 GE), SHA-2 (10868 GE)

• BLAKE (9890 GE), GRøSTL (14622 GE), JH (?), KECCAK (20790
GE), SKEIN (12890 GE)

Recently, new lightweight hash functions have been proposed:
• SQUASH (2646 GE) [Shamir 2005]

• MAME (8100 GE) [Yoshida et al. 2007]

• DM-PRESENT (1600 GE) and H-PRESENT (2330 GE) [Bogdanov
et al. 2008]

• ARMADILLO (4353 GE) [Badel et al. 2010]

• QUARK (1379 GE) [Aumasson et al. 2010]



Introduction Generalized Sponge Serial MDS PHOTON Security Conclusion

Current picture - graphically

collision
resistance

GE

232 264 296 2128

15000

12500

10000

7500

5000

2500
Th. Optimum

MD5

SHA1

SHA2
BLAKE

GROSTL

SKEIN

MAME
ARMADILLO2-E

ARMADILLO2-C
ARMADILLO2-B



Introduction Generalized Sponge Serial MDS PHOTON Security Conclusion

Current picture - graphically

collision
resistance

GE

232 264 296 2128

2500

2000

1500

1000

500

Th. optimum
PHOTON-256/32/32

S-QUARK

PHOTON-224/32/32D-QUARK

PHOTON-160/36/36
U-QUARK

H-PRESENT-128

PHOTON-128/16/16

DM-PRESENT-80

DM-PRESENT-128

PHOTON-80/20/16



Introduction Generalized Sponge Serial MDS PHOTON Security Conclusion

Outline

Introduction and Motivation

Generalized Sponge Construction

Efficient Serially Computable MDS Matrices

The PHOTON Family of Lightweight Hash Functions

The Security of PHOTON

Conclusion and Following Work



Introduction Generalized Sponge Serial MDS PHOTON Security Conclusion

Original sponge functions [Bertoni et al. 2007]

(bitrate) r bits

(capacity) c bits

m0

P

m1

P

m2

P

m3

P

r

c

bits

bits

z0

P

z1

P

z2

absorbing squeezing

n bits

A sponge function has been proven to be indifferentiable from a random
oracle up to 2c/2 calls to the internal permutation P. However, the best
known generic attacks have the following complexity (fix c = n):

• Collision: 2n/2

• Second-preimage: 2n/2

• Preimage: 2n−r



Introduction Generalized Sponge Serial MDS PHOTON Security Conclusion

Sponges vs Davies-Meyer

We would like to build the smallest possible hash function with no
better collision attack than generic (2n/2 operations). Thus we try to
minimize the internal state size:

• in a classical Davies-Meyer
compression function using a n-bit
block cipher with k-bit key, one needs to
store 2n + k bits. M

PCV CV′

• in sponge functions, one needs to store n + r bits.

Sponge function will require about half memory bits for
lightweight scenarios.



Introduction Generalized Sponge Serial MDS PHOTON Security Conclusion

Generalization

r bits

c bits

m0

P

m1

P

m2

P

m3

P
r′

c′

bits

bits

z0

P

z1

P

z2

absorbing squeezing

n bits

Sponges with small r are slow for small messages (which is a typical
usecase for lightweight applications, as an example EPC is 96 bit long).
Thus we can allow the output bitrate r′ to be different from the input
bitrate r and obtain a preimage security / small message speed tradeoff:

• Collision: 2n/2

• Second-preimage: 2n/2

• Preimage: 2n−r′ (vs 2n−r)



Introduction Generalized Sponge Serial MDS PHOTON Security Conclusion

Outline

Introduction and Motivation

Generalized Sponge Construction

Efficient Serially Computable MDS Matrices

The PHOTON Family of Lightweight Hash Functions

The Security of PHOTON

Conclusion and Following Work



Introduction Generalized Sponge Serial MDS PHOTON Security Conclusion

MDS Matrix
What is an MDS Matrix (“Maximum Distance Separable”) ?
• it is used as diffusion layer in many block ciphers and in

particular AES

• it has excellent diffusion properties. In short, for a d-cell vector,
we are ensured that at least d + 1 input / output cells will be
active ...

