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Abstract. Existing communication models for multiparty computation
(MPC) either assume that all messages are delivered eventually or any
message can be lost. Under the former assumption, MPC protocols guar-
anteeing output delivery are known. However, this assumption may not
hold in some network settings like the Internet where messages can be
lost due to denial of service attack or heavy network congestion. On the
other hand, the latter assumption may be too conservative. Known MPC
protocols developed under this assumption have an undesirable feature:
output delivery is not guaranteed even only one party suffers message
loss.

In this work, we propose a communication model which makes an in-
termediate assumption on message delivery. In our model, there is a
common global clock and three types of parties: (i) Corrupted parties
(ii) Honest parties with connection problems (where message delivery is
never guaranteed) (iii) Honest parties that can normally communicate
but may lose a small fraction of messages at each round due to transient
network problems. We define secure MPC under this model. Output de-
livery is guaranteed to type (ii) parties that do not abort and type (iii)
parties.

Let n be the total number of parties, ey and e. be upper bounds on the
number of corrupted parties and type (ii) parties respectively. We con-
struct a secure MPC protocol for n > 4es + 3e.. Protocols for broadcast
and verifiable secret sharing are constructed along the way.

1 Introduction

The study of secure multiparty computation (MPC) was initiated by Yao[26] in
the 2-party setting and extended to the multiparty setting by Goldreich, Micali
and Wigderson[16]. Roughly speaking, a set of n parties wants to jointly compute
a function g of their (private) inputs. However, up to ¢ of them are corrupted by
an adversary. The requirements are that (i) non-corrupted parties obtain their
outputs and (ii) the adversary learns nothing but the outputs of the corrupted
parties.

Several communication models are considered in the current body of work,
giving rise to different feasibility results, as follows.

1. Common global clock and message delivery within bounded time: This is the
synchronous model. Protocol execution consists of rounds. It is assumed that



the duration of one round is sufficient for a message to be sent and delivered
from one party to another.

If ¢t < n/3, then information-theoretically secure MPC protocols exist[3,
11] in a point-to-point network. If we assume the existence of a broadcast
channel, then information-theoretically secure MPC protocols exist for ¢ <
n/2[22,12,1].

If the definition of secure MPC is relaxed such that non-corrupted parties are
not guaranteed to receive their outputs (i.e., without guarantee on output
delivery), then computationally secure MPC protocols exist[16,17] for any
t < n.

2. Fventual message delivery without bound on delivery time: This is the asyn-
chronous model with eventual message delivery assumption. There is no
assumed bound on the network latency. Under this communication model,
information-theoretically secure MPC protocols exist for ¢ < n/3([2,4,7].}

3. No eventual message delivery: This is known as the ”message blocking”
model and is the communication model considered in [8,10]. There is no as-
sumed bound on the network latency and any message can be lost. Assuming
a common reference string, an Universally Composable[8] secure multiparty
computation protocol (without guarantee on output delivery) exists for any
t < n in the computational setting[10].

4. Local clock with bounded drift and message delivery within bounded time:
This is the timing model considered in [18]. It is assumed that the local
clocks of the parties proceed at the same rate and an upper bound is known
on the network latency. Under this model, an universally composable secure
multiparty computation protocol (without guarantee on output delivery)
exists for any ¢ < n in the computational setting[18]. It is worth mentioning
that the security of the protocol holds as long as the assumption about local
clocks holds. The network latency assumption is used to ensure non-triviality
of the protocol.

We note that the results mentioned in models 1-3 hold for an adaptive ad-
versary while the result mentioned in model 4 holds for a static adversary.

1.1 Applicability of existing models to general network setting

We discuss whether the assumptions made in the existing models are applicable
to general network settings like the internet.

— Message delivery within bounded time: In a real network setting, an upper
bound on the network latency can be very large. Even worse, as noted in [18],
any reasonable bound is unlikely to hold, and hence the security of a proto-
col can be compromised. Consider the following scenario: n parties execute
the protocol by Ben-Or, Goldwasser and Wigderson[3] and the adversary

! We note that this result cannot be translated to the synchronous model since the
definition of secure asynchronous computation is different from the synchronous
counterpart.



corrupts n/6+ 1 parties. In the first round, parties share their private inputs
using a (n/3+1)-out-n secret sharing scheme. Suppose an uncorrupted party
p; suffers network congestion: n/6 uncorrupted parties fail to receive their
shares of p;’s input in time. These n/6 uncorrupted parties will broadcast
complaints in the next round and p; will reveal the corresponding shares in
the round after the next round.? The adversary will then have enough shares
to reconstruct the private input of p;.

— Eventual message delivery: This is a weaker assumption than the previous
one. Under this assumption, we can have secure MPC protocols that guar-
antee output delivery. However, given the current form of the internet, this
assumption may still be too strong. Messages sent to a party can be lost due
to denial of service(DoS) attack[19] or heavy network congestion.

— Messages can be blocked: Under the message blocking model, known MPC

protocols have an undesirable feature: output delivery cannot be guaranteed
when one party suffers message loss (even if all parties are honest). An
adversary can then have a simple strategy to prevent parties from receiving
the outputs: carrying out a denial of service attack on a chosen party.
The assumption that every message can be lost may be conservative. De-
pending on the scenarios, it may be reasonable to assume a few, but not
many, parties suffer from from DoS attack or network congestion at the
same time.

