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Abstract. We prove a general domain extension theorem for pseudo-
random functions (PRFs). Given a PRF F from n bits to n bits, it is
well known that employing F' in a chaining mode (CBC-MAC) yields a
PRF on a bigger domain of mn bits. One can view each application of
F in this chaining mode to be a node in a graph, and the chaining as
edges between the node. The resulting graph is just a line graph. In this
paper, we show that the underlying graph can be an arbitrary directed
acyclic graph (DAG), and the resulting function on the larger domain is
still a PRF. The only requirement on the graph is that it have unique
source and sink nodes, and no two nodes have the same set of incident
nodes. A new highly parallelizable MAC construction follows which has
a critical path of only 3 + log™ m applications of F.

If we allow Galois field arithmetic, we can counsider edge-colored DAGs,
where the colors represent multiplication in the field by the color. We
prove an even more general theorem, where the only restriction on the
colored DAGs is that if two nodes (u and v) have the same set of incident
nodes W, then at least one w in W is incident on u and v with a dif-
ferent colored edge. PMAC (Parallelizable Message Authentication [6])
is a simple example of such graphs. Finally, to handle variable length
domain extension, we extend our theorem to a collection of DAGs. The
general theorem allows one to have further optimizations over PMAC,
and many modes which deal with variable lengths.
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1 Introduction

There is often a need to extend the domain of a given pseudo-random function
(PRF). One of the most popular and well-known such schemes is the CBC-
MAC [1]. In [3] it was shown that if F' is a pseudo-random function from n
bits to n bits, then the CBC (cipher block chaining) construction yields a PRF
from mn bits to n bits. Although the construction is called a MAC (message
authentication code), which is a strictly weaker notion than PRF [9], the above
shows that it is indeed a PRF domain extension method. Other domain exten-
sion schemes are known as well, for example, the cascade construction [2] and
the protected counter sum construction [5]. Recently, a scheme PMAC (or Par-
allelizable Message Authentication) [6] (also see XECB [11]) was also shown to
be a domain extension scheme.



Despite all these results, there is no unifying theme in these results. In this
paper, we attempt to remedy this situation, by proving a general theorem for
domain extension. In essence, we show that arbitrary acyclic networks of the
same pseudo-random function can be used to build a pseudo-random function
on a larger domain. To illustrate this paradigm, consider the CBC-MAC scheme.
Let F be a PRF from n bits to n bits (and which takes k bits of secret key).
For example, DES [10] is usually assumed to be such a PRF on 64 bits, with 56
bits of secret key. A PRF F' from mn bits to n bits is defined as follows. The
mn bit input is divided into m blocks Pi, Ps, ...., Py,. The function F} (i.e. F
with key k) is applied to the first block P; to yield an intermediate value C;.
The function F}, is next invoked on the xor of the next block P, and previous
intermediate value C1, to yield Cy. This chaining process is continued, and the
output of Fy is just C,,. The chaining process defines an underlying directed
graph of m nodes V1, Va, ..., Vi, with an edge from V; to V;41.

Now, consider an arbitrary directed acyclic graph (DAG) G = (V, E), with
m nodes V', and edges E. Assume that G has only one source node V4, and only
one sink node V;,. Given a PRF F from n bits to n bits, a composite PRF F
from mn bits to n bits is defined as follows. As before, assume that the input is a
sequence Py, ..., P,,. The first intermediate value is just C; = Fy(P1). Inductively
assume that we have computed the intermediate values of all predecessors of a
node V;. Then, the intermediate value C; for the node V; is

Ci=F.(Po € C))

(i,7)EE

The output of the composite function F}, is just C),. See Figure 1 for an example.
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Fig.1. A PRF Domain Extension Mode and its DAG



Of course, not all DAGs are expected to yield a PRF. However, consider
DAGs with the restriction that no two nodes have the same set of incident
nodes (u is said to be incident on v if there is an edge from u to v), and that
they have unique source and sink nodes. In this paper we show that given a PRF
F from n bits to n bits, the composite F' defined as above on such DAGs, is a
PRF from mn bits to n bits.

An immediate application is that if a party has access to parallel hardware,
then instead of simple chaining as in CBC-MAC, it can compute the PRF in
parallel. For instance, if it has four processors, then it can employ the method
given by the graph in Figure 2. A parallel mode with critical path of length only
3 + log™ m also follows. Unlike PMAC [6], this mode does not use any Galois
arithmetic.

Fig. 2. A Parallel Mode for four processors

If we allow Galois Field arithmetic (in particular, fields GF(2")), we can
consider edge-colored DAGs. The colors on the edges represent multiplication in
the field by the color (assume that each color is mapped to a unique element in
the field). For example, going back to figure 1, suppose we employ three colors,
coll, col2 , and col3. Let w be a primitive element in the field. We map coll
to unity in the field, col2 to w, and col3 to w?. Then, if we color the edge
(1,4) by col2, then in the definition of the composite function, we multiply the
intermediate result Cy with w in the field, before xoring it with the plaintext Py
and Cs, and applying Fj,.

