
Generalized Environmental Security
From Number Theoretic Assumptions

Tal Malkin1, Ryan Moriarty2, and Nikolai Yakovenko3

1 Department of Computer Science, Columbia University, tal@cs.columbia.edu?

2 Department of Computer Science, UCLA, ryan@cs.ucla.edu??

3 Google, Inc. yakovenko@google.com? ? ?

Abstract. We address the problem of realizing concurrently compos-
able secure computation without setup assumptions. While provably im-
possible in the UC framework of [Can01], Prabhakaran and Sahai had
recently suggested a relaxed framework called generalized Environmental
Security (gES) [PS04], as well as a restriction of it to a “client-server”
setting based on monitored functionalities [PS05]. In these settings, the
impossibility results do not apply, and they provide secure protocols re-
lying on new non-standard assumptions regarding the existence of hash
functions with certain properties.
In this paper, we first provide gES protocols for general secure com-
putation, based on a new, concrete number theoretic assumption called
the relativized discrete log assumption (rDLA). Second, we provide se-
cure protocols for functionalities in the (limited) client-server framework
of [PS05], replacing their hash function assumption with the standard
discrete log assumption. Both our results (like previous work) also use
(standard) super-polynomially strong trapdoor permutations.
We believe this is an important step towards obtaining positive results for
efficient secure computation in a concurrent environment based on well
studied assumptions. Furthermore, the new assumption we put forward
is of independent interest, and may prove useful for other cryptographic
applications.

1 Introduction

1.1 Background and Motivation

Since its beginnings a few decades ago, theoretical cryptography has
developed by formalizing the intuitive notions of security, and basing
the strength of protocols realizing these definitions on widely accepted
complexity assumptions. Much success was achieved in defining and re-
alizing secure multi-party computation, arguably the most general and

? Supported by NSF Early Career Development (CAREER) Grant CCF-0347839.
?? This work was done while the author was at the department of Computer Science,

Columbia University
? ? ? This work was done while the author was at the department of Computer Science,

Columbia University

important task in cryptography, in various ’stand-alone’ settings. As our
understanding develops side by side with new emerging needs and appli-
cations for cryptography in uncontrolled, distributed environments such
as the Internet, new goals and challenges arise. An important current
direction in cryptography is to model and realize secure protocols oper-
ating in such open settings, requiring concurrent composition. Intuitively,
one would like to have protocols that will remain secure even if they are
composed arbitrarily with other protocols. Such general composability
is often what is required in practical settings. It is important to con-
tinue to base this new developing theory on well studied and scrutinized
complexity assumptions.

The UC/ES Framework Perhaps the most well known definition
of security in a composable setting is the Universally Composable (UC)
Security paradigm of Canetti [Can01] (an alternative paradigm was pro-
posed by Pfitzmann et. al. [PW00,BPW04]).
The UC security notion is based on the (by now standard) ideal world /
real world simulation paradigm. Very roughly, an ideal world is defined
where functions are computed by a trusted party. For a protocol to be
secure, we require that for every adversary A operating in the real world
under a certain environment, there exists an ideal world adversary S (a
simulator), working in time polynomial in that of A, that can simulate
everything that happened in the real world under A. This should hold
under any environment (which models anything else going on in the
world, provides inputs to all parties, watches their interactions, etc).
Hence, the UC security notion is also referred to as the Environmental
Security (ES) notion.
A major advantage of this framework is that, according to the UC Theo-
rem [Can01], protocols that are secure in this model remain secure even
when composed concurrently and arbitrarily (hence the name univer-
sally composable security). In particular, consider an arbitrary protocol
π which uses some ideal calls (using a trusted party) to compute cer-
tain functions. Replacing the ideal calls by UC-secure protocols com-
puting the functions is safe in the sense that whatever an adversary A
can achieve, can be simulated in polynomial time within the ideal calls
model.
Unfortunately, while this UC/ES framework is very appealing and strong
in terms of the provided security guarantees, it turned out to be too
strong. Indeed, many of the most basic cryptographic tasks (such as
commitment or secure computation) were proven impossible to realize
in this framework, unless additional “trust” assumptions are being made
[Can01,CF01,DG03,CKL03,Lin03,Lin04] (e.g., an honest majority, or a
common random string available to all parties and selected by a trusted
party).

The gES Framework Recently, Prabhakaran and Sahai [PS04] in-
troduced a new model of security, generalized Environmental Security
(gES). Roughly, this model relaxes the security requirements of the UC/ES
setting so as to avoid the impossibility results, while still rendering the

model meaningful enough that a protocol secure in this model intuitively
implies meaningful guarantees on its actual security if employed “in real
life”. We discuss the meaningfulness of these guarantees below. This
framework is exciting and promising, as it allowed, for the first time, to
realize multi-party computation of general functionalities without any
setup assumptions, while maintaining security under a pretty general
form of composability (see discussion below).