In this work, we propose a communication model that is an intermediate be-
tween eventual message delivery model and message blocking model. Under this
model, we construct a secure multiparty computation protocol that guarantees
output delivery to all parties except those experience severe message loss.

1.2 Owur model
Three assumptions are made in our model:

1. A common global clock: Given the current state of art for modern network, we
believe it is reasonable to assume the existence of a common global clock?.
Protocol execution consists of rounds. Every party knows when a round
starts and ends.

2. Three type of parties: We assume that there are three types of parties in the
network:

— Corrupted parties who are controlled by an adversary.

— Honest parties with connection problems (where message delivery is
never guaranteed). An honest party that fails to contact the common
global clock belongs to this category.

— Honest parties that can normally communicate but at each round they
may fail to send/receive a small fraction of messages due to transient
network problems.

2 We remark that this is a simplification of what actually happens.

3 For instance, NIST has provided such a service:
http://tf.nist.gov /timefreq/service/its.htm?



From now on, we will address the second type of parties as constrained parties
and the third type of parties as fault-free parties. A constrained party does
not necessarily realize that it suffers from connection problem.

3. A time bound related to network latency: We assume that there is a time
bound A such that

— Duration of a round is equal to A.

— Any fault-free party p can successfully communicate with all but ¢ frac-
tion of fault-free parties in any round (i.e., message transmission from
it to another party takes time less than A and vice versa). The set of
fault-free parties p can communicate with may vary each round.

1.3 Discussions of our model and related works

The first assumption is also made in the synchronous model.

The second assumption is inspired by the previous work in distributed com-
puting. Thambidurai and Park[24], and independently Garay and Perry[14], in-
troduced the concept of hybrid failure model which allows a mix of different
degrees of failures. Our second assumption can be viewed as assuming a mix
of omission|[21,20] and Byzantine failures, which is a more general assumption
than the previous ones considered in the literature.

In [23, 25, 6], protocols for broadcast and consensus are considered in a com-
munication model where the edges can be faulty (in addition to faulty nodes).
In [9], Canetti, Halevi and Herzberg considered the problem of maintaining au-
thenticated communication over untrusted communication channels, where an
adversary can corrupt links for transient periods of time. In both lines of work,
there is a bound on the number of faulty links connected to an honest party. On
the other hand, our model captures the scenario when an honest party suffers
from arbitrary message loss.

We believe the third assumption is more realizable than assuming a time
bound on the maximum latency, and yet it is sufficient to guarantee output
delivery of fault-free parties.

If constrained parties are absent, then our model is reduced to the standard
synchronous model. On the other hand, if fault-free parties are absent, then our
model can be viewed as a message blocking model with time-out.

1.4 Our results

We define secure multiparty computation under our communication model. We
defer the formal definition to the next section, but roughly speaking, we require
the followings: (i) the fault-free parties always receive their outputs; (ii) if a
constrained party does not realize that it suffers from connection problems, then
it will receive its output, otherwise, it aborts; (iii) the adversary learns nothing
but the outputs of the corrupted parties.

We consider an adaptive, rushing adversary. The adversary is adaptive in the
sense that in any round, it can turn a fault-free party into a constrained party
or into a corrupted party. In each round, the adversary has the power to decide



the set of messages a constrained party can receive/send and the set of parties a
fault-free party can communicate with (subject to the ¢ constraint). We assume
each pair of parties is connected by a secure channel.

Let ey be an upper bound on the number of corrupted parties; e. be an upper
bound on the number of constrained parties; n be the total number of parties.
For § < %, we construct an information-theoretically secure MPC protocol for
n > 4dey+3e.. We define broadcast and verifiable secret sharing (VSS) under the
new communication model along the way. The results are as follows (all results

hold for § < £):

— A broadcast protocol for n > 3ey + 2e.; we also have a different broadcast
protocol for n > 3es + 2e. if it is known that ef,e. > 1.
— A VSS protocol for n > 4ey + 3e..

2 Notations, Definitions and Overview

2.1 Notations

We use two special symbols ¢ and L in the paper. ¢ is a special symbol denoting
the failure of receiving a valid message. During a protocol execution, if a party
p, fails to receive a valid message from another party ps, then we say p, receives
¢. If p, is not a corrupted parties and p, receives ¢ from p,, assuming § = 0,
then one of the followings must hold:

1. ps is a corrupted party while p, is a fault-free party or a constrained party.
2. ps is a constrained party while p,. is a fault-free party or a constrained party.
3. ps is a fault-free party while p, is a constrained party.

If § > 0, then it is possible that both ps and p, are fault-free parties and yet
Py receives ¢ from pg.

L is a special symbol denoting abortion. In any (sub-)protocol execution, if
a party outputs L, then the party aborts the entire execution at that point. We
also assume that a constrained party outputs L if it fails to contact the common
global clock. Our protocols are designed in such a way that only a constrained
party will output L. For clarity, when we refer to an uncorrupted party p; in
our proofs, unless otherwise specified, we implicitly assume that p; is a fault-free
party or a constrained party who has not aborted at that point (i.e., we do not
consider a constrained party that has already aborted).

