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Abstract. At Crypto 2007, Joux and Peyrin showed that the boomerang attack, a
classical tool in block cipher cryptanalysis, can also be very useful when analyzing
hash functions. They applied their new theoretical results to SHA-1 and provided
new improvements for the cryptanalysis of this algorithm. In this paper, we concen-
trate on the case of SHA-0. First, we show that the previous perturbation vectors
used in all known attacks are not optimal and we provide a new 2-block one. The
problem of the possible existence of message modifications for this vector is tackled
by the utilization of auxiliary differentials from the boomerang attack, relatively
simple to use. Finally, we are able to produce the best collision attack against
SHA-0 so far, with a measured complexity of 233,6 hash function calls. Finding one
collision for SHA-0 takes us approximatively one hour of computation on an average
PC.

Key words: hash functions, SHA-0, boomerang attack.

1 Introduction

Cryptographic hash functions are an important tool in cryptography. Basically, a cryp-
tographic hash function H takes an input of variable size and returns a hash value of
fixed length while satisfying the properties of preimage resistance, second preimage resis-
tance, and collision resistance [11]. For a secure hash function that gives an n-bit output,
compromising these properties should require 2n, 2n, and 2n/2 operations respectively.

Usually, hash functions are built upon two components: a compression function and a
domain extension algorithm. The former has the same security requirements that a hash
function but takes fixed length inputs. The latter defines how to use the compression func-
tion in order to handle arbitrary length inputs. From the early beginning of hash functions
in cryptography, designers relied on the pioneering work of Merkle and Damg̊ard [8, 17]
concerning the domain extension algorithm. Given a collision resistant compression func-
tion, it became easy to build a collision resistant hash function. However, it has been
recently shown that this iterative process presents flaws [9, 12, 13, 15] and some new al-
gorithms [1, 4] with better security properties have been proposed. One can distinguish
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three different methods for compression function designs: block cipher based, related to a
well studied hard problem and from scratch.

The most famous design principle for dedicated hash functions is indisputably the
MD-SHA family, firstly introduced by R. Rivest with MD4 [24] in 1990 and its improved
version MD5 [23] in 1991. Two years after, the NIST publishes [19] a very similar hash
function, SHA-0, that will be patched [20] in 1995 to give birth to SHA-1. This family is
still very active, as NIST recently proposed [21] a 256-bit new version SHA-256 in order to
anticipate the potential cryptanalysis results and also to increase its security with regard
to the fast growth of the computation power. All those hash functions use the Merkle-
Damg̊ard extension domain and their compression function, even if considered conceived
from scratch, is built upon a dedicated block cipher in Davies-Meyer mode: the output
of the compression function is the output of the block cipher with a feed-forward of the
chaining variable.

Dobbertin [10] provided the first cryptanalysis of a member of this family with a col-
lision attack against MD4. Later, Chabaud-Joux [7] published the first theoretical collision
attack against SHA-0 and Biham-Chen [2] introduced the idea of neutral bits, which led
to the computation of a real collision with four blocks of message [3]. Then, a novel frame-
work of collision attack, using modular difference and message modification techniques,
surprised the cryptography community [26–29]. Those devastating attacks broke a lot of
hash functions, such as MD4, MD5, SHA-0, SHA-1, RIPEMD or HAVAL-128. In the case of
SHA-0 the overall complexity of the attack was 239 message modification processes. Re-
cently, Naito et al. [18] lower this complexity down to 236 operations, but we argue in this
paper that it is a theoretical complexity and not a measured one.

At Crypto 2007, Joux and Peyrin [14] published a generalization of neutral bits
and message modification techniques and applied their results to SHA-1. The so-called
boomerang attack was first devoted for block ciphers cryptanalysis [25] but their work
showed that it can also be used in the hash functions setting. Used in parallel with the
automated tool from De Cannière and Rechberger [5] that generates non-linear part of a
differential path, this method turns out to be quite easy to use and handy for compression
functions cryptanalysis.

This article presents a new attack against the collision resistance of SHA-0 requiring
only 233 hash computations and the theoretical analysis is confirmed by experimentation.
First, we show that the previously used perturbation vector, originally found by Wang
et al., is not optimal. We therefore introduce a new vector, allowing ourselves to use
two iterations of the compression function. In order to compensate the loss of the known
message modifications due to the perturbation vector change, we use the boomerang attack
framework in order to accelerate the collision search. Finally, this work leads to the best
collision attack against SHA-0 from now on, now requiring only one hour of computation
on an average PC.

We organized the paper as follows. In Section 2, we recall the previous attacks and
cryptanalysis techniques for SHA-0. Then, in Section 3, we analyze the perturbation vector
problem and give new ones that greatly improve the complexity of previous attacks. We
then apply the boomerang technique as a speedup technique in Section 4 and provide the
final attack along with its complexity analysis in Section 5. Finally, we draw conclusions
in Section 6.