Their idea, roughly, was to perform a thought experiment where the
adversary in the ideal world (the simulator) is given super-polynomial
computational power (following the approach suggested by Pass [Pas03]).
To allow for secure composability, the super-polynomial power in the
ideal world is given through a super polynomial angel (oracle), which
can answer queries based on its knowledge of who the corrupted parties
are. This is the gES notion of security. We refer the reader to [PS04] for
more details, but remind that the angel is only required as a tool for the
security proof, and is not needed for protocol execution. For a particular
angel Γ , the resulting security model is called Γ -ES. Using this model,
[PS04] showed how to achieve secure multi-party computation of any
functionality, against a static adversary (one who cannot corrupt parties
adaptively), and without any setup assumptions. More specifically, it is
shown in [PS04] that

1. For every Imaginary Angel Γ , Γ -ES protocols are universally com-
posable.

2. There exists an Imaginary Angel Ψ (under new complexity assump-
tions) such that there are Ψ -ES protocols for commitment, ZK proofs
and any PPT functionality.

This result is very important towards the ultimate goal of reasonable,
concurrently secure protocols, without setup assumptions. However, the
result of [PS04] is based on a new, non-standard assumption, requir-
ing the existence of a hash function with certain properties regarding
distributions of collisions on inputs with the same prefixes (see further
discussion in Section 4.1).

Perhaps the most important open problem left in [PS04] is to realize such
secure computation without setup assumptions relying on simpler, more
standard, easier to analyze, complexity assumptions. Our work provides
a big step in this direction.

Very recently (and independently of our work), Barak and Sahai [BS05]
have also addressed this problem, and showed how to realize such secure
computation (again under a relaxed model where the simulator is super
polynomial in the real-world adversary), using reasonably standard as-
sumptions. Namely, assuming the existence of a hash function collection
that is collision resistant with respect to super polynomial adversaries,
and trapdoor permutations secure against super polynomial adversaries.
The main advantage of our solutions, as we shall see, is their simplic-
ity, which will hopefully be useful towards practical implementations,
and more importantly, towards distilling a better understanding of this
security model, it’s meaning, advantages, and limitations.

Finally, we touch upon one more recent framework. Recently, Prab-
hakaran and Sahai [PS05] suggested a relaxation of gES, introducing

Monitored functionalities and Client-Server Computation. This relax-
ation aims at achieving secure computation (alas, of a limited class of
functionalities) with weaker assumptions, simpler, and more efficient pro-
tocols. We do not describe or motivate this framework here, except to
note that the assumptions used are still non-standard and hard to work
with. On the other hand, the functionalities that can be realized, while
limited, avoid the impossibility results in the standard UC model, and
thus provide an interesting advance.

Why is Security in the gES Framework Meaningful? Before
presenting our results, we discuss the meaning of security and compos-
ability in the gES framework which we use (the same discussion applies
to the framework of [BS05] which also uses super polynomial simulation).
In terms of secure computation of a given function, it can be argued
(see [PS04,BS05]) that for most applications of secure computation, the
ideal model is still “ideal enough” (or “secure enough”) even when the
adversary is allowed to run in time that is bounded by a specific su-
per polynomial function (depending on the hardness assumption used).4

Thus, proving that any adversary in the real world can be simulated by
such a (strong) ideal model adversary, still provides a meaningful notion
of security.
However, it is important to understand the implications of what exactly is
guaranteed (and not guaranteed) by the theorem proving universal com-
posability in this framework (be it Γ -security for some angel Γ as used
in [PS04] and in this paper, or the security notion suggested by [BS05]).
What is guaranteed is that, given any protocol secure according to the
notion at hand, the protocol remains secure even when composed in an
arbitrary manner with any other arbitrary protocols. But, no guarantees
are made for protocols that are not secure according to the notion at
hand.
In particular, consider a protocol π which is not secure according to
this notion, but enjoys some other weaker security features (e.g., the
protocol has some security guarantee in the ideal calls model when the
adversary is polynomial time bounded). Now, composing this protocol
with other protocols within the new framework (e.g., replacing ideal calls
to a function f with a Γ -ES secure protocol for f), may break the original
(weaker) security guarantee that π had. Indeed, all we know is that
anything that happens with adversary A can be simulated in the ideal
calls model with an adversary S that has access to the (super-polynomial)
Γ . While the protocol for f was Γ -ES secure, Γ (which is used only as
a tool in the analysis) may help “break” some other sub-protocol in
π.5 In this sense, the notion of composability guaranteed by the general
theorems, is not completely “general composition” as defined by [Lin03].

4 In fact, in many applications, the ideal model is such that even a computationally
unbounded adversary cannot cause damage.

5 In fact, π may have been designed specifically with this goal in mind, following a
“chosen protocol attack” [KSW97]. For example, if Γ is the one used in this paper,
namely providing discrete logs (breaking DLA) relative to some primes, π could
contain a part that relies on the DLA for an appropriate prime.

An argument can be made that one cannot maintain “all possible weak
security properties” of insecure protocols under composition (it’s not
even clear how to define this), and that the (or a) right notion of secu-
rity is one that guarantees security to those who use it, while insecure
protocols naturally will remain insecure under composition. Moreover,
one can argue that this is also the case for the standard UC-security
framework: security under composition is only guaranteed when compos-
ing protocols that were UC-secure to begin with.6 On the other hand,
it seems clear (historically, intuitively, and practically), that security in
an ideal calls model against a polynomial time bounded adversary (the
notion of security used for UC) is an extremely natural and important
security notion. It may be reasonable to assume that anything that is less
secure than that is completely insecure (and thus nothing needs to be
preserved under composition for protocols that are not secure according
to this notion). For sure, it would be desirable to maintain this security
property for protocols even when composed with other protocols in a
stronger model such as Γ -ES security. It is important to note that this
is, unfortunately, not the case.
At this point we leave the philosophical discussion about the general
direction that [PS04] initiated, and [BS05] and the current work follow,
and continue to describe our results.

