Introducti	

Algebraic Structure

Automated Tools

Automatic Search of Attacks on round-reduced AES and Applications

Charles Bouillaguet Patrick Derbez Pierre-Alain Fouque

ENS, CNRS, INRIA Cascade

August 15, 2011

Introduction	Algebraic Structure	Automated Tools	Conclusion
●00000000		00000	000
Block-Cipher Cryp	tanalysis		

The Subject: an Attacker

- Objective: recover the secret key (or maybe distinguish from random)
- Resources:
 - ▶ Time: less than 2^k encryptions
 - Data: less than 2ⁿ plaintext/ciphertext pairs

Total Breaks of widely-used block ciphers are *relatively rare* (in comparison with hash functions/stream ciphers)

- First weaken it
- Then break it

- Solution # 1:
 - First weaken it (reduce number of rounds)
 - ► Then break it

What to do when	block ciphers are too s	trong for us?	
Introduction	Algebraic Structure	Automated Tools	Conclusion
00000000	00000	00000	

- Solution # 2:
 - First we get stronger
 - ► Then break it

What to do when	block ciphers are too st	trong for us?	
Introduction	Algebraic Structure	Automated Tools	Conclusion
00000000	00000	00000	

- **Solution # 2**:
 - First we get stronger (chosen ciphertexts,
 - ► Then break it

What to do when	block ciphers are too s	trong for us?	
Introduction	Algebraic Structure	Automated Tools	Conclusion
00000000	00000	00000	000

- Solution # 2:
 - ▶ First we get stronger (chosen ciphertexts, related keys, etc.)
 - ► Then break it

Introduction	Algebraic Structure	Automated Tools	Conclusion
00000000	00000	00000	000
Solution #3: Play	Another Game		

In this talk: Low Data Complexity Attacks

- Has to be faster than exhaustive search
- Only very few plaintext/ciphertext pairs available

Why ?

- Rather unexplored territory
- What is harder in practice?
 - ▶ **performing** 2⁵⁰ elementary operations?
 - or acquiring 50 Plaintext/Ciphertext pairs?
- LDC attacks can sometimes be recycled, and used as sub-components in other attacks
 - ▶ e.g. attack on GOST uses a 2-plaintext attack on 8 rounds

Target Block Cink	er: the Advanced Encr	votion Standard	
0000000	00000	00000	000
Introduction	Algebraic Structure	Automated Tools	Conclusion

- Designed by Rijmen and Daemen for AES competition
- Selected as the AES in 2001
- One of the most widely used encryption primitive
- AES basic structures :
 - Substitution-Permutation network
 - Block size: 16-bytes (128 bits)
 - key lengths: 128, 192 or 256 bits
 - 10 rounds for the 128-bit version

00000000	00000	00000	000
Introduction	Algebraic Structure Automated Tools	Automated Tools	Conclusio

Description of the AES

	C . I	. = 0		
000000000		00000	00000	000
Introduction		Algebraic Structure	Automated Tools	Conclusion

Description of the AES

- Single-key attacks up to :
 - 8 rounds on AES-128
 - 9 rounds on AES-192/256
- Related-subkey attacks on the full AES-256/AES-192
- Complexities just slightly less than the naturals bounds

Techniques fo	or Low Data Complexit	tv Attacks	
000000000	00000	00000	000
Introduction	Algebraic Structure	Automated Tools	Conclusion

The problem with "Usual" attack techniques

- Statistical attacks (e.g., differential, impossible, linear)
- "Golden-plaintext" attacks (e.g., reflexion, slide)

They require (VERY) LARGE QUANTITY of data

What's left?

- Algebraic Attacks/SAT-solvers ?
- Guess-and-Determine attacks
- Meet-in-the-Middle attacks

Techniques fo	or Low Data Complexit	tv Attacks	
000000000	00000	00000	000
Introduction	Algebraic Structure	Automated Tools	Conclusion

The problem with "Usual" attack techniques

- Statistical attacks (e.g., differential, impossible, linear)
- "Golden-plaintext" attacks (e.g., reflexion, slide)

They require (VERY) LARGE QUANTITY of data

What's left?

- Algebraic Attacks/SAT-solvers
- Guess-and-Determine attacks
- Meet-in-the-Middle attacks

$$E_{k_1,k_2} = AES_{k_1} \circ AES_{k_2}$$

For all k_1 , store $AES_{k_1}(P) \rightarrow k_1$ in a hash table

- For all k_1 , store $AES_{k_1}(P) \rightarrow k_1$ in a hash table
- For all k_2 , look-up $AES_{k_2}^{-1}(C)$ in the hash table

 $E_{k_1,k_2} = AES_{k_1} \circ AES_{k_2}$

AES

AES

Time complexity $\approx 2^{128}$ encryptions, with 256-bit keys!