2.2 Definition of secure computation

We define the secure multiparty computation using the ideal/real world paradigm.
We assume the function g is defined in a way such that if the input of an party
is ¢, then the evaluation of g does not depend on the input of that party and
the corresponding output for that party is L. We also assume that if the output
of a party is not equal to L, then its output contains the set of parties which
input ¢. As a warm-up, we will start with the case of a non-adaptive adversary.



The non-adaptive case

Ideal world: In the ideal world, there is a trusted party (TP) which carries out
the evaluation of the function g. The evaluation consists of the following steps:

1. The adversary chooses a set of corrupted parties P/, modifies their inputs
(which can become ¢) and sends them to the trusted party; the adversary
chooses three sets of constrained parties P, P°2 and P¢;* the trusted party
receives the private inputs from parties that are not in P UP°; the trusted
party receives ¢ as the input from the constrained parties in P¢t.

2. The trusted party evaluates g. Let P? be the set of parties which send ¢ to
the trusted party.

3. The adversary receives the outputs of the parties in P7; parties in P UP°?
receive L; other parties receive their outputs (note that the outputs contain
the set P?).

Real world: In the real world, the parties execute a protocol IT to evaluate
g. Corrupted parties may deviate from the protocol in an arbitrary manner.
Messages delivery are controlled by the adversary, subject to the constraints in
our communication model.

At the end of the protocol execution, the fault-free parties and the con-
strained parties output their outputs from I7; the real-world adversary generates
an output (which can depend on the information it gathers during the execution
of IT).

We say a protocol IT is a secure multiparty computation protocol if the
following holds: for every real world adversary A, there exists an ideal world
adversary Z with the same set of corrupted parties and same set of constrained
parties such that (1) and (2) are indistinguishable:

1. The output of Z and the outputs of fault-free parties and constrained parties
in the ideal world.

2. The output of A and the outputs of fault-free parties and constrained parties
in the real world.

The adaptive case The only difference between this case and the non-adaptive
case is the definition of the ideal world. In the ideal world,

1. The adversary chooses a set of corrupted parties P/* (in an adaptive man-
ner), modifies their inputs (which can become ¢) and sends them to the
trusted party; the adversary chooses a set of constrained parties P¢; the
trusted party receives the private inputs from parties that are not in P U
Pcr; the trusted party receives ¢ as the input from the constrained parties
in P,

4 a constrained party in P is not distinguishable from a fault-free party in the ideal
world, the set P is defined due to a subtle technical point.



2. The trusted party evaluates g. Let P? be the set of parties who send ¢ to
the trusted party.

3. The adversary receives the outputs of the parties in P7/1; depending on the
outputs it received, the adversary can (adaptively) choose to corrupt a new
set of parties P#2 and obtain their outputs; the adversary then chooses two
sets of constrained parties P and P¢; parties in P and P receive L;
other uncorrupted parties receive their outputs.

At the end, the fault-free parties and the constrained parties output what
they receive from the trusted party; the ideal-world adversary generates an out-
put.

2.3 Overview

In section 5, we construct a MPC protocol for n > 4ey + 3e. which uses broad-
cast(section 3) and VSS(section 4) as sub-protocols. We note that we assume
6 = 0(i.e. a fault-free party can always successfully receive messages from other
fault-free parties) in sections 3, 4 and 5. In section 6, we discuss how to extend
our results to the case of § < %. In section 7, we conclude and state some open
problems.

3 Broadcast

3.1 Definitions

In broadcast, there is a distinguished sender ps with input v. We can define
broadcast using the ideal/real world paradigm by specifying the ideal world as
follows:

1. The adversary chooses a set of corrupted parties P/ and a set of constrained
parties P€.
— If ps € P7, then the adversary obtains the value v and p, sends a possibly
modified value v’ (v' can be equal to ¢) to the trusted party.
— If ps; € P¢, then the adversary sends a flag b to ps; if b is equal to true,
then ps sends v to the trusted party else ps sends ¢.
— If ps ¢ P/ NPC, then p, sends v to the trusted party.
2. The trusted party sends the value it received from pg to all parties not in
P<; it sends ¢ to all parties in P°.

However, the above definition is an overkill for our application (as a building
block for VSS and MPC). If ps is a constrained party and it fails to broadcast
the message (i.e., ps receives b = false from the adversary and the honest parties
receive ¢), then the adversary should obtain no knowledge about the message.
We need some kind of secret sharing to achieve this in the real world. However,
our intention is to construct a VSS protocol using broadcast, not the other way
round! To solve this dilemma, we observe that in our applications of broadcast,
privacy is not an issue. In more details, what we need are as follows:



— If the sender is corrupted, then all fault-free parties receive the same value
v (v' can be equal to ¢). A constrained party should receive v’ or ¢.

— If the sender is constrained, then all fault-free parties receive the same value
v’ (v" has to be equal to v or ¢). A constrained party should receive v’ or ¢.

— If the sender is fault-free, then all fault-free parties receive the same value

v’ = v. A constrained party should receive v’ or ¢.

It will ease the designing of the VSS protocol if we place a more stringent
requirement: if a constrained party does not receive v’, then it aborts (i.e. out-
putting ).

More formally, we say broadcast is achieved if the followings hold:

— Agreement: If an uncorrupted party outputs v’(#.1)°, then all fault-free
parties output v’.