1.2 Our Results

We provide an important step towards realizing gES with standard num-
ber theoretic assumptions that are concrete, natural, easier to study and
analyze, or indeed refute.
First, we provide an instantiation of the assumptions used by [PS04],
based on a new assumption, which we call the relativized discrete log as-
sumption (rDLA), as well as a standard (strong) assumption of trapdoor
permutations (TDP) secure against super polynomial adversaries. The
details of these assumptions are discussed later in the paper. In particu-
lar, we obtain Ω-ES protocols for arbitrary functionalities against static
adversaries, with no setup assumptions (here Ω is our imaginary angel,
and the security is based on the rDLA). While non-standard, the rDLA
is simple to state (intuitively, it says that the DLA over a certain group
holds even in the presence of oracles breaking the DLA for other groups),
and strictly algebraic/number-theoretic in nature (we work over sub-
groups of prime order of safe primes, although our assumption and pro-
tocols could be considered over other groups). We believe the assumption
is easy to understand and think about, and it seems quite reasonable.7

6 For example, if a protocol π in the ideal calls model maintained some (weak) notion
of security against adversaries bounded by quadratic running time, replacing an ideal
call to some f by a UC-secure protocol for f may break that property, as the ideal
model adversary in the UC framework is allowed polynomial running time.

7 We do not claim to be experts in number theory, although several other people
that we asked also found the assumption reasonable. Further, the same somewhat
philosophical arguments on the plausibility of the assumptions made in [PS04] apply
here as well, except that our assumptions are easier to try to attack.

Since this assumption can be framed as an instantiation of the original
[PS04] assumption (through a realization of their hash function), our
work simplifies and ’cleans’ the previous construction, and helps bring
the gES model and the [PS04] protocols under more scrutiny, hopefully
towards helping to strengthen our belief in its security. We also note that
while the [BS05] construction relies on more standard assumptions, and
in this sense subsumes our results, our resulting protocols are cleaner,
simpler, and hopefully a step towards practically efficient concurrently
composable protocols.
Second, we provide an instantiations of the assumptions used by [PS05],
based on the standard discrete log assumption (DLA), as well as a stan-
dard (strong) assumption of TDP secure against super polynomial ad-
versaries. This allows us to obtain, like [PS05], simpler protocols for a
limited class of “server-client” functionalities. Perhaps more importantly,
this yields the first results for concurrently secure computation without
setup assumptions, under standard computational assumptions.
In sum, our work addresses the arguably most important problem left
open by the recent [PS04] pioneering work, and we hope that it provides a
useful step towards achieving, or at least understanding, the “holy grail”
in this field. Moreover, it provides a significant improvement of the [PS05]
results, replacing a new and unstudied assumption by the completely
standard DLA. Finally, we believe rDLA, our new assumption, is worth
studying independently of the current context, and is likely to find other
cryptographic applications.

2 Preliminaries

We do not provide here formal definitions of the gES and related models,
and refer the reader to the original papers [PS04,PS05] for definitions (as
well as further justifications regarding the meaningfulness of the security
model).
In all our protocols we use k as the security parameter, and consider
functionalities of up to a polynomial n number of parties.
We assume all the parties have unique IDs, which may be adversarially
chosen as long as they adhere to the legal format. In this paper, the IDs
are of the form q where q is a safe prime, namely q = 2p + 1 for a prime
p (p is called a Sophie Germain prime).
All adversaries considered in this work are PPT, non-uniform, and static
(namely choose the set of parties to corrupt at the onset of computation).
For two distributions X and Y we write X ≈ Y to denote that they are
indistinguishable by PPT circuits (with respect to the security parameter
k).

3 Our Assumptions

In this section we summarize the assumptions that we will use for our
results. Section 3.2 describes the rDLA assumption that is new to our
work. Section 3.1 describes other assumptions that we will use, which

are standard assumptions. The assumptions previously used by [PS04]
and [PS05] appear in Section 4.1 and Section 5.1.
The assumptions we use are related to the discrete log assumption (DLA),
which is commonly assumed for different groups. We state our assump-
tions for subgroups of prime order of Z∗

q , specifically for the subgroup G
of the quadratic residues, when q = 2p + 1 is a safe prime (this can be
somewhat extended).

3.1 Standard Assumptions

We sketch these assumptions without full formal details.

The Discrete Log Assumption (DLA) For any PPT adversary A, con-
sider the following probabilistic experiment: choose a random safe prime
q = 2p + 1 of length k, let G be the subgroup of order p (all quadratic
residues) of Z∗

q , let g be a generator of G, and choose a random y ∈ G.
Then, the probability that A(q, g, y) = x ∈ Z∗

p such that y = gx is
negligible.