2 Previous collision attacks on SHA-0

2.1 A short description of SHA-0

SHA-0 [19], is a 160-bit dedicated hash function based on the design principle of MD4. It
applies the Merkle-Damg̊ard paradigm to a dedicated compression function. The input
message is padded and split into k 512-bit message blocks. At each iteration of the com-
pression function h, a 160-bit chaining variable Ht is updated using one message block
Mt+1, i.e Ht+1 = h(Ht,Mt+1). The initial value H0 (also called IV) is predefined and Hk

is the output of the hash function.
The SHA-0 compression function is build upon the Davis-Meyer construction. It uses

a function E as a block cipher with Ht for the message input and Mt+1 for the key input,
a feed-forward is then needed in order to break the invertibility of the process:

Ht+1 = E(Ht,Mt+1) ! Ht,

where ! denotes the addition modulo 232 32-bit words by 32-bit words. This function is
composed of 80 steps (4 rounds of 20 steps), each processing a 32-bit message word Wi

to update 5 32-bit internal registers (A,B,C, D, E). The feed-forward consists in adding
modulo 232 the initial state with the final state of each register. Since more message bits
than available are utilized, a message expansion is therefore defined.

Message expansion. First, the message block Mt is split into 16 32-bit words W0, . . . ,W15.
These 16 words are then expanded linearly, as follows:

Wi = Wi−16 ⊕Wi−14 ⊕Wi−8 ⊕Wi−3 for 16 ≤ i ≤ 79.

State update. First, the chaining variable Ht is divided into 5 32-bit words to fill the 5
registers (A0, B0, C0, D0, E0). Then the following transformation is applied 80 times:

STEPi+1 :=






Ai+1 = (Ai # 5) + fi(Bi, Ci, Di) + Ei + Ki + Wi,

Bi+1 = Ai,

Ci+1 = Bi $ 2,

Di+1 = Ci,

Ei+1 = Di.

where Ki are predetermined constants and fi are boolean functions defined in Table 1.

Feed-forward. The sums modulo 232: (A0 + A80), (B0 + B80), (C0 + C80), (D0 + D80),
(E0 + E80) are concatenated to form the chaining variable Ht+1.

Note that all updated registers but Ai+1 are just rotated copies, so we only need to
consider the register A at each step. Thus, we have:

Ai+1 = (Ai # 5) + fi(Ai−1, Ai−2 $ 2, Ai−3 $ 2) + Ai−4 $ 2 + Ki + Wi. (1)



round step i fi(B, C, D) Ki

1 1 ≤ i ≤ 20 fIF = (B ∧ C)⊕ (B ∧D) 0x5a827999

2 21 ≤ i ≤ 40 fXOR = B ⊕ C ⊕D 0x6ed6eba1

3 41 ≤ i ≤ 60 fMAJ = (B ∧ C)⊕ (B ∧D)⊕ (C ∧D) 0x8fabbcdc

4 61 ≤ i ≤ 80 fXOR = B ⊕ C ⊕D 0xca62c1d6

Table 1. Boolean functions and constants in SHA-0.

2.2 First attacks on SHA-0

The first published attack on SHA-0 has been proposed by Chabaud and Joux in 1998 [7]. It
focused on finding linear differential paths composed of interleaved 6-step local collisions,
which have probability 1 to hold in a linearized version of SHA-0. However, in the standard
version of SHA-0, a local collision only has a certain probability to hold. The overall
probability of success of the attack is the product of the holding probability of each local
collision.

The core of the differential path is represented by a perturbation vector which indicates
where the 6-step local collisions are initiated. The probability of success of the attack is
then related to the number of local collisions appearing in the perturbation vector. In their
paper, Chabaud and Joux have defined 3 necessary conditions on perturbation vectors in
order to permit the differential path to end with a collision for the 80-step compression
function. Such a perturbation vector should not have truncated local collisions, should
not have two consecutive local collisions initiated in the first 16th steps and should not
start a local collision after step 74. Under these constraints they were able to find a
perturbation vector (so-called L-characteristic) with a probability of success of 268. The
running complexity of their attack is decreased to 261 by a careful implementation of the
collision search. As the attacker has full control on the first 16 message blocks, those blocks
are chosen such that the local collisions of those early steps hold with probability 1. See
[7] for more details.

In 2004, Biham and Chen have improved the attack of Chabaud and Joux by introduc-
ing the neutral bit technique. The idea is to multiply the number of conformant message
pairs up to a certain step s (message pairs that verify the main differential path up to step
s) for a cost almost null. This is done by looking for different sets of small modifications
in the message words such that each set will have very low impact on the conformance
of the message pair up to step s. Basically, the attacker can effectively start the collision
search at a higher step than in a normal setting, and this improvement finally led to the
computation of the first real collision for SHA-0 with four blocks of message [3] with an
overall complexity of 251 functions calls.

2.3 The Wang approach

The attack on SHA-0 of Wang et al. is derived from the approach of Chabaud and Joux. The
principle of this attack consists in relaxing two of the three conditions on the perturbation
vectors defined by Chabaud and Joux, namely no truncated local collision allowed and
no consecutive local collisions in the 16th first steps. Relaxing those conditions permits to
search for better perturbation vectors, i.e. higher probability linear differential paths.



However, the main drawback of this approach is that non corrected perturbations
inherited from truncated local collisions appear in the first steps. In order to offset these
unwanted perturbations, they had to construct a non linear differential path (so-called
NL-characteristic) which connects to the desired linear differential path. Said in other
words, they kept the same linear differential mask on the message, but computed a new
and much more complex differential mask on the registers for the early steps of SHA-0. A
NL-characteristic presents also the advantage that consecutive local collisions in the early
steps are no more a problem. Using modular subtraction as the differential, the carry
effect (a property of the powers of 2, i.e. 2j = −2j − 2j+1 . . . − 2j+k−1 + 2j+k) and by
carefully controlling the non linearity of the round function IF, they succeeded to build
their NL-characteristic by hand. A NL-characteristic holds only if specific conditions are
verified step by step by the register values. In their paper, Wang et al. denoted these
conditions as sufficient conditions. These sufficient conditions are described with respect
to the register A into one general form Ai,j = v where Ai,j denotes the value of bit j of
the register A at the step i and where v is a bit value fixed to be 0 or 1 or a value that
has been computed before step i.