— Correctness: If the sender is uncorrupted and an uncorrupted party outputs
v'(#£L), then v = v or v/ = ¢. If the sender is fault-free, then all fault-free
parties output v.

If the sender is constrained, it is possible that all fault-free parties output ¢.
We assume a constrained sender will abort if it outputs ¢ in the broadcast pro-
tocol. We reduce the broadcast problem to the consensus problem. In consensus,
every party p; has an input v;. Consensus is achieved if the followings hold:

— Agreement: All fault-free parties output a common value v. A constrained
party either outputs v or L (abort).
— Persistence: If all fault-free parties have the same input v/, then v = v'.

For the rest of the section, we focus on the case where the domain of values
is restricted to {0,1}. It is easy to see that if we have a broadcast protocol for a
single bit, then we can have broadcast protocol for a ¢-bit string by running the
bit-protocol ¢-times sequentially. For a bit b, we denote its complement by b.

3.2 Reducing broadcast to consensus

Under our communication model, broadcast cannot be achieved by simply hav-
ing the sender sending its value to all parties and then running the consensus
protocol. The problem is that the sender could be constrained and fault-free
parties may not receive the value from the sender. Nevertheless, we show the
following:

Lemma 1. Consensus implies broadcast.
Proof. We construct a broadcast protocol from any consensus protocol:

1. Sender ps sends the bit v to all parties. Let b; be the bit p; received from p;.
If p; does not receive anything from the sender, then sets b; = 0.

5 ¢’ can be equal to ¢



2. Parties execute the consensus protocol. Each party p; enters the protocol
with input b; and let b} be the output. If b =1, then p; outputs L and
aborts.

. If v = b}, then p, sends 1 to all parties; otherwise, ps does not send anything.

4. If p; receives 1 from the sender, then sets d; = 1 else sets d; = 0. Parties

execute the consensus protocol again. This time, p; enters the protocol with
input d; and lets d} be the corresponding output. If df =1, then p; outputs
b else if df = 0, then p; outputs ¢ else p; outputs L (df = ¢ for the last
case) .

w

The consensus protocol is run twice in the construction. Roughly speaking,
the first execution establishes a common value among the parties. However, if the
sender is constrained, then the established value may be different from v. The
second execution is to determine if the sender is "happy” with the established
value. If the sender is not happy, then all parties output ¢. The formal proof
proceeds as follows:

Agreement: (1) If an uncorrupted party outputs b ¢ {¢, L}, then by the agree-
ment property of consensus, d} = 1 and b} = b for all fault-free parties p;. Hence
all fault-free parties output b. (ii) If an uncorrupted party outputs ¢, then df = 0
for all fault-free parties p;. Hence all fault-free parties output ¢.

Correctness: Consider two cases: (i) a fault-free sender and (ii) a constrained
sender. (i) If the sender is fault-free, then all fault-free parties receive v from the
sender in step 1. By the persistence property of consensus, all fault-free parties
have b = v. Hence all fault-free parties p; receive 1 from the sender in step 3
and sets d; = 1 in step 4. By the persistence property of consensus again, d} = 1.
Hence a fault-free party outputs v. (ii) If the sender p; is constrained, consider
two sub-cases: (a) b5 = v (b) bf # v. For case (a), a fault-free party p; may
or may not receive 1 from p; in step 3 and df may equal to 0 or 1. However,
note that b} = b% = v. Therefore, p; either outputs v or ¢. For case (b), ps does
not send anything in step 3. Hence all fault-free parties p; enter the consensus
protocol in step 4 with input d; = 0. By the persistence property of consensus,
df = 0. Therefore all uncorrupted parties output ¢.

3.3 Consensus for n > 3ey + 2e.

Following the principle of Berman et al.[5], the construction of the consensus
protocol is done through constructing protocols for weaker consensus variants:
weak consensus, graded consensus, king consensus and then consensus. In all

these (sub-)protocols, we only need to know the number of fault-free parties

def . .
efy = m —ey — e, but not ey and e.; moreover, we only require authenticate

(but not secure) point-to-point channels. For all these (sub-)protocols, p; has an
input bit and we denote it as b;.

Weak Consensus We say weak consensus is achieved if the following two
conditions hold:



— Persistence: If all fault-free parties have the same input bit b, then all fault-
free parties output b.

— Agreement: If an uncorrupted party outputs b € {0, 1}, then all uncorrupted
parties output b or 2.

Protocol WConsensus(p;,b;,efy)

1. p; sends b; to all parties.
2. Let X? and X} be the number of 0 and 1 received by p; respectively.
If X2 > ess, p; outputs 0, else if X! > esr, p; outputs 1 else p; outputs 2.

Lemma 2. Protocol WConsensus achieves weak consensus for n > 3ey + 2e..

Proof. Persistence: Note that egy > 5. If all fault-free parties p; have the same
input bit b, then X? > ers and X! < esr. Hence p; will output b. Agreement:
Suppose there exists two uncorrupted parties p; and p; outputting 0 and 1
respectively. Then [X) N X! > esr — (ef +e.) =n—ej —e.— (ef +ec) > ey.
Therefore, there exists more than ey parties sending different bits to p; and p;
in round 1. This is a contradiction since there are at most ey corrupted parties.