• ... which is very good for linear / differential cryptanalysis
resistance

The AES diffusion matrix can be
implemented fast in software
(using tables), but the situation is
not so great in hardware. Indeed,
even if the coefficients of the matrix
minimize the hardware footprint,
d− 1 cells of temporary memory
are needed for the computation.

v′ = A·v =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

·


v0
v1
v2
v3





Introduction Generalized Sponge Serial MDS PHOTON Security Conclusion

Efficient Serially Computable MDS Matrices

Idea: use a MDS matrix that can be efficiently computed in a serial way.

How to find it: build a very light matrix A and check if Ad is MDS.

A =

0BBBBBBBBBBBBBB@

0 1 0 0 · · · 0 0 0 0

0 0 1 0 · · · 0 0 0 0

.

.

.
.
.
.

0 0 0 0 · · · 0 1 0 0

0 0 0 0 · · · 0 0 1 0

0 0 0 0 · · · 0 0 0 1

Z0 Z1 Z2 Z3 · · · Zd−4 Zd−3 Zd−2 Zd−1

1CCCCCCCCCCCCCCA

• we keep the same good diffusion properties since Ad is MDS

• excellent in hardware (no additional memory cell needed)

• as good as AES in software, we can use d lookup tables

• same coefficients for deciphering, so the invert of the matrix is also
excellent in hardware



Introduction Generalized Sponge Serial MDS PHOTON Security Conclusion

Efficient Serially Computable MDS Matrices

Idea: use a MDS matrix that can be efficiently computed in a serial way.

How to find it: build a very light matrix A and check if Ad is MDS.0BBBBBBBBBBBBBB@

0 1 0 0 · · · 0 0 0 0

0 0 1 0 · · · 0 0 0 0

.

.

.
.
.
.

0 0 0 0 · · · 0 1 0 0

0 0 0 0 · · · 0 0 1 0

0 0 0 0 · · · 0 0 0 1

Z0 Z1 Z2 Z3 · · · Zd−4 Zd−3 Zd−2 Zd−1

1CCCCCCCCCCCCCCA
·

0BBBBBBBBBBBBBB@

v0

v1

.

.

.

vd−4

vd−3

vd−2

vd−1

1CCCCCCCCCCCCCCA
=

• we keep the same good diffusion properties since Ad is MDS

• excellent in hardware (no additional memory cell needed)

• as good as AES in software, we can use d lookup tables

• same coefficients for deciphering, so the invert of the matrix is also
excellent in hardware



Introduction Generalized Sponge Serial MDS PHOTON Security Conclusion

Efficient Serially Computable MDS Matrices

Idea: use a MDS matrix that can be efficiently computed in a serial way.

How to find it: build a very light matrix A and check if Ad is MDS.0BBBBBBBBBBBBBB@

0 1 0 0 · · · 0 0 0 0

0 0 1 0 · · · 0 0 0 0

.

.

.
.
.
.

0 0 0 0 · · · 0 1 0 0

0 0 0 0 · · · 0 0 1 0

0 0 0 0 · · · 0 0 0 1

Z0 Z1 Z2 Z3 · · · Zd−4 Zd−3 Zd−2 Zd−1

1CCCCCCCCCCCCCCA
·

0BBBBBBBBBBBBBB@

v0

v1

.

.

.

vd−4

vd−3

vd−2

vd−1

1CCCCCCCCCCCCCCA
=

0BBBBBBBBBBBBBB@

v1

.

.

.

1CCCCCCCCCCCCCCA

• we keep the same good diffusion properties since Ad is MDS

• excellent in hardware (no additional memory cell needed)

• as good as AES in software, we can use d lookup tables

• same coefficients for deciphering, so the invert of the matrix is also
excellent in hardware



Introduction Generalized Sponge Serial MDS PHOTON Security Conclusion

Efficient Serially Computable MDS Matrices

Idea: use a MDS matrix that can be efficiently computed in a serial way.

How to find it: build a very light matrix A and check if Ad is MDS.0BBBBBBBBBBBBBB@

0 1 0 0 · · · 0 0 0 0

0 0 1 0 · · · 0 0 0 0

.

.

.
.
.
.

0 0 0 0 · · · 0 1 0 0

0 0 0 0 · · · 0 0 1 0

0 0 0 0 · · · 0 0 0 1

Z0 Z1 Z2 Z3 · · · Zd−4 Zd−3 Zd−2 Zd−1

1CCCCCCCCCCCCCCA
·

0BBBBBBBBBBBBBB@

v0

v1

.

.

.

vd−4

vd−3

vd−2

vd−1

1CCCCCCCCCCCCCCA
=

0BBBBBBBBBBBBBB@

v1

v2

.

