Automatic Search of Attacks
on round-reduced AES and Applications

Charles Bouillaguet Patrick Derbez Pierre-Alain Fouque

ENS, CNRS, INRIA Cascade

August 15, 2011

Introduction
©00000000

Block-Cipher Cryptanalysis

The Object: a Block Cipher
E:{0,1}* x {0,1}" — {0,1}"
——— N ~———
key plaintext ciphertext

often k = n, but not always (e.g. AES-256: n = 128 and k = 256)

The Subject: an Attacker

> Ob_]eCtlve recover the secret key (or maybe distinguish from random)
> Resources:

» Time: less than 2% encryptions
» Data: less than 2" plaintext/ciphertext pairs

Total Breaks of widely-used block ciphers are relatively rare (in
comparison with hash functions/stream ciphers)

Introduction
0@0000000

What to do when block ciphers are too strong for us?

» Solution # 1:

» First weaken it
» Then break it

Plaintext

Ciphertext

Introduction
0@0000000

What to do when block ciphers are too strong for us?

» Solution # 1:

» First weaken it (reduce number of rounds)
» Then break it

Plaintext

Ciphertext

Introduction
[e1e] Yololelelele)

What to do when block ciphers are too strong for us?

» Solution # 2:

» First we get stronger
» Then break it

Introduction
[e1e] Yololelelele)

What to do when block ciphers are too strong for us?

» Solution # 2:

» First we get stronger (chosen ciphertexts,)
» Then break it

Introduction
[e1e] Yololelelele)

What to do when block ciphers are too strong for us?

» Solution # 2:

» First we get stronger (chosen ciphertexts, related keys, etc.)
» Then break it

Introduction
[ee]eY Tolelelele)

Solution #3: Play Another Game

In this talk: Low Data Complexity Attacks 0“
L
» Has to be faster than exhaustive search

» Only very few plaintext/ciphertext pairs available

» Rather unexplored territory

» What is harder in practice?

» performing 2°° elementary operations?
» or acquiring 50 Plaintext/Ciphertext pairs?

» LDC attacks can sometimes be recycled, and used as
sub-components in other attacks

» e.g. attack on GOST uses a 2-plaintext attack on 8 rounds

Introduction
0000®0000

Target Block Cipher: the Advanced Encryption Standard

v

Designed by Rijmen and Daemen for AES competition
Selected as the AES in 2001
One of the most widely used encryption primitive

AES basic structures :

Substitution-Permutation network
Block size: 16-bytes (128 bits)
key lengths: 128, 192 or 256 bits
10 rounds for the 128-bit version

v

v

v

vV vy Vvyy

Introduction
00000®000

Description of the AES

Z; w;
ofa]8(12 \ ARK
1]5]9[T3] SB SR. IMC D
2|6 (10[14 YF
37]11f15 3|7 11|15 15| 3 5

e Yi ’

ShiftRows MixColumns

Introduction
00000®000

Description of the AES

Z; w;
0f4]8(12 \ ARK
1{5]9(T3] SB SR. IMC M
2| 6]10[14 YF
3| 7]|11|15 3| 7|11|15 15| 3 ke

e Yi '
ShiftRows MixColumns

» Single-key attacks up to :

» 8 rounds on AES-128
» 9 rounds on AES-192/256

» Related-subkey attacks on the full AES-256/AES-192

» Complexities just slightly less than the naturals bounds

Introduction
000000e00

Techniques for Low Data Complexity Attacks

The problem with “Usual” attack techniques

» Statistical attacks (e.g., differential, impossible,linear)

» “Golden-plaintext” attacks (e.g., reflexion, slide)

They require (VERY) LARGE QUANTITY of data

What's left?
» Algebraic Attacks/SAT-solvers ?