For all k_1 , store $AES_{k_1}(P) \rightarrow k_1$ in a hash table

Cryptanalytic Too	ls		
Introduction	Algebraic Structure	Automated Tools	Conclusion
00000000	00000	00000	

We want to find Guess-n-determine/Meet-in-the-middle attacks

Standard Solution: build a tool to do the job for you!

We are not alone! *E.g.*, Tools to find **differential paths**:

DES [Matsui, 93], SHA-1 [de Cannière et. al, 06],
Grindhal [Peyrin et al., 07], RadioGatùn [Fuhr et al., 09],
MD4/MD5 [Leurent et al., 07], AES [Biryukov et al., 10], etc.

 $\begin{array}{ccc} \mbox{Introduction} & \mbox{Algebraic Structure} & \mbox{Automated Tools} & \mbox{Conclusion} \\ \mbox{occc} & \mbox{occc} & \mbox{occc} & \mbox{occc} \\ \end{array} \\ \hline \mbox{The AES Has a Clean Description over } \mathbb{F}_{256} \end{array}$

Is it a Problem?

- Concerns about the AES's algebraic simplicity have been expressed several times
- But so far, no attack directly exploited this property...

...Until now

Introduction	Algebraic Structure	Automated Tools	Conclusion
00000000	0000	00000	000
The AES Has a Bound Eunction	Clean Description o	ver \mathbb{F}_{256}	

- $k_0 = K$ (the master-key)
- $k_{i+1}[0] = k_i[0] + S(k_i[13]) + \text{RCON}_i$

- $k_0 = K$ (the master-key)
- $k_{i+1}[0] = k_i[0] + S(k_i[13]) + \text{RCON}_i$

•
$$k_{i+1}[1] = k_i[1] + S(k_i[14])$$

- $k_0 = K$ (the master-key)
- $k_{i+1}[0] = k_i[0] + S(k_i[13]) + \text{RCON}_i$
- $k_{i+1}[1] = k_i[1] + S(k_i[14])$
- $k_{i+1}[2] = k_i[2] + S(k_i[15])$

- $k_0 = K$ (the master-key)
- $k_{i+1}[0] = k_i[0] + S(k_i[13]) + \text{RCON}_i$
- $k_{i+1}[1] = k_i[1] + S(k_i[14])$
- $k_{i+1}[2] = k_i[2] + S(k_i[15])$
- $k_{i+1}[3] = k_i[3] + S(k_i[12])$

 Introduction
 Algebraic Structure
 Automated Tools
 Conclusion

 000000000
 00000
 00000
 0000

 The AES Has a Clean Description over F256
 F256

- $k_0 = K$ (the master-key)
- $k_{i+1}[0] = k_i[0] + S(k_i[13]) + \text{RCON}_i$
- $k_{i+1}[1] = k_i[1] + S(k_i[14])$
- $k_{i+1}[2] = k_i[2] + S(k_i[15])$
- $k_{i+1}[3] = k_i[3] + S(k_i[12])$
- $k_{i+1}[4..7] = k_{i+1}[4..7] + k_i[0..3]$

 Introduction
 Algebraic Structure
 Automated Tools
 Conclusion

 000000000
 00000
 00000
 00000

 The AES Has a Clean Description over \mathbb{F}_{256} Key-Schedule

- $k_0 = K$ (the master-key)
- $k_{i+1}[0] = k_i[0] + S(k_i[13]) + \text{RCON}_i$
- $k_{i+1}[1] = k_i[1] + S(k_i[14])$
- $k_{i+1}[2] = k_i[2] + S(k_i[15])$
- $k_{i+1}[3] = k_i[3] + S(k_i[12])$
- $k_{i+1}[4..7] = k_{i+1}[4..7] + k_i[0..3]$
- $k_{i+1}[8..11] = k_{i+1}[8..11] + k_i[4..7]$