Graded consensus In graded consensus, every party p; outputs a bit along
with a grade g;. Graded consensus is achieved if the following three conditions
are satisfied:

— Persistence: If all fault-free parties have the same input bit b, then all fault-
free parties output b with g = 1.

— Agreement: If an uncorrupted party outputs b with g = 1, then all fault-free
parties output b, all constrained parties output b or L.

— Completeness: No fault-free party outputs L.

Protocol GConsensus(p;,b;, efy)

1. p; sends the output of WConsensus(p;, b;, es5) to all parties.
2. Let X?, X} and X? be the number of 0, 1 and 2 received by p; respectively.
If max {X?, X!} + X? < esy, then p; outputs L and abort.
If X2 > esf, p; outputs 0 with g; = 1,
else if X! > eysr, p; outputs 1 with g; =1,
else if X2 > X! p; outputs 1 with g; =0,
else p; outputs 0 with g; = 0.

Lemma 3. Protocol GConsensus achieves graded consensus for n > 3ey + 2e..

Proof. Persistence: If all fault-free parties have the same input bit b, then fol-
lowing the persistence property of weak consensus, they output the same bit b
in WConsensus. For a fault-free party p;, X? > esf and X? < ess. Therefore
p; outputs b with g; = 1. Agreement: If an uncorrupted party p; outputs b with
gi = 1, then X} > e;. Hence at least ey — ey uncorrupted parties have b as the
output of WConsensus. Following the agreement property of weak consensus, the



number of uncorrupted parties that output b in WConsensus is equal to 0. By
counting, the number of uncorrupted parties that output 2 in WConsensus is at
most eys+e.— (e —ey) = e.+ey. Assume on contrary that there exists an un-
corrupted party p; outputs b in GConsensus. Then le-’ > XJZ-’. Note that all Bpj

received in step 1 are from corrupted parties. Therefore, XJ2 <erte.+(es —X;-’).
(ef + e corresponds to the number of 2 received due to uncorrupted parties;
ef—X ]Z? corresponds to the number of 2 received due to corrupted parties.) But
XJI? —l—XjQ < X]Z? +er+ec+(ef — X]l?) =2er +e. < efrasn > 3ep + 2e. and
eff = n — e — e.. Therefore, max {X?, X} + X7 < e, p; should output L
instead. Contradiction. Completeness: By the agreement property of weak con-
sensus, for some bit b, each fault-free party has either b or 2 as the output of
WConsensus. Therefore, for a fault-free party p;, max{X?, X!} + X? > ey.
Hence no fault-free party outputs L.

King Consensus In king consensus, there is a designated party py known as
the king. King consensus is achieved if the followings hold:

— Persistence: If all fault-free parties have the same input bit b, then all un-
corrupted parties that do not abort output b.

— Correctness: If the king py, is fault-free, then all uncorrupted parties that do
not, abort output the same bit.

— Completeness: No fault-free party outputs L.

Protocol KConsensus,, (pi, bi,eff)

1. Let (vi,g;) be the output of GConsensus(p;, b, ess). If (v, g;) =L, then p;
outputs L.

2. pi sends vy to all parties.

3. If (9; # 1) and p; receives vy from py and v # ¢, then p; sets v; = vg.

4. Let (v}, g;) be the output of GConsensus(p;, v, efs). p; outputs vy.

Lemma 4. Protocol KConsensus achieves king consensus for n > 3ey + 2e..

Proof. Persistence: If all fault-free parties have the same input bit b, then by
the persistence property of graded consensus, all fault-free parties p; have (b, 1)
as the output of the first execution of GConsensus, i.e., v; = b and g; = 1. Since
g; = 1, v; will not be modified in step 3. All fault-free parties enter the second
execution of GConsensus with the same input b. By the persistence and the
agreement properties of graded consensus, all uncorrupted parties output the
bit b in KConsensus. Correctness: Suppose pg is a fault-free party. Consider two
cases: (i) there exists a fault-free party p; with g; = 1 by the end of step 1. (ii)
all fault-free parties p; have g; = 0 by the end of step 1. For case (i), following
the agreement property of graded consensus, all fault-free parties p; (including
pr) have the same value for v; (i.e., v; = v; = vg) by the end of step 1. It
does not matter whether p; resets its value in step 3. For case (ii), all fault-free
parties p; receive vy from py in step 3 and set v; = v;. Combining two cases, all



fault-free parties enter the second execution of GConsensus with the same input
vg. Following the persistence and agreement properties of graded consensus, all
uncorrupted parties output v in KConsensus. Completeness: Completeness of
KConsensus follows the completeness of graded consensus since no fault-free
party will output L in the executions of GConsensus.

Consensus We show how to construct a consensus protocol from a king con-
sensus protocol:
Procotol Consensus(p;, b;, efy)

1. Set b, = b.

2. fork=1ton—ess+1do:
(a) Set b} to the output of KConsensusy, (p;, b, eys).
(b) If b, =1, then p; outputs L and abort.

3. p; outputs bl.

Theorem 1. Protocol Consensus achieves consensus for n > 3ey + 2e..