.

.

1CCCCCCCCCCCCCCA

• we keep the same good diffusion properties since Ad is MDS

• excellent in hardware (no additional memory cell needed)

• as good as AES in software, we can use d lookup tables

• same coefficients for deciphering, so the invert of the matrix is also
excellent in hardware



Introduction Generalized Sponge Serial MDS PHOTON Security Conclusion

Efficient Serially Computable MDS Matrices

Idea: use a MDS matrix that can be efficiently computed in a serial way.

How to find it: build a very light matrix A and check if Ad is MDS.0BBBBBBBBBBBBBB@

0 1 0 0 · · · 0 0 0 0

0 0 1 0 · · · 0 0 0 0

.

.

.
.
.
.

0 0 0 0 · · · 0 1 0 0

0 0 0 0 · · · 0 0 1 0

0 0 0 0 · · · 0 0 0 1

Z0 Z1 Z2 Z3 · · · Zd−4 Zd−3 Zd−2 Zd−1

1CCCCCCCCCCCCCCA
·

0BBBBBBBBBBBBBB@

v0

v1

.

.

.

vd−4

vd−3

vd−2

vd−1

1CCCCCCCCCCCCCCA
=

0BBBBBBBBBBBBBB@

v1

v2

.

.

.

vd−3

1CCCCCCCCCCCCCCA

• we keep the same good diffusion properties since Ad is MDS

• excellent in hardware (no additional memory cell needed)

• as good as AES in software, we can use d lookup tables

• same coefficients for deciphering, so the invert of the matrix is also
excellent in hardware



Introduction Generalized Sponge Serial MDS PHOTON Security Conclusion

Efficient Serially Computable MDS Matrices

Idea: use a MDS matrix that can be efficiently computed in a serial way.

How to find it: build a very light matrix A and check if Ad is MDS.0BBBBBBBBBBBBBB@

0 1 0 0 · · · 0 0 0 0

0 0 1 0 · · · 0 0 0 0

.

.

.
.
.
.

0 0 0 0 · · · 0 1 0 0

0 0 0 0 · · · 0 0 1 0

0 0 0 0 · · · 0 0 0 1

Z0 Z1 Z2 Z3 · · · Zd−4 Zd−3 Zd−2 Zd−1

1CCCCCCCCCCCCCCA
·

0BBBBBBBBBBBBBB@

v0

v1

.

.

.

vd−4

vd−3

vd−2

vd−1

1CCCCCCCCCCCCCCA
=

0BBBBBBBBBBBBBB@

v1

v2

.

.

.

vd−3

vd−2

1CCCCCCCCCCCCCCA

• we keep the same good diffusion properties since Ad is MDS

• excellent in hardware (no additional memory cell needed)

• as good as AES in software, we can use d lookup tables

• same coefficients for deciphering, so the invert of the matrix is also
excellent in hardware



Introduction Generalized Sponge Serial MDS PHOTON Security Conclusion

Efficient Serially Computable MDS Matrices

Idea: use a MDS matrix that can be efficiently computed in a serial way.

How to find it: build a very light matrix A and check if Ad is MDS.0BBBBBBBBBBBBBB@

0 1 0 0 · · · 0 0 0 0

0 0 1 0 · · · 0 0 0 0

.

.

.
.
.
.

0 0 0 0 · · · 0 1 0 0

0 0 0 0 · · · 0 0 1 0

0 0 0 0 · · · 0 0 0 1

Z0 Z1 Z2 Z3 · · · Zd−4 Zd−3 Zd−2 Zd−1

1CCCCCCCCCCCCCCA
·

0BBBBBBBBBBBBBB@

v0

v1

.

.

.

vd−4

vd−3

vd−2

vd−1

1CCCCCCCCCCCCCCA
=

0BBBBBBBBBBBBBB@

v1

v2

.

.

.

vd−3

vd−2

vd−1

1CCCCCCCCCCCCCCA

• we keep the same good diffusion properties since Ad is MDS

• excellent in hardware (no additional memory cell needed)

• as good as AES in software, we can use d lookup tables

• same coefficients for deciphering, so the invert of the matrix is also
excellent in hardware



Introduction Generalized Sponge Serial MDS PHOTON Security Conclusion

Efficient Serially Computable MDS Matrices

Idea: use a MDS matrix that can be efficiently computed in a serial way.