» Guess-and-Determine attacks
» Meet-in-the-Middle attacks

Introduction
000000e00

Techniques for Low Data Complexity Attacks

The problem with “Usual” attack techniques

» Statistical attacks (e.g., differential, impossible,linear)

» “Golden-plaintext” attacks (e.g., reflexion, slide)

They require (VERY) LARGE QUANTITY of data

What's left?
 Algebraic Attacks/SAT-solvers

» Guess-and-Determine attacks
» Meet-in-the-Middle attacks

Introduction
000000080

Meet-in-the-Middle Attacks

A to build an AES with 256-bit keys

kl k2

Eq.k, = AES), o AES),

Introduction
000000080

Meet-in-the-Middle Attacks

A to build an AES with 256-bit keys

kl k2

Eq.k, = AES), o AES),

» For all ki, store AESy, (P) — ki in a hash table

Introduction
000000080

Meet-in-the-Middle Attacks

A to build an AES with 256-bit keys

kl k2

Eq.k, = AES), o AES),

» For all ki, store AESy, (P) — ki in a hash table
» For all ko, look-up AES,;1 (C) in the hash table

Introduction
000000080

Meet-in-the-Middle Attacks

A to build an AES with 256-bit keys

kl k2

Eq.k, = AES), o AES),

» For all ki, store AESy, (P) — ki in a hash table
» For all ko, look-up AES,;1 (C) in the hash table
» We expect = 1 value of k; per value of kp

2128

Time complexity ~ encryptions, with 256-bit keys!

Introduction
00000000e

Cryptanalytic Tools

We want to find Guess-n-determine/Meet-in-the-middle attacks

Problems

» We are lazy

> It is delicate and complicated, and nearly made us crazy

Standard Solution: build a tool to do the job for you!

We are not alone! E.g., Tools to find differential paths:
DES [Matsui, 93], SHA-1 [de Canniére et. al, 06],

Grindhal [Peyrin et al., 07], RadioGatun [Fuhr et al., 09],
MD4/MD5 [Leurent et al., 07], AES [Biryukov et al., 10], etc.

Algebraic Structure
©0000

The AES Has a Clean Description over Fys6

Is it a Problem?

» Concerns about the AES's algebraic simplicity have been
expressed several times

» But so far, no attack directly exploited this property...

...Until now

Algebraic Structure
0®000

The AES Has a Clean Description over Fosq
Round Function

Zi W;
ol4]s(12 \ ARK
1|5[9|13] SB SR MC M
2[6]10[14 \f/
3|7 |11f1s 37115 15[3] 7 i
ShiftRows MixColumns
yill] = S(xild])
02 03 01 01 vilo] yil4] i8] yi[12]
01 02 03 01 vil5] vil9] yi[13] yi[1]
Xi+1 = X + ki
01 01 02 03 yi[10] yi[14] yi[2] yil6]

03 01 01 02 vi[18] yil3] yil7]l yi[11]

Algebraic Structure
[eeY Yolo)

The AES Has a Clean Description over Fosq
Key-Schedule

» ko = K (the master-key)

kit1

The AES Has a Clean Description over Fys6

Algebraic Structure

[ele] lele]

Key-Schedule

kit1

-

al

» ko = K (the master-key)
> k,'+1[0] = k,[O] + 5(k,[13]) + RCON;

The AES Has a Clean Description over Fys6

Algebraic Structure

[ele] lele]

Key-Schedule

» ko = K (the master-key)
> ki+1[0] = ki[0] + S(ki[13]) + RCON;

Algebraic Structure

The AES Has a Clean Description over Fys6

Key-Schedule

[ele] lele]

v

v

v

v

ko = K (the master-key)

ki+1[0] = ki[0] + S(ki[13]) + RCON;
kiv1[1] = ki[1] + S(ki[14])

ki+1[2] = ki[2] + S(ki[15])

The AES Has a Clean Description over Fys6

Key-Schedule

Algebraic Structure

._

kit1

[ele] lele]

v

v

v

v

v

ko = K (the master-key)

ki+1[0] = ki[0] + S(ki[13]) + RCON;
kiv1[1] = ki[1] + S(ki[14])

ki+1[2] = ki[2] + S(ki[15])

ki+1[3] = Ki[3] + S(ki[12])

Algebraic Structure

[ele] lele]

The AES Has a Clean Description over Fys6
Key-Schedule

» ko = K (the master-key)