Proof. Persistence: If all fault-free parties enter the protocol Consenus with the
same input bit b, then by the persistence property of king consensus, all uncor-
rupted parties that do not abort output the same bit b. Agreement: Note that
n—efr+1=es+e.+ 1. There exists a fault-free party p; € {p1,...,pe;ve. 1}
By the correctness property of king consensus, all fault-free parties will have the
same value for b after KConsensus,, is run. Agreement then follows from the
persistence property of king consensus.

3.4 Consensus for n > 3ey + 2e., er,ec > 1

If the values of ey and e, are known a priori, then we can improve the bound
in Theorem 1. On a high level, the construction takes two steps. First, based on
the consensus protocol we have for n > 3ey 4 2e., we construct a weak broadcast
(to be defined) protocol for n > 3e; + 2e.. Second, we convert a weak broadcast
protocol into a consensus protocol.

Weak Broadcast In weak broadcast, there is a sender ps with an input bit b.
Weak broadcast is achieved if the following two conditions hold:

— Agreement: All fault-free parties output a common bit 4’
— Correctness: If the sender is fault-free, then b = b'.

Note that in weak broadcast, we do not concern the outputs of constrained
parties. Due to lack of the space, we omit the description of the protocol. The

details will appear in the full version .

6 A preliminary full version is available at the author’s homepage:
http://www.cs.umd.edu/~cykoo



From weak broadcast to consensus Once we have a protocol for weak broad-
cast, it is easy to construct a consensus protocol:

1. Each party p; weak-broadcasts the input bit b; using the protocol WBroad-
cast.

2. If the majority of the broadcasted bits is 1, then p; sets b, = 1 else p; sets
b; = 0. p; sends b} to all parties.

3. Let X? and X} be the number of 0 and 1 received by p; in last round
respectively. If X0 > %n, then p; outputs 0 else if X} > %n, then p; outputs
1 else p; outputs L.

Since all fault-free parties p; have the same output in weak broadcasts, they
will have the same value for b;. In particular, if all of them have the same input
bit b, then b, = b. As the majority of parties are fault-free, if an uncorrupted
party p; receives > % copies of b’ € {0,1} in round 2, then b} = b for any
fault-free party p;. Therefore both persistence and agreement properties hold.

Hence we have the following:

Theorem 2. There is a consensus protocol for n > 3ey + 2e., ey > 1,e. > 1,
assuming the values of ey and e. are known a priori.

4 Verifiable secret sharing (VSS)

In verifiable secret sharing (VSS), there is a special party pg known as the
dealer. The dealer holds a secret s. A VSS protocol consists of two phases: a
sharing phase and a reconstruction phase. In the sharing phase, the dealer shares
the secret with other parties. Parties may disqualify a non fault-free dealer.
If the dealer is not disqualified, then in the reconstruction phase, the parties
reconstruct a value based on their views in the sharing phase.

In our case, VSS protocol is used as a tool for multiparty computation. Our
definition requires a VSS protocol to have the verifiable secret and polynomial
sharing property[15]. In this section, we assume the values of e and e, are known
a priori. We say a protocol achieves verifiable secret sharing if the followings hold:

— Privacy: If the dealer is uncorrupted, then the view of the adversary during
the sharing phase reveals no information on s.

— Agreement: If an uncorrupted party disqualifies the dealer, then all uncor-
rupted parties that do not abort disqualify the dealer.

— Commitment: If the dealer is not disqualified, then there exists a polynomial
R (x) of degree ey such that at the end of the sharing phase, all fault-free
parties p; (locally) output h’(i); a constrained party p; which does not abort
outputs A'(j). All uncorrupted parties that do not abort output 2’(0) in the
reconstruction phase.

— Correctness: No fault-free party will abort the protocol. A fault-free dealer
will not be disqualified while a constrained dealer may be disqualified. But
if an uncorrupted dealer is not disqualified, then A'(0) = s.



Theorem 3. Assuming the values ey and e. are known a priori, there exists a
VSS protocol for n > 4ey + 3e. + 1.

Proof. We construct a VSS protocol with the above resilience. The protocol is
based on the bivariate solution of Feldman-Micali[13]. We start by giving a high
level description of the protocol. In round 1, the dealer shares the secret via a
random bivariate polynomial of degree ey + 1. If the dealer is constrained, then
a fault-free party may not receive its entitled share. However, unlike [13], the
fault-free party cannot take a default value since it will not be on the polynomial
and correctness will be violated. Instead, a party broadcasts ”receive” in round
2 if it has received its entitled share. Let G be the group of parties who broad-
cast "receive”. If |G| is too small, then the dealer is disqualified. Otherwise, the
parties within G proceed to verify if the dealer has shared a valid secret, using a
similar approach as in [13](with suitable modifications to tolerate the presence
of constrained parties). The parties that are not in G will not take part in the
verification. After the verification, if the dealer is not disqualified, then all par-
ties in G have shares correspond to a valid secret. The parties outside G then
compute their shares by interpolating the shares from the parties in G (here we
exploit the fact that the secret is shared using a bivariate polynomial).

We assume the secret s is taken from some finite field F. In the following, if
the dealer broadcasts a value and the parties receive ¢ as the output, then we
implicitly assume that all parties disqualify the dealer.

VSS-share(pq)

1. The dealer chooses a random bivariate polynomial f of degree at most ey

in each variable such that f(0,0) = s. The dealer sends to party p; the

polynomials g;(x) def f(z, 1) and h;(x) def fl,x).