The NL-characteristic found presents conditions on the initial value of the registers5.
However, since the initial value is fixed, Wang et al. have build their collision with two
blocks of message. The first block is needed in order to obtain a chaining variable verifying
the conditions, inherited from the NL-characteristic, on the initial values of the register.
This is detailed in Figure 1.
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Fig. 1. Attack of Wang et al.

The attack of Wang et al. is thus divided into two phases. The first one is the pre-
computation phase:

1. search for a higher probability L-characteristic by relaxing conditions on the pertur-
bation vectors,

2. build a NL-characteristic which connects to the L-characteristic by offsetting unwanted
perturbations,

3. find a first block of message from which the incoming chaining variable verifies the
conditions inherited from the NL-characteristic.

5 The conditions given by Wang et al. in their article are incomplete. In fact, two more conditions
need to be verified [16, 18].



The second phase is the collision search phase. It consists in searching for a second block
of message for which the sufficient conditions on the register values are fulfilled for a
maximum number of steps. In order to achieve that goal, they use both basic modification
technique and advanced modification technique. The main idea of the former is simply to
set Ai,j to the correct bit by modifying the corresponding bit of the message word Wi−1.
This is only possible for the first 16 steps, where the attacker has full control on the values
Wi. The advanced modification technique are to be applied to steps 17 and higher, where
the message words Wi are generated by the message expansion. The idea is to modify the
message words of previous steps in order to fulfill a condition in a given step. Wang et
al. claimed in their article that using both basic modification and advanced modification
techniques, they are able to fulfill all the sufficient conditions up to step 20. However very
few details can be found on advanced modification technique in their article. Finally, their
attack has a claimed complexity of 239 SHA-0 operations.

Remark. Wang et al. optimized the choice of their perturbation vector taking into ac-
count their ability to fulfill the conditions up to step 20.

2.4 Naito et al.

Naito et al. recently proposed [18] a new advanced modification technique so-called sub-
marine modification. Its purpose is to ensure that the sufficient conditions from steps 21
to 24 are fulfilled. The main idea of submarine modifications is to find modification char-
acteristics which will permit to manipulate bit values of registers and message words after
step 16. Each parallel characteristic is specifically built to satisfy one target condition.
In order to construct such a characteristic, Naito et al. use two different approaches the
cancel method and the transmission method. The former is based on the local collision
principle. Whereas the transmission method combines the recurrence properties of the
message expansion and of the step update transformation.

Those modification characteristics define new sets of conditions on register values and
message words. The new conditions should not interfere with the already pre-computed
sufficient conditions. Naito et al. detailed their submarine modifications up to step 17
(see [18] proof of Theorem 1). They remarked that the probability that one of these
modifications can satisfy a target condition without affecting the other sufficient conditions
is almost 1. No detail is given about the impact of the submarine modifications after step
24.

The claimed complexity of the attack described in [18] is 236 SHA-0 operations. This
is a theoretical complexity that will be further discussed in section 5. The given collision
example is based on the same NL-characteristic and perturbation vector that Wang et
al. used to produce their own collision. Taking into account that their submarine modi-
fications permit to fulfill the sufficient conditions up to step 24, Naito et al. proposed a
new perturbation vector which would therefore minimizes the complexity of the attack.
However, in order to effectively build an attack based on the proposed vector, a new
NL-characteristic and new submarine modifications should be found.

3 A new perturbation vector

In order to lower the complexity of a collision search on SHA-0, high probability L-
characteristics are needed. In the previous attacks on SHA-0, the authors have proposed



perturbation vectors which do not have local collisions starting after step 74. By relax-
ing this last condition, it may be possible to find better perturbation vectors. Note that
those vectors do not seem to be eligible for a collision search, since they would lead to a
near-collision (two compression function outputs with very few bits of difference) instead
of a collision. However, this problem can be tackled by using the multi-block technique as
in [3]: the attacker can take advantage of the feed-forward operation inherited from the
Davis-Meyer construction used in the compression function of SHA-0. Said in other words,
we allow ourselves to use several message blocks with differences, whereas the previous
known attacks on SHA-0 only use one of such blocks of message. Thanks to the new auto-
matic tool from De Cannière and Rechberger [5] that can generate NL-characteristics on
SHA-1, computing non linear parts for SHA-0 is relatively easy. Indeed, SHA-1 and SHA-0
only differ on a rotation in the message expansion, which has no effect on the validity
of this tool. Moreover, the ability to generate NL-characteristics reduce the multi-block
problem to the use of only two blocks. More precisely, we start with a L-characteristic L1

(defined by a new perturbation vector), and modified on the early steps by a generated
NL-characteristic NL1. We thus obtain a specific near-collision ∆H1 = +d after this first
block. We then apply the same L-characteristic modified on the early steps by a second
generated NL-characteristic NL2, that takes in account the new incoming chaining vari-
able H1. Finally, before the feed-forward on this second block, we look for the opposite
difference ∆E(H1,m1) = −d and the two differences cancel each over ∆H2 = 0. This is
detailed in Figure 2.
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Fig. 2. Multi-block collision on SHA-0.