The Discrete-Log-Safe Trapdoor Permutation Assumption (DLS-
TDP) For n polynomial in the security parameter k, there exists a
family of trapdoor permutations over {0, 1}n, that remain secure against
adversaries with access to an oracles solving discrete logarithms in the
subgroups of Z∗

q , for safe primes q of size k.
Note that the above assumption is implied by the (more standard as-
sumption of) existence of trapdoor permutations secure against adver-
saries with super polynomial power 2nε

. Indeed, if such strong TDP exist,
we can choose n = k1/ε. Then in time 2k the discrete log problem can be
solved, but the TDP remains secure, implying the DLS-TDP assumption.

3.2 The Relativizing Discrete Log Assumption (rDLA)

Let q = 2p+1 be a safe prime of size k, and let G be the subgroup of size
p. Then the discrete log problem over G is hard (i.e., no PPT adversary
can compute discrete logs with non-negligible probability), even when
the adversary has access to oracles that solve the discrete log problem
for any input in any other group defined by a safe prime q′ 6= q of size k.
Intuitively, the rDLA assumes some sort of “non-malleability” among
different groups, asserting that being able to take discrete logs in all
other groups of the same size, will not help an adversary take discrete
logs in the given group.

4 Achieving gES

In this section we will show how to use rDLA and DLS-TDP to real-
ize secure multi-party computation (for static adversaries) in the gES
framework, without any setup assumptions. We do that by showing an
instantiation of the assumed hash function in [PS04], proving it satisfies
the required properties, and presenting the resulting Angel and protocols
for general secure multi-party computation.

4.1 The Assumptions and Angel of [PS04]

The constructions of [PS04] rely on the following assumptions8:

Assume there exists a hash function H : {0, 1}k → {0, 1}l. The input to
H is of the form (µ, r, x, b) ∈ J ×{0, 1}k1 ×{0, 1}k2 ×{0, 1}, where J is
the set of IDs of the parties (each party is assumed to have a unique ID,
possibly chosen adversarially), and k1, k2, and l are all polynomial in k.
It is assumed that H satisfies the following.

A1 (Collisions and Indistinguishably): For every µ ∈ J and r ∈ {0, 1}k1 ,
there is a distributionDµ

r over {(x, y, z)|H(µ, r, x, 0) = H(µ, r, y, 1) =
z} 6= φ, such that

{(x, z)|(x, y, z)← Dµ
r } ≈ {(x, z)|x← {0, 1}k2 , z = H(µ, r, x, 0)}

{(y, z)|(x, y, z)← Dµ
r } ≈ {(y, z)|y ← {0, 1}k2 , z = H(µ, r, y, 1)}

Further, even if the distinguisher is given sampling access to the set

of distributions {Dµ′

r′ |µ′ ∈ J , r′ ∈ {0, 1}k1}, these distributions still
remain indistinguishable. (Intuitively, this assumption states that
there are collisions in the hash function, which are indistinguishable
from a random hash of a 0 or a 1).

A2 (Difficult to find collisions with same prefix): For all PPT circuits
M and every id µ ∈ J , for a random r ← {0, 1}k1 , probability that
M(r) outputs (x, y) such that H(µ, r, x, 0) = H(µ, r, y, 1) is negligi-
ble. This remains true even when M is given sampling access to the

set of distributions {Dµ′

r′ |µ′ 6= µ, r′ ∈ {0, 1}k1}. (Note that without
this last requirement, insisting that finding collisions remains diffi-
cult even when given sampling access to collisions for other µ′, a
hash function satisfying these properties could be constructed under
standard assumptions).

Additionally, [PS04] also rely on the following assumption:

A3 There exists a family of trapdoor permutations T over {0, 1}n, which
remains secure even if the adversary has sampling access to Dµ

r for
all µ and r.

As discussed above (and in [PS04]), A3 can be replaced by the (stronger,
but more standard and natural looking) assumption of TDP secure against
super-polynomial adversaries.

The Angel Ψ : [PS04] use the following imaginary angel Ψ . On query
(µ, r), Ψ checks whether µ is one of the corrupted parties. If so, Ψ outputs
a sample from Dr

µ. If not, Ψ returns ⊥.

4.2 Our Hash Function

We propose the following hash function H0, point its correspondence
to the [PS04] hash function, and prove that (under our assumptions) it
realizes their required assumptions A1,A2,A3.

8 This text is extracted almost verbatim from [PS04].

Defining H0 H0 : {0, 1}k → {0, 1}l is defined as follows. The input to
H0 is of the form (q, g0, g1, x, b), where:
– q = 2p + 1 is a safe prime (namely, p is a prime as well) of length

k1, where k1 is polynomially related to k. (This corresponds to the
party ID µ).9

– g0, g1 are generators of G = QR(Z∗
q). Equivalently, each of g0, g1 is

a quadratic residue not equal to 1 in Z∗
q . (This corresponds to r).

– x ∈ Z∗
p

– b ∈ {0, 1}.
The output of H0 is then defined as:

H0(q, g0, g1, x, b) = gx
b mod q.

We note that it is easy to efficiently check whether the input is of the
correct form, by using primarily testing, and testing whether gi is a
quadratic residue by computing its Legendre symbol. It is also easy to
generate inputs to H0; Choosing random generators g0, g1 of the QR
subgroup can be done by simply choosing a random element of Z∗

q and
squaring it. Choosing a safe prime q is easy assuming that safe primes
(or Sophie Germain primes) are dense.