2. p; broadcasts 70” if it does not receive g;(z) and h;(z) from the dealer (or
gi(z) and h;(x) are not polynomials of degree ey), otherwise p; broadcasts
”1”. Let G be the group of parties which broadcast ”1”. If |G| < 3ey + 2e. +
1, then the dealer is disqualified. Otherwise, each party p; € G does the
following:

(a) For every party p; € G, p; sends g;(j) and h;(j) to p;. Let g ; and h’; ; be
the two values received by p; from p; € G. p; aborts if it receives values
from less than 2ef + e. + 1 parties.

(b) For every party p; € G, if (g, # hi(j) and gj; # &) or (h}; # ¢i(j)
and h’;; # ¢), then p; broadcasts ”complaint : 1,j” else p; broadcasts "no
complaint: i,j”. Note that if an uncorrupted p; broadcasts ”complaint:
i,j”, then p; or the dealer is corrupted.

(c) The dealer broadcasts f; k def f(j, k) and fi; def f(k, j) if ”complaint:
j,k” is broadcasted by a party p; € G.

(d) If there exists a j such that (i) f;; and f; ; are revealed in last step and
(ii) fji # 9i(§) or fi; # hi(j), then p; broadcasts ”complaint”, other-
wise p; broadcasts ”okay”. (If an uncorrupted p; broadcasts ” complaint”,
then the dealer must be corrupted. On the other hand, if the dealer is
uncorrupted and p; broadcasts ” complaint”, then p; must be corrupted.)



5.

(e) If p; broadcasts ” complaint” in last step, then the dealer broadcasts g;(x)
and h;(x).

(f) p; broadcasts "reject” if one of the followings hold:

— p; broadcasts ”complaint” in step 2(d)

— There exists a public polynomial gx(x) and hi(z) such that g (i) #

h;i(k) or hi(i) # gi(k)
— The dealer does not respond to the complaints broadcasted in step
2(b) or step 2(d);
otherwise, p; broadcasts ”accept”.

If less than 3ey + 2e. + 1 parties in G broadcast ”accept”, then the dealer
is disqualified. Otherwise, note that two polynomials g;(z) and h;(z) are
associated with each uncorrupted party p; in G (If the polynomials are not
made public in step 2(e), then the polynomials associated with p; are the
two polynomials p; received in step (1)). Each party p; € G sends h;(j) to
all parties p; ¢ G.
For each party p; ¢ G, p; constructs a degree ey polynomial g;(z) by using
the Reed-Solomon error-correction interpolation procedure on the values it
received in last step (If p; cannot construct such polynomial or p; receives
less than 2ef + e. + 1 shares, then p; aborts).
Each party p; outputs g;(0).

VSS-reconstruct(g;(0))

1.
2.

‘We

Party p; sends g;(0) to all parties.

Let SS% be the set of secret shares p; receives in last round. If |[SS?| < 3ef+1,
then p; aborts else p; reconstructs a polynomial ho(x) of degree ey by using
the Reed-Solomon error-correction interpolation on the set SS% and outputs
ho(0).

now proceed to prove that the above protocol achieves VSS.

Privacy: Consider an uncorrupted dealer. If an uncorrupted party p; broad-
casts ”complaint: i,j” in step 2(b), then p; must be a corrupted party. It is
easy to see that if a party p; broadcasts a complaint in step 2(d), then p;
is a corrupted party. Therefore, all the information broadcasted by an un-
corrupted dealer on f, if any, is a subset of the shares the corrupted parties
entitled to receive in step 1. Since the secret is shared by a random bivari-
ate polynomial of degree e¢, we conclude that the view of the adversary is
independent of s during the sharing phase.

Agreement: Note that the decision of disqualifying a dealer is completely
dependent on the messages broadcasted by the parties. If an uncorrupted
party does not abort by the end of the sharing phase, then by the agreement
property of broadcast, the values it received from the broadcasts are same
as those received by fault-free parties. Hence agreement follows.
Correctness: We first consider a fault-free dealer. All fault-free parties will be
in G. Since n > 4dey + 3e. + 1, it follows that |G| > 3es + 2e. + 1. In addition,
all fault-free parties broadcast ”accept” in step 2(f). For a constrained party



p; that is not in G, it is easy to see that g;(x) reconstructed in step 3 (if p;
does not abort) is equal to f(x,1).
Next we consider a constrained dealer that is not disqualified. For an un-
corrupted party p; € G that does not abort by step 2(f), it is easy to see
that g;(x) = f(x,i) and h;(z) = f(z,7). If the dealer is not disqualified, then
> 3es + 2e. + 1 parties broadcasts "accept” in step 2(f). Let G’ be the set
of fault-free parties among these > 3e; + 2e. + 1 parties. |G'| > 2e5+e. + 1.
It then follows that every fault-free party (or constrained party that does
not abort in step 3) p; that is not in G can reconstruct g;(z) = f(x,i). An
uncorrupted party p; (if it does not abort) will then output f(0,4) in step 4.
— Commitment: We consider the case of a non-disqualified corrupted dealer.
If a corrupted dealer is not disqualified, then at least 2ey + e, 4 1 fault-free
parties broadcast "accept” in step 2(f). Let G’ be the set of such fault-free
parties. Following [13, Lemma 2|, there exists a bivariate polynomial f’ of
degree ey in each variable such that for all p; € G', g;(z) = f'(z,i) and
hi(z) = f'(i,z). Now consider an uncorrupted party p; € G but not in G'.
There are 2 possible scenarios:

o p; broadcasts a complaint in step 2(d). g;(z) and h;(x) are made public
in step 2(e). For all p; € G', ¢;(i) = hi(j) and h;(i) = g;(j). Hence it
follows that g;(z) = f'(z,j) and h;(z) = f'(z,7).