 Introduction
 Algebraic Structure
 Automated Tools
 Conclusion

 000000000
 00000
 00000
 00000

 The AES Has a Clean Description over \mathbb{F}_{256}

 Key-Schedule

- $k_0 = K$ (the master-key)
- $k_{i+1}[0] = k_i[0] + S(k_i[13]) + \text{RCON}_i$
- $k_{i+1}[1] = k_i[1] + S(k_i[14])$
- $k_{i+1}[2] = k_i[2] + S(k_i[15])$
- $k_{i+1}[3] = k_i[3] + S(k_i[12])$
- $k_{i+1}[4..7] = k_{i+1}[4..7] + k_i[0..3]$
- $k_{i+1}[8..11] = k_{i+1}[8..11] + k_i[4..7]$
- $k_{i+1}[12..15] = k_{i+1}[12..15] + k_i[8..11]$

Working With the	Equations		
Introduction	Algebraic Structure	Automated Tools	Conclusion
00000000	000●0	00000	000

The equations describing the AES are:

- **sparse**: each equation relates, at most, five variables
- structured: each variable appears in, at most, four equations
- linear over \mathbb{F}_{256} in x_i and $S(x_i)$

Solving systems of AES-like equations would break the cipher

Working With the	Equations		
Introduction	Algebraic Structure	Automated Tools	Conclusion
00000000	000●0	00000	000

The equations describing the AES are:

- **sparse**: each equation relates, at most, five variables
- structured: each variable appears in, at most, four equations
- linear over \mathbb{F}_{256} in x_i and $S(x_i)$

- Solving systems of AES-like equations would break the cipher
- No interesting result at this point

The structure of the equations makes:

- the search procedure (somewhat) easy
- the results (sometimes) interesting

Introduction	Algebraic Structure	Automated Tools	Conclusion
00000000	00000	●0000	000
Harnessing The A Guess-and-Determine	lgebraic Simplicity Attacks		

The equations are **sparse**

All terms known except one: knowledge propagation

$$e.g. \quad \mathbf{x_i} + S(\mathbf{z_j}) + 03 \cdot \mathbf{z_k} = 0$$

The equations are **linear** over \mathbb{F}_{256} in x_i and $S(x_i)$

Gaussian elimination allows more knowledge propagation:

e.g.
$$\begin{cases} \mathbf{x}_i + S(\mathbf{z}_j) + 03 \cdot \mathbf{z}_k & +7\mathbf{f} \cdot \mathbf{u}_\ell = 0\\ 3\mathbf{d} \cdot \mathbf{x}_j & +56 \cdot \mathbf{z}_k + S(\mathbf{v}_r) & +9\mathbf{a} \cdot \mathbf{u}_\ell = 0\\ \mathbf{c} 2 \cdot \mathbf{y}_s & +84 \cdot \mathbf{z}_k + \mathbf{c} \mathbf{f} \cdot S(\mathbf{v}_r) & = 0 \end{cases}$$

All terms known except one in a linear combination

Introduction	Algebraic Structure	Automated Tools	Conclusion
00000000	00000	○●○○○	000
Harnessing The A	gebraic Simplicity		

Guess-and-Determine Attacks

A Tentative Guess-and-determine Attack Search Procedure

- For all possible subset X of the variables
 - Assume X is known
 - While knowledge propagation gives a new variable y do
 - $X \leftarrow Y \cup \{y\}$
 - If X contains all the variables, then report possible solver.
- When done (or timeout) return best solver found so far

Introduction	Algebraic Structure	Automated Tools	Conclusion
00000000	00000	00●00	000
Harnessing The A Meet-in-the-Middle A	Igebraic Simplicity		

The equations are **linear** over \mathbb{F}_{256} in x_i and $S(x_i)$

$$\begin{array}{l} f_1(x,y,z,u,v,t) = 0\\ f_2(x,y,z,u,v,t) = 0\\ f_3(x,y,z,u,v,t) = 0\\ f_4(x,y,z,u,v,t) = 0 \end{array} \implies \underbrace{\begin{pmatrix} g_1(x,y,z)\\ g_2(x,y,z)\\ g_3(x,y,z)\\ g_4(x,y,z) \end{pmatrix}}_{G(x,y,z)} = \underbrace{\begin{pmatrix} h_1(u,v,t)\\ h_2(u,v,t)\\ h_3(u,v,t)\\ h_4(x,y,z) \end{pmatrix}}_{H(u,v,t)}$$

MitM solver:

- ▶ for all x, y, z, store $G(x, y, z) \mapsto (x, y, z)$ in a hash table
- for all u, v, t, look-up H(u, v, t) in the hash table
- We expect one value of (x, y, z) per value of (u, v, t).