Now that all the conditions on the perturbation vectors are relaxed, we need to de-
fine what are the criteria for good perturbation vectors. In order to fulfill the sufficient
conditions inherited from NL1, NL2 and L1, we will use basic message modifications and
boomerang techniques. In consequence, we focused our search on perturbation vectors that
have the smallest number of sufficient conditions to fulfill in steps 17 to 80. Namely, a
characteristic L1 for which the probability of success of the attack is maximized. We used
the same approach of Chabaud and Joux in order to evaluate the probability of holding
of each local collision involved. See [7] and particularly Section 2.2 (Tables 4 and 5) for
detailed examples. There are a lot of perturbation vectors with an evaluated probability
of success around 2−40 for the steps between 17 and 80. However, this probability can be
affected by the NL-characteristic. Thus, we build the NL-characteristics corresponding to
each matching perturbation vector in order to compute the exact probability of success.



This aspect of the search will be further detailed in the next section. The perturbation
vector we chose, which has 42 conditions between step 17 and 80, is given in Table 2.

Steps 1 to 40

vector 1 1 1 1 0 1 0 1 1 0 1 1 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0

! conditions - - - - - - - - - - - - - - - - 2 0 2 1 1 0 2 0 2 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1

Steps 41 to 80

vector 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0

! conditions 1 1 1 0 1 1 1 0 1 0 1 1 1 1 0 1 2 1 2 2 1 1 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0

Table 2. A new perturbation vector for SHA-0, along with the number of conditions at each steps
(the conditions before step 16 have been removed since not involved in the complexity during the
collision search).

4 Boomerang attacks for SHA-0

Now that we found good perturbation vectors by relaxing certain conditions, a problem
remains. Indeed, no message modification and no NL-characteristic are known for those
vectors, and this makes the attack complexity drastically increase. This is the major
drawback of Wang et al. collision attack on SHA-0 and other hash functions: is not easily
reusable and we are stuck with their perturbation vector. Hopefully, some work have
been done recently in order to theorize Wang et al. major improvements. Recently, De
Cannière and Rechberger [5] introduced an automated tool that generates non linear
part of a differential path, thus resolving the NL-characteristic problem. Then, Joux and
Peyrin [14] provided a framework that generalizes message modifications and neutral bits.
Thanks to the so-called boomerang attack, they describe techniques that allows an attacker
to easily use neutral bits or message modifications, given only a main perturbation vector.
In fact, boomerang attacks and NL-characteristic automated search are exactly the two
tools we need for our attack to be feasible. Finally, we replace the loss of the message
modifications because of the new vector by the gain of the boomerang attack, which is a
much more practical technique and fit for our constraints.

Boomerang attacks for hash functions can be seen as a generalization of collision
search speed up techniques such as neutral bits or message modification. However, new
possibilities were also suggested. In the usual setting, the attacker first sets the differential
path and then tries to find neutral bits or message modifications if possible. In the explicit
conditions approach from boomerang attacks, the attacker first set some constraints on
the registers and the message words and then tries to find a differential path taking
in account those constraints. One can see that for the latter part the NL-characteristic
automated search tool becomes really handy. The constraints are set in order to provide
very good message modifications or neutral bits that would not exist with a random
differential path, or with very low probability. More generally, this can be seen as an
auxiliary characteristic, different from the main one, but only fit for a few steps and this



auxiliary characteristic can later be used as a neutral bit or a message modification, with
very high probability (generally probability equal to 1) thanks to the preset constraints.
Obviously the complexity of the collision search will decrease by adding as much auxiliary
characteristics as possible.

W0 to W15 W16 to W31

perturbation mask 0000001000000000

differences on W j 0000001000000000 0000101101100111

differences on W j+5 0000000100000000 0000010110110011

differences on W j−2 0000000000010000 0001001000000010

i Ai Wi

-1: --------------------------------
00: -------------------------------- --------------------------------
01: -------------------------------- --------------------------------
02: -------------------------------- --------------------------------
03: -------------------------------- --------------------------------
04: -------------------------------- --------------------------------
05: ---------------------------b---- --------------------------------
06: ---------------------------b---- -----------------------------a--
07: -----------------------------a-- ------------------------a-------
08: -------------------------------0 --------------------------------
09: -------------------------------1 --------------------------------
10: -------------------------------- --------------------------------
11: -------------------------------- -------------------------------a
12: -------------------------------- --------------------------------
13: -------------------------------- --------------------------------
14: -------------------------------- --------------------------------
15: -------------------------------- --------------------------------

Fig. 3. Auxiliary differential path AP1 used during the attack. The first table shows the 32 first
steps of the perturbation vector (with the first uncontrolled difference on registers at step 20)
and the second gives the constraints forced in order to have probability one local collisions in the
early steps in the case where the auxiliary path is positioned at bit j = 2. The MSB’s are on the
right and “-” stands for no constraint. The letters represent a bit value and its complement is
denoted by an upper bar on the corresponding letter (see [14] for the notations).

