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Introduction
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Two Cryptographic Schemes. . .

A

Secure under
assumptions A

B

Secure under
assumptions B

• Possible comparison criteria
• which scheme is more efficient?
• how do A and B relate?
• purpose-specific properties (e.g. ciphertext size)?

• rather easy to compare in the standard model
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Two Cryptographic Schemes #2

A

H

Secure under A

in the ROM

B

G

Secure under B

in the ROM

• Comparison “biased” by random oracle dependency
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Comparing The Schemes

• Comparison “biased” by random oracle
dependency

• e.g. A ( B, but H more demanding
than G
• RO G : provide randomness
• RO H: POWHF, CR, . . .

• perhaps H even uninstantiable!

A

H

Secure under A
in the ROM

B

G

Secure under B
in the ROM
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The Reduction Approach

• Formalizing exact requirements is tedious
• instead, use the cryptographer’s approach: reduction

• AH secure ⇒ BTH

secure
• any hash function which makes A secure also makes B secure
• uninstantiability of B implies uninstantiability of A

• may require a non-trivial transformation T (stateless,
deterministic, efficient)
• guarantee “structural compatibilty”

• i.e., relative security amongst two schemes
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Random Oracle Reducibility
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Semi-formal Definition

Scheme A {strictly,strongly,weakly} reduces to scheme B if for
every H there exists a transformation T such that

• strictly:

A is GH
A -secure under A ⇒ B is GTH

B -secure under B

• strongly:

A is GH
A -secure under A ⇒

 B is GTH

B -secure under A ∪ B and

B is GTH′

B -secure under B for some H ′

relying on H′

• weakly:

A is GH
A -secure under A ⇒ B is GTH

B -secure under A ∪ B

where GOS defines a security game (think IND-CCA for example)
for scheme S
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Example
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Example: Hashed ElGamal

• Twin hashed ElGamal (THEG) encryption scheme [CKS09]
• extends hashed ElGamal (HEG) encryption scheme, but milder

assumption
• DH assumption as opposed to strong DH assumption
• IND-CCA secure given an IND-CCA symmetric scheme

• hence superior at first glance

• our result: THEG∗ is strongly reducible to HEG
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Proof of Reducibility

• THEG∗ is strongly reducible to HEG
• Proof strategy

1. show weak reducibility from THEG∗ to HEG
2. prove THEG∗ secure on its own (in the ROM)

• strong reducibility then follows
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Scheme Details

HEG (scheme A)

EncA(m):
y ← Zq

k ← H(g y ,X y )
c ← Ek(m)
return (g y , c)

THEG∗ (scheme B)

EncB(m):
y ← Zq

k0||k1 ← G (g y ,X y
0 ,X

y
1 )

c ← Ek0(m)
return (g y , c , k1)

• Oracles H and G : need transformation function

• TH(a, b, c) = H(a, b)||H(a, c)
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Proof Details

• Handling hash oracle queries

• alleged adversary B against THEG∗

• algorithm A performs TH(a, b, c) = H(a, b)||H(a, c)

(a, b)

y0

y1

(a, c)T H

B
(a, b, c)

y0||y1

A
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Proof Details

• Handling decryption queries

• algorithm A simulates second key half

B

m / ⊥

(Y , c)

m

k1
?
= H(Y ,Y x1)

DecA

(Y , c, k1)

X0 x1 ← Zq; X1 ← g x1A X0,X1
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Proof Details

• Handling the encryption challenge query

• algorithm A simulates second key half

EncA

m0,m1

(Y , c)

B
m0,m1

(Y , c, k1)

k1 ← H(Y ,Y x1)

X0 A X0,X1
x1 ← Zq; X1 ← g x1
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Proof Details

• Algorithm A outputs whatever B outputs

• all queries are simulated perfectly

• thus, A is successful whenever B is

• THEG∗ is secure in the ROM (rather technical, see paper)

• hence strongly reducible
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Further Results/Applications

16



Results on Signature Schemes

More examples of (strict) random oracle reductions

• probabilistic RSA FDH signatures reducible to
Guillou-Quisquarter signatures

• probabilistic RSA FDH signatures reducible to PSS signatures

• Schnorr signatures reducible to BLS signatures

recall: reducibility allows to argue about instantiability
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The End

Thank you!

?
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