o p; does not broadcast a complaint in step 2(d). If p; does not abort in
step 2(b), then h; (i) = fi(j) and f;(¢) = hi(j) for at least 2e; +e.+1—
(ef +ec) = ey + 1 parties p; € G'. Since f’ is a bivariate polynomial of
degree ey, it follows that h;(x) = f'(j,x) and g;(x) = f'(x,j). Therefore
if p; does not broadcast a complaint in step 2(d), it will not broadcast
"reject” in step 2(f).

We conclude that for all uncorrupted parties p; € G that do not abort by step
2, hi(x) = f'(i,z) and g;(z) = f'(x, ). It is easy to see that if an uncorrupted
party p; ¢ G does not abort by step 3, p; can reconstruct g;(z) = f'(x, j).
Hence it follows that an uncorrupted party p; (if it does not abort) outputs
£(0,4) in step 4.

It also follows that all uncorrupted parties that do not abort output h'(0)
by the end of VSS-reconstruct.

5 MPC

We now construct a MPC protocol following the paradigm in [3]. On a high level,
each party shares its private input, evaluates the circuit gate by gate, and then
reconstructs the outputs.

Input Phase: Every party shares its private input using VSS-share. If a party is
disqualified (when it plays the role of the dealer), then the party is added to the
set D. Note that by the end of the input phase, all uncorrupted parties that do
not abort have the same view on D.



Circuit Evaluation: All parties that do not abort evaluate the circuit g? gate
by gate. A party who was disqualified in the input phase does not take part in
this phase and all other parties will ignore the messages sent from that party.
It suffices to consider the addition and multiplication gates. The evaluation pro-
cedures are very similar to the one in [7, section 4.52] and we omit the details
here.

Output phase: Reconstructing output is easy. For each output wire, each party
sends its share to the party who is entitled to receive the output. The corre-
sponding party then reconstructs the output from the shares it received using
error correction. A party aborts if it receives less than 3e; + 1 entitled shares.

6 Extending to the case of § < %

We describe how to extend the results from the previous sections (which assume
0 = 0) to the case of § < %, at the expense of increasing the round complexity
by a factor of 2. More precisely, we show how to compile a protocol IT for § =0
into a protocol II’ for § < .

Our broadcast protocol II for § = 0 assumes n > 3es + 2e. but does not
assume secure channels. If p; is supposed to send p; a message m in II, then the

followings are carried out in IT":

— p; sends m to all parties who then forward the message to p;.
— If there exists m’ such that p, receives > %ef copies of them, then p; sets
m =m' else m = ¢.

Consider the following two cases:

1. Both p; and p; are fault-free parties: since n > 3ey + 2e., at least (2e; +
ec)(1 — ¢) fault-free parties receive m from p;. The number of copies of m
p; received is at least (2es + ec)(1 — 25) which is greater than Fey if § < &.
Hence p; can receive m from p;.

2. At least one of the p; and p; is a constrained party: suppose p; receives m/’
from p; in IT" and m’ # ¢. Since p, receives at least %e 7 copies of m’, at least
%e 1 copies are from uncorrupted parties. Hence m’ = m (assuming e; > 3).

For VSS and MPC protocols, we assume n > 4ey + 3e. + 1 but we also
assume secure channels. If p; is supposed to send p; a message m in II, then the
following steps are carried out in IT':

— p; picks a random polynomial h(z) of degree e such that h(0) = m. p; sends
h(k) to pr who then forwards the share to p;.

— Based on the shares p; received, using the Reed-Solomon error-correction
interpolation procedure, p; constructs a polynomial h'(z) of degree es such
that at least 2e; + 1 shares are on A/(z). If p; cannot construct such poly-
nomial, then p; sets m = ¢ else m = h/(0).



First we note that if p; is uncorrupted, then the view of the adversary is
independent of m since h is a random polynomial of degree ey. Second, if both
p; and p; are uncorrupted and p; does not set m = ¢, then p; receives 2ey + 1
shares that are on h/(z). ey + 1 of these shares are from uncorrupted parties.
Hence h/(z) = h(x) since both h'(z) and h(x) are of degree e;+1. Finally, if both
p; and p; are fault-free parties, then p; will receive at least (3ef+2e.+1)(1—29) >
2es + 1 (assuming 6 < & and e, > 1) correct shares. On the other hand, p; will
receive at most ey corrupted shares. Hence p; can always reconstruct h(z) using
error-correction.

7 Conclusion and Open problems

In this paper, we consider a communication model where message delivery is
neither always guaranteed nor always in the hands of the adversary. We has
developed broadcast and VSS protocols under this model. However, we do not
know if the bounds are tight. Another interesting direction is to consider what
is achievable if the global clock is removed from the model.
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