Satisfying A1, A2 and A3 We next show that, instantiating H
with H0, A1 is satisfied unconditionally, A2 is satisfied if rDLA holds,
and A3 is satisfied if the DLS-TDP assumption holds.

Lemma 1. H0 satisfies A1.

Proof. We need to show that for all safe primes q of size k1 and all
g0, g1 6= 1 quadratic residues in Z∗

q , there exists a distribution Dq
g0,g1

over {(x, y, z)|gx
0 = gy

1 = z mod q}, such that

{(x, z)|(x, y, z)← Dq
g0,g1} ≈ {(x, z)|x← Z∗

p , z = gx
0 mod q}

{(y, z)|(x, y, z)← Dq
g0,g1} ≈ {(y, z)|y ← Z∗

p , z = gy
1 mod q}

We take Dq
g0,g1 to be a distribution that outputs (x, y, z) where x ∈ Z∗

p

is chosen at random, z = gx
0 mod q, and y ∈ Z∗

p is the unique element
satisfying z = gy

1 mod q. Then, it is clear that the above distributions
are identical (and in particular indistinguishable for any distinguisher,

even if given sampling access to other Dq′

g′
0,g′

1
). ut

Lemma 2. If rDLA holds, then H0 satisfies A2.

Proof. We need to prove that, informally, for every safe prime q of size
k1, and for randomly generated g0, g1, it is hard to output a collision
(x, y) such that gx

0 = gy
1 . This should hold even for an adversary with

access to such collision distributions for other safe primes q′ of length k1.
Indeed, any PPT circuit M that outputs collisions for q (given random
g0, g1) with non-negligible probability, can be converted to a PPT M ′

9 As usual, we consider the party IDs to be unique, and possibly adversarially chosen,
subject to the required format.

which finds the discrete log in the subgroup G of quadratic residues with
non-negligible probability. Specifically, given a generator g and a random
element z ∈ G, M ′ can proceed by choosing g′ = gr for a random r, and
running M(g′, z). If M outputs a collision (x, y) such that g′x = zy, M ′

can output rxy−1 mod p. If such an M exists, this contradicts the DLA
for the corresponding subgroup of Z∗

q . If there is such an M that uses

access to distributions Dq′

g′
0,g′

1
for q′ 6= q, since these distributions can

easily be simulated using an oracle that provides discrete logarithms in
the QR subgroup of Z∗

q′ , this contradicts the rDLA. ut

Lemma 3. If the DLS-TDP assumption holds, then A3 holds.

Proof. This follows immediately from the fact that for all safe primes
q and subgroup generators g0, g1, providing collisions (x, y, z) such that
gx
0 = gy

1 = z is equivalent to providing the discrete logarithm of g0 with
respect to g1. ut

4.3 Our Angel Ω

Following the Γ−ES Angel model, we use a super-polynomial imaginary
angel we call Ω, that breaks the security of already corrupted parties.
Specifically, Ω is the following. On a query (q, g0, g1) (of the usual for-
mat), Ω checks whether q is the ID of one of the corrupted parties. If so,
Ω returns a such that g0 = ga

1 mod q (that is, return the discrete log of
g0 with respect to g1). If q is the ID of a party that is not corrupted, Ω
returns ⊥.
We remark that we could have used the imaginary angel Ψ from [PS04],
instantiated with our hash function H0. Then, the resulting imaginary
angel would have outputted a distribution of collisions for the given q,
g0 and g1, instead of the discrete logarithm a. These outputs are clearly
equivalent, and we chose to present our angel Ω as above since it is a
somewhat simpler, cleaner choice.

4.4 Putting the Pieces Together: Secure Multi-Party
Computation in the Ω-ES Model

We have shown how to realize the hash function, angel, and assumptions
required for the constructions of [PS04] using the number theoretic as-
sumption rDLA, and the DLS-TDP (or TDP secure against super poly-
nomial adversaries). This allows the main result from [PS04], namely
general secure multi-party computation secure against static adversaries
without any setup assumptions, to go through in our setting.

Theorem 1. If rDLA and the DLS-TDP assumption hold, there is a
protocol that Ω-ES realizes any multi-party functionality against static
adversaries.

Proof. This follows immediately from the previous sections, together
with Theorem 3 in [PS04]. All of the protocols necessary for the proof
are instantiated directly and the proofs follow from the realization of the
assumptions. ut

For illustration, and some self-containment, we sketch the general outline
of the secure multi-party computation protocol, and present the resulting
construction of the basic building blocks, the functionality FC̃OM (in
Figure 1) and the protocol BCOM (in Figure 2) that realizes it, within
our framework.

Basic Commitment Semi-Functionality F
C̃OM

Following the con-
struction from [PS04], we first implement the basic IDEAL commitment
semi-functionality FC̃OM

10. We instantiate the REAL protocol BCOM
from [PS04] with our hash function and then prove that BCOM Ω-ES
realizes the semi-functionality FC̃OM. Since FC̃OM is not fully ideal, we
need to prove that the commitment is binding separately.

With the help of the Ω angel, for every PPT adversary AΩ , we can
demonstrate a PPT simulator SΩ such that no PPT environment can
distinguish between the REAL interaction with AΩ , and the IDEAL
interaction with SΩ . This proves that BCOM is an Ω-ES realization of
FC̃OM.