How to find it: build a very light matrix A and check if Ad is MDS.0BBBBBBBBBBBBBB@

0 1 0 0 · · · 0 0 0 0

0 0 1 0 · · · 0 0 0 0

.

.

.
.
.
.

0 0 0 0 · · · 0 1 0 0

0 0 0 0 · · · 0 0 1 0

0 0 0 0 · · · 0 0 0 1

Z0 Z1 Z2 Z3 · · · Zd−4 Zd−3 Zd−2 Zd−1

1CCCCCCCCCCCCCCA
·

0BBBBBBBBBBBBBB@

v0

v1

.

.

.

vd−4

vd−3

vd−2

vd−1

1CCCCCCCCCCCCCCA
=

0BBBBBBBBBBBBBB@

v1

v2

.

.

.

vd−3

vd−2

vd−1

v′0

1CCCCCCCCCCCCCCA

• we keep the same good diffusion properties since Ad is MDS

• excellent in hardware (no additional memory cell needed)

• as good as AES in software, we can use d lookup tables

• same coefficients for deciphering, so the invert of the matrix is also
excellent in hardware



Introduction Generalized Sponge Serial MDS PHOTON Security Conclusion

Tweaking AES for hardware: AES-HW

The smallest AES implementation requires 2400 GE with 263 GE dedicated
to the MixColumns layer (the matrix A is MDS).

A =

0BBB@
2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

1CCCA A−1 =

0BBB@
14 11 13 9
9 14 11 13

13 9 14 11
11 13 9 14

1CCCA

Our tweaked AES-HW implementation requires 2210 GE with 74 GE
dedicated to the MixColumnsSerial layer (the matrix (B)4 is MDS):

(B)4 =

0BBB@
0 1 0 0
0 0 1 0
0 0 0 1
1 2 1 4

1CCCA
4

=

0BBB@
1 2 1 4
4 9 6 17
17 38 24 66
66 149 100 11

1CCCA B−1 =

0BBB@
2 1 4 1
1 0 0 0
0 1 0 0
0 0 1 0

1CCCA



Introduction Generalized Sponge Serial MDS PHOTON Security Conclusion

Outline

Introduction and Motivation

Generalized Sponge Construction

Efficient Serially Computable MDS Matrices

The PHOTON Family of Lightweight Hash Functions

The Security of PHOTON

Conclusion and Following Work



Introduction Generalized Sponge Serial MDS PHOTON Security Conclusion

Domain extension algorithm

r bits

c bits

m0

P

m1

P

m2

P

m3

P

r′

c′

bits

bits

z0

P

z1

P

z2

absorbing squeezing

The (c + r)-bit, with c = n, internal state is viewed as a d× d matrix of s-bit
cells.

PHOTON-n/r/r′ d s
PHOTON-80/20/16 P100 5 4
PHOTON-128/16/16 P144 6 4
PHOTON-160/36/36 P196 7 4
PHOTON-224/32/32 P256 8 4
PHOTON-256/32/32 P288 6 8



Introduction Generalized Sponge Serial MDS PHOTON Security Conclusion

Internal permutations

AddConstants

d cells

d cells

s bits

SubCells

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

S
S
S
S
S
S
S
S

ShiftRows MixColumnsSerial

The internal permutations apply 12 rounds of an AES-like fixed-key
permutation:

• AddConstants: xor round-dependant constants to the first column

• SubCells: apply the PRESENT (when s = 4) or AES Sbox (when s = 8)
to each cell

• ShiftRows: rotate the i-th line by i positions to the left

• MixColumnsSerial: apply the special MDS matrix to each columns



Introduction Generalized Sponge Serial MDS PHOTON Security Conclusion

Outline

Introduction and Motivation

Generalized Sponge Construction

Efficient Serially Computable MDS Matrices

The PHOTON Family of Lightweight Hash Functions

The Security of PHOTON

Conclusion and Following Work



Introduction Generalized Sponge Serial MDS PHOTON Security Conclusion

Extended sponge claims
Our security claims:

• Collision: 2n/2

• Second-preimage: 2n/2

• Preimage: 2n−r′

For the security proofs, the internal permutation is modeled as a random
permutation:

• the problem is reduced to studying the quality of the PHOTON internal
permutations

• hermetic sponge-like strategy: it is assumed that the internal
permutations have no structural flaw, up to 2c/2 operations

• even if one finds a structural flaw for the internal permutations, it is
unlikely to turn it into an attack ...