Building an auxiliary path requires the same technique as for a main path, that is the
local collisions. We refer to [14] for more details on this construction for SHA-1, since the
technique is identically applicable to SHA-0. In our attack, we will consider two different
types of auxiliary paths and we will use them as neutral bits (and not message modifica-
tions). Informally, we define the range of an auxiliary path to be the latest step where the
uncontrolled differences from the auxiliary path (after the early steps) do not interfere in
the main differential path. The first one, AP1, will have very few constraints but the range
will be low. On contrary, the second type, AP2, will require a lot of constraints but the
range will be much bigger. A trade-off among the two types needs to be considered in order



not to have to many constraints forced (which would latter makes the NL-characteristic
automated search tool fail) but also have a good set of auxiliary differential paths. More
precisely, AP1 and AP2 are detailed in Figures 3 and 4 respectively. AP1 is build upon
only one local collision but the first uncontrolled difference appears at step 20. AP2 is
build upon three local collisions but the first uncontrolled difference appears at step 25.
Note that, as remarked in the original paper from Joux and Peyrin, an auxiliary differ-
ential path used as a neutral bit with the first uncontrolled difference at step s is a valid
neutral bit for step s + 3 with a very high probability (the uncontrolled difference must
first propagate before disrupting the main differential path). Thus, in our attack, we will
use AP1 and AP2 as neutral bits for steps 23 and 28 respectively; that is as soon as we
will find a conformant message pair up to those step during the collision search, we will
trigger the corresponding auxiliary path in order to duplicate the conformant message
pair. This will directly provide new conformant message pairs for free.

W0 to W15 W16 to W31

perturbation mask 1010000000100000

differences on W j 1010000000100000 0000000010110110

differences on W j+5 0101000000010000 0000000001011011

differences on W j−2 0001111100000011 0000000000001110

i Ai Wi

-1: ---------------------------d----
00: ---------------------------d---- -----------------------------a--
01: ---------------------------e-a-- ------------------------a-------
02: ---------------------------e---1 -----------------------------b--
03: -----------------------------b-0 ------------------------b------a
04: -------------------------------0 -------------------------------a
05: -------------------------------0 -------------------------------a
06: -------------------------------- -------------------------------b
07: -------------------------------- -------------------------------b
08: -------------------------------- --------------------------------
09: ---------------------------f---- --------------------------------
10: ---------------------------f---- -----------------------------c--
11: -----------------------------c-- ------------------------c-------
12: -------------------------------0 --------------------------------
13: -------------------------------0 --------------------------------
14: -------------------------------- -------------------------------c
15: -------------------------------- -------------------------------c

Fig. 4. Auxiliary differential path AP2 used during the attack. The first table shows the 32 first
steps of the perturbation vector (with the first uncontrolled difference on registers at step 25)
and the second gives the constraints forced in order to have probability one local collisions in the
early steps in the case where the auxiliary path is positioned at bit j = 2. The MSB’s are on the
right and “-” stands for no constraint. The letters represent a bit value and its complement is
denoted by an upper bar on the corresponding letter (see [14] for the notations).



The next step is now to build a main differential path with the tool from De Cannière
and Rechberger, containing as much auxiliary paths as possible (of course while favoring
AP2 instead of AP1, the latter being less powerful). We refer to [5] for the details of
this algorithm. The tool works well for SHA-0 as for SHA-1 and given a random chaining
variable, it is easy to find a main differential path containing at least five auxiliary paths,
with at least three AP2 characteristics. Note that this part, as the automated tool, is
purely heuristic and often more auxiliary paths can be forced6. However, the behavior
of the automated tool is quite dependant of the perturbation vector. Thus, among the
possible good ones, we chose a perturbation vector (depicted in Table 2) that seemed to
work well with the automated search tool. Note that since the perturbation vector remains
the same during the two parts of the attack, this property will be true for the two blocks
of message.

5 The final collision attack

At this point, we have all the required elements to mount the attack and analyze it. Its
total complexity will be the addition of the complexities of the collision search for both
blocks7. Note that, unlike for the 2-block collision attacks for SHA-1 where the first block
complexity is negligible compared to the second block one, here our perturbation vector
imposes the same raw complexity for both blocks.

5.1 A method of comparison

As observed in [6, 14], there are many different collision search speeding techniques for
the SHA family of hash functions. However, their real cost is often blurry and it becomes
hard to compare them. Thus, it has been advised to measure the efficiency of those tools
with an efficient implementation of the various hash functions attacked, for example by
using OpenSSL [22]. For any computer utilized, one can give the complexity of the attack
in terms of number of function calls of the hash function with an efficient implementation,
which is relatively independent of the computer used.

In their paper [18], Naito et al. claimed a complexity of 236 SHA-0 calls for their collision
attack. However, their implementation required approximatively 100 hours on average in
order to find one collision on a PentiumIV 3, 4 GHz. 100 hours of SHA-0 computations
on this processor would correspond to 240,3 SHA-0 calls approximatively with OpenSSL,
which is far from the claimed complexity.

Thus, in this paper, we chose to handle the complexities in terms of number of SHA-0
calls with OpenSSL in order to allow an easy comparison. The time measurements have
been done on a single PC with an AMD Opteron 2, 2 GHz processor.
6 The auxiliary path AP2 has one condition on the IV (the bit d in Figure 4) and this harden

the task of the attacker to place a lot of them in the main differential trail. However, this is
already taken in account in the evaluation. There remains space for improvements on this part
but we chose to describe an easy-to-implement attack instead of the best possible but hard to
implement one.

7 One can argue that the cost of the NL-characteristics automated search tool has also to be
counted. However, unlike in the SHA-1 case, for SHA-0 the number of possible collisions that
can be generated with only one full differential path construction is really big. Thus, this cost
becomes largely negligible compared to the collision search.