To show that the semi-functionality FC̃OM is binding for a corrupt sender
C for any environment, we rely upon the rDLA. We show a polynomial
reduction from the problem in which a machine M breaks the binding of
the commitment scheme FC̃OM, to a problem where an adversary uses M
to break the security of the rDLA. By assumption, the later is impossible
with better than negligible probability, so the commitment is binding.

Functionality FC̃OM

The parties are sender C and receiver R, with adversary SΩ .
The security parameter is k, and qC , qR are safe primes of size
k1 polynomial in k.
COMMIT PHASE:

1. FC̃OM picks random quadratic residues g0, g1 ← QR(qR)
and sends them to C.

2. FC̃OM receives c from C.
3. FC̃OM sends the message COMMIT to R.

REVEAL PHASE:

1. FC̃OM receives (b, x) from C.
2. FC̃OM checks if c = gx

b . If so, then send message
(REVEAL,b) to R and adversary SΩ .

Fig. 1. The basic commitment functionality FC̃OM

10 A semi-functionality is one that is not fully ideal, therefore its ideal properties must
be proved separately. See [PS04]

Protocol BCOM

The parties are sender (committer) C and receiver R. The se-
curity parameter is k, and qC = 2pC + 1, qR = 2pR + 1 are safe
primes of size k1 polynomial in k.
COMMIT PHASE:

1. R picks random quadratic residues g0, g1 ← QR(qR) and
sends them to C.

2. C chooses x← Z∗
pR

and computes c = gx
b . C requests FENC

to send c to R.
3. R receives c from FENC and accepts the commitment.

REVEAL PHASE:

1. C requests FENC to send (b,x) to R, and R receives.
2. R checks if c = gx

b . If so, he accepts b as the reveal.

Fig. 2. The basic commitment protocol BCOM that Ω-ES realizes FC̃OM

Building the Rest Of the Tools We follow [PS04] directly to build
the rest of the tools need for secure multi-party computation. In the
FC̃OM-hybrid model we build a multi-bit commitment semi-functionality
F∗

C̃OM

11 and a zero knowledge semi-functionality FZ̃K , with correspond-
ing realizations BCOM∗ and BZK. Proving that that these protocols
realize their functionalities does not require the use of angels. The angel
Ω is only only to prove the realization of the basic commitment semi-
functionality.
The protocols BCOM∗ and BZK are then used to build the proto-
col COM, realizing the standard (fully ideal) commitment functionality
FCOM. In order to realize FCOM, however, we need to use the DLS-TDP
assumption. In the FCOM-hybrid model, there are known protocols for
zero knowledge and for a broadcast channel. The zero knowledge func-
tionality FZK has a realization due to Canetti and Fischlin [CF01]. The
broadcast channel functionality FBC is due to Goldwasser and Lindell in
[GL02]. The proof for both of these realizations are information theoretic,
and so they hold in the Ω-ES model, and do not rely on angels.
With the help of FCOM, FZK and FBC , we can now realize the protocol
OM-CP for the ideal functionality for one-to-many commit-and-prove,
F1:M

CP . Again, the proof of this construction does not rely upon the exis-
tence of angels.

11 In our model we could also use a Pedersen commitment for the multi-bit commit-
ment, but we felt that our single bit commitment was easier to understand and that
our proofs are much simpler if we just instantiate the hash function from [PS04],
rather than create completely new protocols. Using the Pedersen commitment could
be of independent interest.

Now we have all of the tools needed to perform general multiparty com-
putation against static adversaries.

Secure Multi-Party Computation We can now build general MPC fol-
lowing [CLOS02,PS04]. The proofs in [CLOS02] are information theoretic
and will therefore carry over to the Ω-ES model.
Following the result of Lemma 2 in [PS04], using the DLS-TDP assump-
tion, we can create a protocol for any functionality F that is secure
against all semi-honest static adversaries. A full explanation appears in
[CLOS02].
Now following Lemma 3 in [PS04], we know there exists a compiler that
can turn any protocol secure against semi-honest static adversaries into a
protocol secure against all static adversaries. The proof relies on having
access to a functionality for one-to-make commit-and-prove. Since we
have the protocol OM-CP that Ω-ES realizes one-to-many commit-and-
prove functionality F1:M

CP , we now have a way of performing any multi-
party computation.

5 Monitored Functionalities and Client-Server
Computation Based on DLA

In [PS05] Prabhakaran and Sahai were able to show how to do any multi-
party computation in a “client server model” called “client-server com-
putation”. This work is done in the UC/ES framework, but there are
many limitations on this model. In the model one party is dedicated as
the “server” and all the other parties are “clients”. The client receives
as output a function of its input and the server’s input, while the server
receiver as output the client’s input. There is, however, the extra security
limitation that the server’s input to the function is not necessarily inde-
pendent of the client’s input, unless the client had never used that input
previously (for more precise details, the reader is referred to [PS05]).
While “client-server computation” is implied by our earlier results in this
paper of any multi-party computation we are able to achieve this on much
simpler assumptions. With just the standard Discrete Log Assumption
and DLS-TDP Assumption against non-uniform adversaries we can show
how to do any type of client-server computation (as before, the DLS-
TDP assumption is implied by the more standard TDP against super-
polynomial adversaries).
The significance of this work is not in the power of the model, but in
the fact that we were able to work past inherent restrictions in the UC
model using such widely accepted assumptions.
We achieve these results in a similar fashion as in Section 4. We instan-
tiation the hash function used in [PS05], but this time we need only rely
on the DLA to do so.