Introduction	Algebraic Structure	Automated Tools	Conclusion
00000000	00000	000●0	000
Harnessing The A Meet-in-the-Middle A	Algebraic Simplicity Attacks		

Idea: partition the set of variables in two halves

$$F(x, y, z, t, u, v) = 0 \iff G(x, y, z) = H(t, u, v)$$

We may choose the partition as we please

Objective:

Find a partition $X_1 \cup Y_1$ such that some linear combinations of the equations only contain $x_1, S(x_1), x_2, S(x_2), \ldots$ [respectively $y_1, S(y_1), \ldots$].

$$F(x, y, z, t, u, v) = 0 \iff \begin{cases} G_1(x, y, z) = H_1(t, u, v) \\ G_2(x, y, z) = 0 \\ 0 = H_2(t, u, v) \end{cases}$$

Introduction	Algebraic Structure	Automated Tools	Conclusion
00000000	00000		000
Harnessing The Al	gebraic Simplicity		

Recursive Meet-in-the-Middle Attacks

$$F(x, y, z, t, u, v) = 0 \iff \begin{cases} G_1(x, y, z) = H_1(t, u, v) \\ G_2(x, y, z) = 0 \\ 0 = H_2(t, u, v) \end{cases}$$

Improved Solving Algorithm

- for all (x, y, z) such that $G_2(x, y, z) = 0$
 - Store $G_1(x,y,z)
 ightarrow (x,y,z)$ in a hash table
- for all (u, v, t) such that $H_2(u, v, t) = 0$
 - Look-up $H_1(u, v, t)$ in the hash table
- Each collision suggests a complete solution

Introduction	Algebraic Structure	Automated Tools	Conclusion
00000000	00000		000
Harnessing The Al	gebraic Simplicity		

Recursive Meet-in-the-Middle Attacks

$$F(x, y, z, t, u, v) = 0 \iff \begin{cases} G_1(x, y, z) = H_1(t, u, v) \\ G_2(x, y, z) = 0 \\ 0 = H_2(t, u, v) \end{cases}$$

Improved Solving Algorithm

- for all (x, y, z) such that $G_2(x, y, z) = 0$
 - Store $G_1(x,y,z)
 ightarrow (x,y,z)$ in a hash table
- for all (u, v, t) such that $H_2(u, v, t) = 0$
 - Look-up $H_1(u, v, t)$ in the hash table
- Each collision suggests a complete solution

A solver for the full problem can be **constructed recursively** from two solvers for smaller sub-problems.

Results			
Introduction	Algebraic Structure	Automated Tools	Conclusion
000000000		00000	●00

Attacks on round reduced version of the AES-128

		Тоо	l-found	Human-found
#Rounds	Data	Time	Memory	Time
1	1 KP	2 ³²	2 ¹⁶	248
2	1 KP	2 ⁶⁴	2 ⁴⁸	280
2	2 KP	2 ³²	2 ²⁴	2 ⁴⁸
2	2 CP	2 ⁸	2 ⁸	2 ²⁸
3	1 KP	2 ⁹⁶	272	
3	2 CP	2 ¹⁶	2 ⁸	2 ³²
4	1 KP	2 ¹²⁰	2 ⁸⁰	
4	2 CP	2 ⁸⁰	2 ⁸⁰	2 ¹⁰⁴
4	4 CP	2 ³²	2 ²⁴	
4	5 CP			2 ⁶⁴
4.5	1 KP	2 ¹²⁰	2 ⁹⁶	

The attacks that are practical have been implemented and verified

Results (cont'd)			
Introduction		Algebraic Structure	Automated Tools	Conclusion
000000000		00000	00000	⊙●⊙

The method is somewhat generic, and applies to AES, SQUARE, PHOTON, SkipJack, LEX, Alpha-MAC, Pelican-MAC, etc.

Pelican-MAC

Recovers the internal state (allows forgery) given an internal state collision, by solving in practice:

$$AES_4(x) + AES_4(x + \Delta_i) = \Delta_o.$$

Allows to break the MAC in 2^{64} queries (fastest known attack).

LEX

Instantly rediscovers the best known differential attack in time 2^{100} . Finds a higher-order differential attack of complexity 2^{80} (fastest known attack, but success probability = 1/32 if keystream size is restricted according to specification).

Conclusion			
00000000	00000	00000	000
Introduction	Algebraic Structure	Automated Tools	Conclusion

Summary

- New process to solve equations describing the AES
- Find automatically the best low data complexity attacks on round-reduced AES, Pelican-MAX, LEX
- ► Can generate the C++ code of the attacks

More importantly

Tool available at:

```
http://www.di.ens.fr/~bouillaguet/
```

Long version of this paper, with more attacks descriptions, soon to be released.