5.2 Without collision search speedup

Without even using boomerang attacks, our new differential paths already provides an
improvement on the best known collision attack against SHA-0. Indeed, in our perturbation
vector, 42 conditions remain after step 17. However, by refining the differential path
utilized (i.e. by forcing some conditions just before step 17, without any impact on the
complexity since located in the early steps), one can easily take care of the two conditions
from step 17 before beginning the collision search. Therefore, we are finally left with 40
conditions per message block. Since for each basic message pair tested during the collision
search only one quarter of a whole SHA-0 is computed in average, we expect a complexity
of 240/22 = 238 SHA-0 evaluations for one block and thus a total complexity of 239 SHA-0
evaluations for one complete collision. This theoretical complexity is fully confirmed by
practical implementation (237,9 and 237,8 SHA-0 evaluations on average for the first and
second blocks respectively). Our computer needs 39 hours on average in order to find a
collision, which is much faster than Naito et al.’s attack and this with a less powerful
processor.

5.3 Using the boomerang improvement

As one can use many collision search speedup techniques, a good choice can be the
boomerang attack for its simplicity of use. We give in the appendix a possible differ-
ential path for the first block (Tables 5 and 6) and the second block (Tables 7 and 8).
The notations used are also given in the appendix in Table 4. The chaining variable of
the second block is the output of the first valid message pair found (i.e. conformant to the
whole differential path) for the first block. As for the previous subsection, we are left with
40 conditions for each blocks since the two conditions from step 17 can be easily cancelled
before the collision search. The differential path for the second block possesses 5 auxiliary
paths. However, as explained before, it is possible to build NL-characteristics containing
more auxiliary paths but we only take in account the average case and not the best case
of behavior of the automated NL-characteristics search tool. For example, one can check
that there are 3 AP2 auxiliary paths in bit positions j = {17, 22, 30} and 2 AP1 auxiliary
paths in bit positions j = {9, 11} for the second block. The first block case is particular
since the chaining variable is the predefined IV which is highly structured. This particular
structure greatly improves our capability to place auxiliary paths since the condition on
the chaining variable for AP2 is verified on much more bit positions than what someone
would expect in the random case. Thus, for the first block one can place 2 more AP2 on
average and one can check in Table 5 that there are 5 AP2 auxiliary paths in bit positions
j = {10, 14, 19, 22, 27} and 2 AP1 auxiliary paths in bit positions j = {9, 11}.

In theory, with k auxiliary paths, one would expect an improvement of a factor 2k.
However, this slightly depends on the type and the number of auxiliary paths used. Ob-
viously, compared to the AP1 auxiliary path, using the AP2 type is better during the
collision search. Thus, we expect an improvement of the attack of a factor approxima-
tively 27 = 128 for the first block and 25 = 32 for the second one. We get something
close in practice with a measured complexity of 232,2 and 233 function calls for the first
and second block respectively. This leads to a final complexity for a collision on the whole
SHA-0 of 233,6 function calls, which compares favourably in theory and practice to the best
known collision attack on this hash function: our computer can generate a 2-block collision
for SHA-0 in approximatively one hour on average (instead of 100 hours of computation on



1st block 2nd block

M1 M ′
1 M2 M ′

2

W0 0x4643450b 0x46434549 0x9a74cf70 0x9a74cf32

W1 0x41d35081 0x41d350c1 0x04f9957d 0x04f9953d

W2 0xfe16dd9b 0xfe16dddb 0xee26223d 0xee26227d

W3 0x3ba36244 0x3ba36204 0x9a06e4b5 0x9a06e4f5

W4 0xe6424055 0x66424017 0xb8408af6 0x38408ab4

W5 0x16ca44a0 0x96ca44a0 0xb8608612 0x38608612

W6 0x20f62444 0xa0f62404 0x8b7e0fea 0x0b7e0faa

W7 0x10f7465a 0x10f7465a 0xe17e363c 0xe17e363c

W8 0x5a711887 0x5a7118c5 0xa2f1b8e5 0xa2f1b8a7

W9 0x51479678 0xd147963a 0xca079936 0x4a079974

W10 0x726a0718 0x726a0718 0x02f2a7cb 0x02f2a7cb

W11 0x703f5bfb 0x703f5bb9 0xf724e838 0xf724e87a

W12 0xb7d61841 0xb7d61801 0x37ffc03a 0x37ffc07a

W13 0xa5280003 0xa5280041 0x53aa8c43 0x53aa8c01

W14 0x6b08d26e 0x6b08d26c 0x90811819 0x9081181b

W15 0x2e4df0d8 0xae4df0d8 0x312d423e 0xb12d423e

A2 B2 C2 D2 E2

0x6f84b892 0x1f9f2aae 0x0dbab75c 0x0afe56f5 0xa7974c90

Table 3. Message instance for a 2-block collision: H(M1, M2) = H(M ′
1, M

′
2) =

A2||B2||C2||D2||E2, computed according to the differential path given in Tables 5, 6, 7 and 8
from appendix.

a faster processor for the best known attack). For proof of concept, we provide in Table 3
a 2-block message pairs that collides with SHA-0.

6 Conclusion

In this paper, we introduced a new attack against SHA-0. By relaxing the previously estab-
lished constraints on the perturbation vector, we managed to find better candidates. Then,
as a collision search speedup technique, we applied on those candidates the boomerang
attack which provides a good improvement with a real practicality of use. This work leads
to the best collision attack on SHA-0 so far, requiring only one hour of computation on an
average PC. Yet, there stills space for further improvements as some parts of the attack
are heuristic. Moreover, this work shows the efficiency of the dual use of the boomerang
attack for hash functions combined with a differential path automated search tool.
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Appendix

(x, x∗) (0, 0) (1, 0) (0, 1) (1, 1)

? ! ! ! !
- ! - - !
x - ! ! -

0 ! - - -

u - ! - -

n - - ! -

1 - - - !
# - - - -

(x, x∗) (0, 0) (1, 0) (0, 1) (1, 1)

3 ! ! - -

5 ! - ! -

7 ! ! ! -

A - ! - !
B ! ! - !
C - - ! !
D ! - ! !
E - ! ! !