5.1 The Assumptions and Angel of [PS05]

The assumptions made by [PS05] and their imaginary angel, are similar
but weaker versions of those used by [PS04]. In particular, the ID of the

party is not necessary as an input to the hash function, nor needed by
the angel. Intuitively, the reason is that the role played by a certain party
(e.g., a server vs a client) does not change across different executions.
The imaginary angel can thus decide whether to answer the query in a
useful manner based on the identity of the corrupted parties, without
requiring the ID. Details follow.
The constructions of [PS05] rely on the following assumptions.
Assume there exists a hash function H : {0, 1}k → {0, 1}l. The input
to H is of the form (r, x, b) ∈ {0, 1}k1 × {0, 1}k2 × {0, 1}, where k1, k2,
and l are all polynomial in k. It is assumed that H satisfies the following
properties:

A′1 (Collisions and Indistinguishably): For every r ∈ {0, 1}k1 , there is a
distribution Dr over {(x, y, z)|H(r, x, 0) = H(r, y, 1) = z} 6= φ, such
that

{(x, z)|(x, y, z)← Dr} ≈ {(x, z)|x← {0, 1}k2 , z = H(r, x, 0)}
{(y, z)|(x, y, z)← Dr} ≈ {(y, z)|y ← {0, 1}k2 , z = H(r, y, 1)}

Further, given sampling access to Dr to a distinguisher, these distri-
butions still remain indistinguishable.

A′2 (Difficult to find collisions with same prefix): For all PPT circuits
M , for a random r ← {0, 1}k1 , the probability that M(r) outputs
(x, y) such that H(r, x, 0) = H(r, y, 1) is negligible.12

Additionally, for most of their results, [PS05] also use the following as-
sumption:

A′3 There exists a family of trapdoor permutations which remains secure
even when the adversary is given sampling access to Dr for all r.

Note that each of these assumptions is weaker than (i.e., implied by) the
corresponding assumption from [PS04] described in Section 4.1.

The Angel Γ : [PS04] use the following imaginary angel Γ . On query
r, Γ checks whether the server is corrupted or not. If so, Γ returns ⊥. If
not, Γ outputs a sample from Dr.

5.2 Our Hash Function

Here, we instantiate the hash function using exactly the same hash func-
tion H0 : {0, 1}k → {0, 1}l as we defined in Section 4.2, that is,

H0(q, g0, g1, x, b) = gx
b mod q.

However, this time (q, g0, g1) correspond to r from the [PS05] construc-
tions (rather than q corresponding to an ID). This means, for example,
that assumption A′2 (difficulty of collision finding) is required to hold
when q (as well as the generators) is chosen randomly (not necessarily
for every q).

12 Notice that here, unlike the corresponding assumption A2 from Section 4.1, M does
not get access to oracles for the collision finding distributions for with other param-
eters. This is what will allow us to realize this requirement relying only on DLA,
and not rDLA.

Satisfying A′1, A′2, A′3

We show that using our H0 to instantiate the hash function, A′1 is
satisfied unconditionally, A′2 is satisfied if (a standard) DLA holds, and
A′3 is satisfied if DLS-TDP holds. This will follow easily using the same
arguments as we used in Section 4.2.

Lemma 4. H0 satisfies A′1.

Proof. We showed in Section 4.2 that H0 satisfies A1. Since A1 implies
A′1 (in fact, they are equivalent here), it immediately follows that H0

satisfies A′1. ut

Lemma 5. If DLA holds, then H0 satisfies A′2.

Proof. Similarly to the proof of Lemma 2, if a PPT circuit M outputs
collisions for a random q, g0, g1, it can be converted to a PPT circuit M ′

that computes discrete logs random elements of the quadratic residue
subgroup of randomly chosen primes. This contradicts DLA.13 ut

Lemma 6. If the DLS-TDP assumption holds, then A′3 holds.

Proof. This is identical to Lemma 3. ut

5.3 Our Angel ∆

Our imaginary angel ∆ will first check if the server S is corrupted. If S
is corrupted ∆ will return ⊥ on any query. If S is not corrupted then on
input (q, g0, g1) ∆ will compute the discrete logarithm of g0 with respect
to g1, namely return a such that g0 = ga

1 mod q.

5.4 Putting the Pieces Together: Main Theorems for
This Model

By proving that our hash function realizes the properties required by
[PS05], all their results automatically translate to hold under our angel
∆, using our assumptions. This allows to achieve the first protocols in a
(partially) composable model under very standard and widely acceptable
assumptions such as the DLA, without any trusted setup, and avoiding
the impossibility results of the UC model.

Below we briefly discuss the resulting theorems, and refer the reader to
[PS05] for definitions and in-depth discussion of the functionalities and
semi-functionalities achieved, as well as the security model. In the full
version of the paper we will explicitly present the resulting protocols.

13 Note that the last step in the proof of Lemma 2, dealing with the access M has to
collisions for other Z∗

q′ is not necessary here, due to the weakened assumption A′2.