> kiy1[0] = k;i[0] + S(k;[13]) + RCON;
> kip1[l] = ki[1] + S(k;[14])

> kis1[2] = Ki2] + S(ki[15])

> kit1[3] = ki[3] + S(ki[12])

> kiy1[4..7] = kiz1[4..7] + ki[0..3]

kit1

Algebraic Structure
[eeY Yolo)

The AES Has a Clean Description over Fys6
Key-Schedule

» ko = K (the master-key)

> kiy1[0] = k;i[0] + S(k;[13]) + RCON;
> kipa[1] = ki[1] + S(Ki[14])

> ki1[2] = ki[2] + S(k;[15])

> kit1[3] = ki[3] + S(ki[12])

> kiy1[4..7] = kiy1[4..7] + k;[0..3]
ki1 > kip1[8..11] = ki11[8..11] + ki[4..7]

Algebraic Structure

[ele] lele]

The AES Has a Clean Description over Fys6
Key-Schedule

» ko = K (the master-key)

> kiy1[0] = k;i[0] + S(k;[13]) + RCON;

> kipa[1] = ki[1] + S(Ki[14])

> ki1[2] = ki[2] + S(k;[15])

> kit1[3] = ki[3] + S(ki[12])

> kiy1[4..7] = kiy1[4..7] + k;[0..3]

ki1 > kip1[8..11] = ki11[8..11] + ki[4..7]

> kip1[12..15] = kiy1[12..15] + ki[8..11]

Algebraic Structure
000e0

Working With the Equations

The equations describing the AES are:
> sparse: each equation relates, at most, five variables

> structured: each variable appears in, at most, four equations

» linear over Fose in x; and S (x;)

Algebraic Cryptanalysis: have a go at the equations

Solver

(SAT, Grébner)

Equations Key

» Solving systems of AES-like equations would break the cipher

Algebraic Structure
000e0

Working With the Equations

The equations describing the AES are:
> sparse: each equation relates, at most, five variables

> structured: each variable appears in, at most, four equations

» linear over Fose in x; and S (x;)

Algebraic Cryptanalysis: have a go at the equations

Solver

(SAT, Grébner)

Equations Key

Time complexity?

» Solving systems of AES-like equations would break the cipher

» No interesting result at this point

Algebraic Structure
ooooe

Our Approach to Solve Systems of AES-like equations

r Expected complexity of Solver

Equations @ C++\

v

The Tool looks at the equations
Searches for a G-n-D/MitM “solver”

When found, code of the solver is generated

v

Solver

v

v

The solver is run to actually solve the system Key
The structure of the equations makes:
» the search procedure (somewhat) easy

> the results (sometimes) interesting

Automated Tools
©0000

Harnessing The Algebraic Simplicity
Guess-and-Determine Attacks

The equations are sparse

All terms known except one: knowledge propagation

eg xi+5(z)+03.-z=0

The equations are linear over Fys6 in x; and S (x;)

Gaussian elimination allows more knowledge propagation:

xi +5(z;)) +03-z +7f-u = 0
e.g. 3d - x; +56 -z, +S(v,) +9a-u = 0
c2-ys +84 -z, +cf-S(v) =0

All terms known except one in a linear combination

Automated Tools
0®000

Harnessing The Algebraic Simplicity
Guess-and-Determine Attacks

A Tentative Guess-and-determine Attack Search Procedure

» For all possible subset X of the variables
» Assume X is known

» While knowledge propagation gives a new variable y do
» X+ YU{y}

» If X contains all the variables, then report possible solver.

» When done (or timeout) return best solver found so far

Automated Tools
[eeX Yolo)

Harnessing The Algebraic Simplicity
Meet-in-the-Middle Attacks

The equations are linear over Fas6 in x; and S (x;)

fa(x,y,z,u,v,t) =0 gi(x,y,z) hi(u,v,t)
f(x,y,z,u,v,t) =0 . (x,y,z) | | ho(u, v, t)
B(x,y,z,u,v,t) =0 g(x,y,2) | | hs(u,v,t)
ﬂL(X y,Z,U,v, t) 0 g4(X7y7) h4(X7y7)
G(x,y,z) H(u,v,t)

MitM solver:
» for all x, y, z, store G(x,y,z) +— (x,y,Zz) in a hash table
» for all u,v,t, look-up H(u,v,t) in the hash table

» We expect one value of (x, y, z) per value of (u, v, t).