Table 4. Notations used in [5] for a differential path: x represents a bit of the first message and
x∗ stands for the same bit of the second message.



i Ai Wi

-4: 00001111010010111000011111000011
-3: 01000000110010010101000111011000
-2: 01100010111010110111001111111010
-1: 11101111110011011010101110001001
00: 01100111010001010010001100000001 0100111001001011000001010n0010u1
01: 1110110111111111100111011n1111u0 0100000011011011010100001n000000
02: 01100111011111111101n10101101010 1111011000011110100111011n011011
03: 001101010010100n00001100n0uuuuu0 0011100010101001011100100u000101
04: 111100000nu000001010110001110000 u110010001000000010100000u0101n1
05: 00111n00000010011000100000u0n1u1 n0010100110010000101010010100000
06: 10110101110110110000101u100u1001 n010001011110100001111000u000100
07: 100unnnnnnnnn0100nu0100101u11001 00010010111101000101011001011010
08: 1000011100001n000n100u0n010nn001 0101101001110001000110001n0001u1
09: 0010000000000010un00nu1u1un01100 n101000101000111100101100u1110n0
10: 11100110100101000nu01u10un00n100 01111010011000100100011100011000
11: 011110001110001101nuu10101000101 0111000100110111010110011u1110u0
12: 01001101011010000010u0000n110000 10110111110101-----1-----u000001
13: 010110011100000----010-0-01001u0 101001010----------------n0000u1
14: 10111100--------------1--110u011 01101-0----0--1----0---0-1-011u0
15: 10100------------------0-1-u0100 n0101-0----0--1----0---0-1-11000
16: --01-----------------------n0011 010001110----------------00101n0
17: -----------------------------1n- n1000-0----1--1----1---0-u-10011
18: 1----------------------------0-- 01000-0----1--1----0---0-0-011u0
19: -------------------------------- n00110100----------------0001011
20: -------------------------------- n0110-0----1-------0-----0-000u1
21: ------------------------------n- u1100-1------------------u-10111
22: -------------------------------- 00001-1------------------0-00110
23: ------------------------------n- n1011-1----0-------0-----u-11001
24: -------------------------------- u0000-0------------------1-11100
25: ------------------------------n- 01101-1------------------u-10111
26: -------------------------------- u1010-1----0-------1-----0-011u0
27: -------------------------------- 01001-1------------------0-01110
28: -------------------------------- u0000-0------------------1-11011
29: -------------------------------- u0111-0------------------0-00010
30: -------------------------------- 01101-1------------------1-10010
31: -------------------------------- 10110-1------------------0-01001
32: -------------------------------- 00111-1------------------1-00100
33: -------------------------------- 01011-1------------------1-11101
34: -------------------------------- 00010-0------------------0-010u0
35: ------------------------------u- 10001-0------------------n-10110
36: -------------------------------- 11100-0------------------0-000u1
37: -------------------------------- n0010-0------------------0-001u0
38: ------------------------------u- n1101-0------------------n-11110
39: -------------------------------- n1100-1------------------0-001n0

· · · · · ·

Table 5. Steps 1 to 39 of the main differential path of the first block.



i Ai Wi

· · · · · ·
40: -------------------------------- n1111-0------------------0-10000
41: -------------------------------- n0010-1------------------0-11010
42: -------------------------------- n0100-0------------------1-110u1
43: ------------------------------u- 00000-1------------------n-01010
44: -------------------------------- 00011-0------------------0-100n0
45: -------------------------------- n0111-1------------------1-10110
46: -------------------------------- n0111-1------------------0-00010
47: -------------------------------- u0010-1------------------1-00000
48: -------------------------------- 01101-0------------------0-010n0
49: ------------------------------n- 11111-1------------------u-10011
50: -------------------------------- 01000-1------------------0-100u0
51: -------------------------------- u1110-1------------------0-10010
52: -------------------------------- n1101-1------------------1-11110
53: -------------------------------- n0001-1------------------1-001u0
54: ------------------------------u- 11011-0------------------n-11110
55: -------------------------------- 10001-0------------------0-000n0
56: -------------------------------- n0111-1------------------0-001n1
57: ------------------------------n- n0110-1------------------u-11101
58: -------------------------------- u1110-1------------------1-11001
59: ------------------------------n- u1110-0------------------u-010u1
60: ------------------------------u- n1111-1------------------n-100n1
61: -------------------------------- 01010-0------------------0-010n1
62: -------------------------------- 01111-1------------------1-11111
63: -------------------------------- 10011-1------------------0-00010
64: -------------------------------- n1000-0------------------0-10110
65: -------------------------------- 01000-0------------------1-00011
66: -------------------------------- 01000-0------------------0-101u1
67: ------------------------------u- 01001-0------------------n-01001
68: -------------------------------- 10001-0------------------0-100u0
69: -------------------------------- u0010-1------------------1-11000
70: -------------------------------- u1010-0------------------1-011n1
71: ------------------------------n- u0101-0------------------u-01101
72: -------------------------------- 00011-1------------------0-100u0
73: -------------------------------- n1010-1------------------0-11000
74: -------------------------------- n1100-0------------------0-10010
75: -------------------------------- u1110-1------------------1-110n1
76: ------------------------------n- 11011-1------------------u-00100
77: -------------------------------- 00111-0------------------1-000n1
78: -------------------------------- n0011-0------------------1-11101
79: -------------------------------- u0101-0------------------1-01000
80: --------------------------------