Monitored Commitment, Zero Knowledge Proof, and Commit and
Prove under DLA. In [PS05] Prabhakaran and Sahai achieve proto-
cols that Γ -ES-realize the monitored functionalities 〈FC̃OM〉, 〈FZ̃K〉 and
〈FC̃AP 〉 given in [PS05] under assumptions A′1 and A′2. Thus we can
achieve the protocols for these monitored functionalities with just the
Discrete Log Assumption. While these are a means to achieve “client-
server computation” they are also of independent interest. The protocols
will remain the same as in [PS05] except with H instantiated with our
DL-based H0.

Theorem 2. Under the Discrete Log Assumption, protocols COM, ZK
and CAP ∆-ES-realize monitored functionalities 〈FC̃OM〉, 〈FZ̃K〉 and
〈FC̃AP 〉

Client-Server Computation Under DLA and DLS-TDP Assump-
tion. In [PS05] Prabhakaran and Sahai achieve “client-server computa-
tion” under A′1, A′2 and A′3 and angel Γ . Thus we can achieve “client-
server computation” with the Discrete Log Assumption and the DLS-
TDP Assumption (or the stronger assumption of TDP secure against
super polynomial adversaries). The Client-Server Computation Protocol
(CSC) is the same as [PS05].

Theorem 3. There is a protocol which ∆-ES-realizes monitored func-
tionality 〈FC̃SC〉 against static adversaries, under the Discrete Log As-
sumption and the DLS-TDP Assumption.

Acknowledgments

We are grateful to Boaz Barak, Ran Canetti, Yehuda Lindell, Manoj
Prabhakaran, and Amit Sahai for useful discussions. In particular, it was
during a conversation with Boaz, Amit, and Manoj that Manoj suggested
we try to present our results through an instantiation of the [PS04] hash
function, rather than reproving our protocols from our assumptions. We
also thank Zeph Grunschlag, Stephen Miller, Rafi Ostrovsky, and Carl
Pomerance for helpful discussions and pointers regarding the feasibility
of rDLA. Finally, we thank the anonymous referees for suggestions about
the presentation.

References

[BPW04] Michael Backes, Birgit Pfitzmann, and Michael Waidner. A
general composition theorem for secure reactive systems. In
Theory of Cryptography – TCC 2004, pages 336–354, 2004.

[BS05] Boaz Barak and Amit Sahai. How to play almost any men-
tal game over the net – concurrent composition via super-
polynomial simulation. In Proc. of the 46th Annu. IEEE Symp.
on Foundations of Computer Science, 2005. To appear.

[Can01] Ran Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In Proc. of the 42nd
Annu. IEEE Symp. on Foundations of Computer Science,
pages 136–145, 2001.

[CF01] Ran Canetti and Marc Fischlin. Universally composable com-
mitments. In Advances in Cryptology – CRYPTO 2001, pages
19–40, 2001.

[CKL03] Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the
limitations of universally composable two-party computation
without set-up assumptions. In Advances in Cryptology – EU-
ROCRYPT 2003, pages 68–86, 2003.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sa-
hai. Universally composable two-party and multi-party secure
computation. In Proc. of the 34th Annu. ACM Symp. on the
Theory of Computing, pages 494–503, 2002.

[DG03] Ivan Damg̊ard and Jens Groth. Non-interactive and reusable
non-malleable commitment schemes. In Proc. of the 35th
Annu. ACM Symp. on the Theory of Computing, pages 426–
437, 2003.

[GL02] Shafi Goldwasser and Yehuda Lindell. Secure computation
without agreement. In Proc. of the 16th International Confer-
ence on Distributed Computing (DISC), pages 17–32, 2002.

[KSW97] John Kelsey, Bruce Schneier, and David Wagner. Protocol in-
teractions and the chosen protocol attack. In Proc. of 5th In-
ternational Security Protocols Workshop, volume 1361 of Lec-
ture Notes in Computer Science, pages 91–104. Springer, 1997.

[Lin03] Yehuda Lindell. General composition and universal compos-
ability in secure multi-party computation. In Proc. of the
44rd Annu. IEEE Symp. on Foundations of Computer Science,
pages 394–403, 2003.

[Lin04] Yehuda Lindell. Lower bounds for concurrent self composition.
In Theory of Cryptography – TCC 2004, pages 203–222, 2004.

[Pas03] Rafael Pass. Simulation in quasi-polynomial time, and its ap-
plication to protocol composition. In Advances in Cryptology
– EUROCRYPT 2003, pages 160–176, 2003.

[PS04] Manoj Prabhakaran and Amit Sahai. New notions of security:
achieving universal composability without trusted setup. In
Proc. of the 36th Annu. ACM Symp. on the Theory of Com-
puting, pages 242–251, 2004.

[PS05] Manoj Prabhakaran and Amit Sahai. Relaxing environmental
security: Monitored functionalities and client-server computa-
tion. In Theory of Cryptography – TCC 2005, pages 104–127,
2005.

[PW00] Birgit Pfitzmann and Michael Waidner. Composition and in-
tegrity preservation of secure reactive systems. In Proc. of the
7th Annu. ACM Conference on Computer and Communica-
tions Security (CCS ’03), pages 245–254, 2000.