Automated Tools
000e0

Harnessing The Algebraic Simplicity
Meet-in-the-Middle Attacks

> ldea: partition the set of variables in two halves
F(x,y,z,t,u,v) =0<= G(x,y,z) = H(t,u,v)

» We may choose the partition as we please

Find a partition X3 U Y7 such that some linear combinations of the
equations only contain x1, S(x1), x2, S(x2), ... [respectively
y1,5(n),-- -1
Gi(x,y,z) = Hi(t,u,v)
F(x,y,z,t,u,v) =0 <= G(x,y,z) = 0
0 = Ha(t,u,v)

Automated Tools
ooooe

Harnessing The Algebraic Simplicity
Recursive Meet-in-the-Middle Attacks

Gi(x,y,z) Hi(t, u,v)
F(x,y,z,t,u,v) =0<= < Ga(x,y,z) = 0
0 = Ha(t,u,v)

Improved Solving Algorithm

» for all (x,y, z) such that Gy(x,y,z) =0
» Store Gi(x,y,z) — (x,y,Zz) in a hash table

» for all (u,v,t) such that Hao(u,v,t) =0
» Look-up Hi(u, v,t) in the hash table

» Each collision suggests a complete solution

Automated Tools
ooooe

Harnessing The Algebraic Simplicity
Recursive Meet-in-the-Middle Attacks

Gi(x,y,z) Hi(t, u,v)
F(x,y,z,t,u,v) =0<= < Ga(x,y,z) = 0
0 = Ha(t,u,v)

Improved Solving Algorithm

» for all (x,y, z) such that Gy(x,y,z) =0
» Store Gi(x,y,z) — (x,y,Zz) in a hash table

» for all (u,v,t) such that Hao(u,v,t) =0
» Look-up Hi(u, v,t) in the hash table

» Each collision suggests a complete solution

A solver for the full problem can be constructed recursively from
two solvers for smaller sub-problems.

Conclusion
®00

Results

Attacks on round reduced version of the AES-128

Tool-found Human-found

#Rounds Data Time Memory Time

1 1 KP 232 216 248

2 1 KP 264 e Pl

2 2KP | 2% 224 248

2 2¢cp | 28 28 228

3 1 KP P20 273

3 2 CP PRt 28 232

4 1KP | 2120 PE

4 2CP | 2% 280 2104

4 4cp | 2% 224

4 5CP ol

4.5 1KP | 2120 P

The attacks that are practical have been implemented and verified

Conclusion
oeo

Results (cont’d)
The method is somewhat generic, and applies to AES, SQUARE,
PHOTON, SkipJack, LEX, Alpha-MAC, Pelican-MAC, etc.

Pelican-MAC

Recovers the internal state (allows forgery) given an internal state
collision, by solving in practice:

AESy(x) + AES4a(x + Aj) = A,.

Allows to break the MAC in 2°* queries (fastest known attack).

LEX

Instantly rediscovers the best known differential attack in time 2190,
Finds a higher-order differential attack of complexity 280 (fastest
known attack, but success probability = 1/32 if keystream size is
restricted according to specification).

Conclusion
ooe

Conclusion

» New process to solve equations describing the AES

» Find automatically the best low data complexity attacks on
round-reduced AES, Pelican-MAX, LEX

» Can generate the C4++ code of the attacks

More importantly

> Tool available at:
http://www.di.ens.fr/ bouillaguet/

> Long version of this paper, with more attacks descriptions,
soon to be released.

http://www.di.ens.fr/~bouillaguet/

	Introduction
	really

	Algebraic Structure
	there is one !

	Automated Tools
	it's a good one

	Conclusion
	eh oui