Table 6. Steps 40 to 80 of the main differential path of the first block.



i Ai Wi

-4: 111011010000101010001110101010u1
-3: 01000110011100010110101100101000
-2: 10010000011011111010001110100111
-1: 11100110001011011100010100001001
00: 01011110101010111100001100111101 1001101001110110110011110u1100n0
01: u0111011010011100010111unn1010n1 0000010010111001100101010u111101
02: 11010011001110011011u000110u0111 1110111000100100001000100n111101
03: 111001111000010u000unnnnnn000100 1001101001000110011001001n110101
04: u0100101unn01010000u100011110110 u011100001000000000010101u1101u0
05: n000un001000011u00100000000nn0n0 u0111000011000000000011000010010
06: nnn0010001011110011100n1nu1u011u u000101101111110100001011u101010
07: 10nuuuuuuuuuuuuu11100n00un0u1001 11100001011111111111011000111100
08: 0001111100000000unnn11010001n001 1010001011110001101110001u1001n1
09: 00000111111111111110001n111un111 u100101000000111100110010n1101u0
10: 1110110110111111110100nu111uu011 00000010111100001010011111001011
11: 00111110010001010011011uu0n000u0 1111011101100100111010101n1110n0
12: 010001101000111000111111nuu1u011 001101111111-------------n111010
13: 101010000000----0--------01111u0 01010--------------------u0000u1
14: 00110001-----------------1010010 10010------0----1--------00110n1
15: 10011--------------------10101n0 n0110------0----1--------0111110
16: 0-------------------------011000 10000--------------------11010u1
17: 1-----------------------------n- u1000------1----1--------u100111
18: 0------------------------------- 01100------1----0--------01111u0
19: -------------------------------- n1010--------------------1110100
20: -------------------------------- u1000------1-------------10000n1
21: ------------------------------n- n1101--------------------u010011
22: -------------------------------- 11101--------------------1100010
23: ------------------------------n- u1011------0-------------u110101
24: -------------------------------- n1001--------------------0010110
25: ------------------------------u- 00010--------------------n001011
26: -------------------------------- u0001------1-------------01110u0
27: -------------------------------- 10111--------------------0011001
28: -------------------------------- n1110--------------------1101001
29: -------------------------------- u0000--------------------0010100
30: -------------------------------- 01000--------------------0001001
31: -------------------------------- 01011--------------------1000101
32: -------------------------------- 00101--------------------1010111
33: -------------------------------- 11000--------------------0010001
34: -------------------------------- 01110--------------------00000n0
35: ------------------------------n- 10101--------------------u101001
36: -------------------------------- 10011--------------------10110u1
37: -------------------------------- n1000--------------------01100u0
38: ------------------------------u- n1001--------------------n010100
39: -------------------------------- n0001--------------------11000n0

· · · · · ·

Table 7. Steps 1 to 39 of the main differential path of the second block.
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· · · · · ·
40: -------------------------------- u0101--------------------1001001
41: -------------------------------- n0100--------------------0010111
42: -------------------------------- u0000--------------------01100u1
43: ------------------------------u- 00111--------------------n101101
44: -------------------------------- 10001--------------------01011n0
45: -------------------------------- n0011--------------------1010000
46: -------------------------------- n0011--------------------1100111
47: -------------------------------- n0011--------------------0011000
48: -------------------------------- 11101--------------------10011u0
49: ------------------------------u- 01010--------------------n001000
50: -------------------------------- 01110--------------------11100n0
51: -------------------------------- n0111--------------------0111000
52: -------------------------------- n0001--------------------1101011
53: -------------------------------- n0100--------------------11100u0
54: ------------------------------u- 11000--------------------n000010
55: -------------------------------- 00111--------------------00001n0
56: -------------------------------- u1100--------------------10001u0
57: ------------------------------u- u0001--------------------n110000
58: -------------------------------- n1000--------------------1101011
59: ------------------------------u- u1111--------------------n0000u1
60: ------------------------------u- n0010--------------------n0100n0
61: -------------------------------- 01100--------------------10100n1
62: -------------------------------- 11001--------------------0101000
63: -------------------------------- 01100--------------------0000100
64: -------------------------------- n0011--------------------0101001
65: -------------------------------- 00101--------------------0101000
66: -------------------------------- 01011--------------------11101n0
67: ------------------------------n- 11111--------------------u100000
68: -------------------------------- 11110--------------------10100n1
69: -------------------------------- n0100--------------------1010011
70: -------------------------------- n0010--------------------00011n0
71: ------------------------------n- n0100--------------------u100001
72: -------------------------------- 10011--------------------10101u1
73: -------------------------------- n1001--------------------0010111
74: -------------------------------- n0101--------------------1101110
75: -------------------------------- u1111--------------------11001n1
76: ------------------------------n- 01100--------------------u111110
77: -------------------------------- 00001--------------------11010n0
78: -------------------------------- n0111--------------------1101000
79: -------------------------------- n0001--------------------0110011
80: --------------------------------

Table 8. Steps 40 to 80 of the main differential path of the second block.