• ... this is particularily true for PHOTON which has a very small bitrate
(i.e. the attacker has in practice a very small amount of freedom
degrees in order to use the distinguisher).



Introduction Generalized Sponge Serial MDS PHOTON Security Conclusion

AES-like fixed-key permutation security

• AES-like permutations are simple to understand, well studied,
provide very good security

• one can easily derive clear and powerful proofs on the minimal
number of active Sboxes for 4 rounds of the permutation:
(d + 1)2 active Sboxes for 4 rounds of PHOTON

• we avoid any key schedule issue since the permutations are
fixed-key

P100 P144 P196 P256 P288

differential path probability 2−216 2−294 2−384 2−486 2−882

differential probability 2−150 2−216 2−294 2−384 2−738

linear approximation probability 2−216 2−294 2−384 2−486 2−882

linear hull probability 2−150 2−216 2−294 2−384 2−702

Table: Upper bounds for the five PHOTON internal permutations.



Introduction Generalized Sponge Serial MDS PHOTON Security Conclusion

Other cryptanalysis techniques & results

• rebound attack: distinguishers for at most 8 rounds with complexity 28 or 216.

• cube testers: the best we could find within practical time complexity is at most
3 rounds for all PHOTON variants.

• zero-sum partitions: distinguishers for at most 8 rounds (for complexity
< 2c/2).

• algebraic attacks: the entire system for the internal permutations of PHOTON
consists of d2 · 12 · {21, 40} quadratic equations in d2 · 12 · {8, 16} variables.

• slide attacks on permutation level: all rounds of the internal permutation are
made different thanks to the round-dependent constants addition.

• slide attacks on operating mode level: the sponge padding rule from PHOTON
forces the last message block to be different from zero.

• rotational cryptanalysis: any rotation property in a cell will be directly
removed by the application of the Sbox layer.

• integral attacks: can reach 7 rounds with complexity 2s(2d−1).



Introduction Generalized Sponge Serial MDS PHOTON Security Conclusion

Outline

Introduction and Motivation

Generalized Sponge Construction

Efficient Serially Computable MDS Matrices

The PHOTON Family of Lightweight Hash Functions

The Security of PHOTON

Conclusion and Following Work



Introduction Generalized Sponge Serial MDS PHOTON Security Conclusion

Current picture - graphically

collision
resistance

GE

232 264 296 2128

2500

2000

1500

1000

500

Th. optimum
PHOTON-256/32/32

S-QUARK

PHOTON-224/32/32D-QUARK

PHOTON-160/36/36
U-QUARK

H-PRESENT-128

PHOTON-128/16/16

DM-PRESENT-80

DM-PRESENT-128

PHOTON-80/20/16



Introduction Generalized Sponge Serial MDS PHOTON Security Conclusion

Software implementations

hash function software speed (c/B)

PHOTON-80/20/16 95

PHOTON-128/16/16 156

PHOTON-160/36/36 116

PHOTON-224/32/32 227

PHOTON-256/32/32 135

Benchmarks done on an Intel(R) Core(TM) i7 CPU Q 720 cadenced at 1.60GHz



Introduction Generalized Sponge Serial MDS PHOTON Security Conclusion

Conclusion

The PHOTON family of hash functions

• is very simple, clean, based on the AES design strategy

• are the smallest hash functions published so far

• provides acceptable software performances

• provides provable security against classical linear/differential
cryptanalysis, and resists all known and recent attacks against
hash functions with a large security margin.

Latest results on https://sites.google.com/site/photonhashfunction/

https://sites.google.com/site/photonhashfunction/


Introduction Generalized Sponge Serial MDS PHOTON Security Conclusion

Following Work

LED (Light Encryption Device) is a 64-bit block cipher:

• can take any key size up to 128 bits
• reuses the serial MDS matrix idea
• is slightly smaller than PRESENT in hardware
• is “only” about three time slower than AES in software
• provides provable security against classical linear/differential

cryptanalysis ...
• ... both in single-key and related-key model

To appear in CHES 2011
Latest results on https://sites.google.com/site/ledblockcipher/

https://sites.google.com/site/ledblockcipher/


Introduction Generalized Sponge Serial MDS PHOTON Security Conclusion

Thank you!

Questions?


	Introduction and Motivation
	Generalized Sponge Construction
	Efficient Serially Computable MDS Matrices
	The PHOTON Family of Lightweight Hash Functions
	The Security of PHOTON
	Conclusion and Following Work