The main result of the paper can be stated as follows. Consider an edge
colored DAG G with unique source and sink nodes and m total nodes, and with
the condition that if two nodes (say u and v) have the same set of incident
nodes (say W), then for at least one node w in W, the color on the edge (w,u)
is different from the color on the edge (w,v). Given a PRF F from n bits to n
bits, the composite F' built using the graph G as above, is a PRF from mn bits
to n bits. The result is proven under the adaptive adversary model, which is of
course the difficult case. Our proof technique is novel, and even when considered
as just a proof for CBC-MAC it offers a simpler and novel proof in the adaptive
adversary model. It is well known that the difficulty in analyzing the security of
such schemes stems from the fact that we need to model the underlying oracle
as a function, i.e. an oracle replying consistently with earlier queries. The key
advance is an identity (lemma 4) which reduces the analysis to a scheme where



the oracle replies randomly. The adversary remains adaptive, but the analysis
in this “random game” becomes much easier.

Using the new theorem, the mode in fig 2 can now be parallelized further as
in fig 3(a). The additional cost is a few GF(2™) operations. Security of PMAC [6]
follows (see fig 3(b)), as it is a simple example of such a colored DAG. Further,
we obtain an additional optimization over PMAC, because unlike PMAC, we do
not even need to compute Fj, on the all zero word (i.e. F;(0™)).

In Section 5 we extend our results to variable length domain extension.
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Fig. 3. Modes using GF(2")

2 Definitions

Definition 1. For positive integers n,l, let F(n—1) be the set of all functions
from n bits to [ bits.

Definition 2. (PRF) A pseudo-random function has signature
F: {0,1}* x {0,1}"—={0,1}".

Define Secr(g,T) to be the maximum advantage an adaptive adversary can
obtain when trying to distinguish between Fk () (with K chosen uniformly at
random) and a function chosen uniformly at random from F(n—l), when given
q queries and time 7.

3 Domain Extension using arbitrary acyclic graphs

Definition 3. Let G = (V, E), be a directed acyclic graph (DAG) [13] with a
finite vertex set V and edges E. A node u is said to be incident on a node v, if
there is an edge from u to v, i.e E(u,v). Such an edge will sometimes be denoted
(u,v). Define a DAG to be non-redundant if for every pair of nodes, the set



of their incident nodes is different. For two vertices u and v, we say that u < v
if there is a directed path from u to v. Since G is a finite DAG, the relation <
is a finite partial order.

Definition 4. Given a function f from n bits to n bits, and a non-redundant
DAG G = (V, E) with only one source node and only one sink node, and a total
of m nodes, define f¢ : {0,1}"™—{0,1}" as follows:

— Let the input to f& be an mn bit string P, which is divided into m n-bit
strings Py, P, ..., Py.

— Since |V| = m, let W1,.....,V;, be an enumeration of the nodes. When it is
clear from context, we will identify the index of a vertex with the vertex
itself. Let the unique source node be V7, and the unique sink node be V,,.

— For the unique source node, define M; = P;.

— For every non-source node Vj, j > 1, inductively (over <) define M; =
Pj 6Bu:E(u,j) f(Mu)

— For notational convenience, for every node Vj, let C; denote f(M;).

— The output of the function f& is just Cp,.

It is clear that the restriction of one sink node is crucial, for if there was
another sink node other than V,,, then the plaintext fed into this other sink
node has no influence on C,,. It is possible that there are instances of DAGs
G with two source nodes such that FY is a PRF; however, a more stringent
requirement than non-redundancy will definitely be required. Consider a DAG
G, with two source nodes V; and Va, both with only one outgoing edge and that
too to the same vertex. Then, the resulting function is clearly not a PRF. A
similar situation motivates the requirement of non-redundancy.

One may be tempted to weaken the non-redundancy requirement. For in-
stance, one idea is to have a condition on the DAG that it have no non-trivial
automorphism. However, such a DAG may not yield a secure PRF, as illustrated
in Figure 4. The two queries (p1, p2, p2, p4, p5, p6) and (pl, p2, p2, p5, p4, p6) yield
the same result.
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Fig. 4. A non-automorphic DAG



Theorem 1. For a non-redundant DAG G = (V, E) with unique source and sink
nodes, and m total nodes, let f be as above. Then, no adaptive adversary, with
q queries, can distinguish between (a) f¢ where f is chosen uniformly at random
from F(n—n), (b) and a function chosen uniformly at random from F(nm—n),
with probability more than (mq)?2~ (1),

In the next section, we state and prove a more general theorem.

4 Domain Extension using colored DAGs and GF(2")

If we allow Galois field arithmetic, we get an even more general construction, and
a corresponding PRF domain extension theorem. Assuming that the underlying
function F has an n-bit output, we will use the Galois field GF(2"). Such fields
have the property that they have exactly 2" elements. Moreover, each element
can be represented as a n bit vector, with addition in the field being just the
bitwise exclusive-or (@). Since multiplication distributes over addition in a field,
it follows that if a,b and ¢ are three elements in the field then a x (b ® ¢) =
ax(b+c)=(axb)+ (axc) = (axb) ®(ax*c). A further useful property of
finite fields is that for a fixed non-zero a in the field, if b is picked uniformly at
random from the field, then a * b is also uniformly distributed in the field.

Definition 5. Let G = (V, E), be a directed acyclic graph (DAG). Let |[V| = m.
A coloring x of the edges of the graph is a map x : E—[1..m]. The triple (V, E, x)
will be called an edge-colored DAG. Define an edge-colored DAG to be non-
singular if for every pair of nodes u, v, if the set of their incident nodes is same
(say W), then at least for one w € W, x({w,u)) # x({w,v)). For two vertices u
and v, we say that u < v if there is a directed path from u to v. Since G is a
finite DAG, the relation < is a finite partial order.

Definition 6. Given a function f from n bits to n bits, and a non-singular
edge-colored DAG G = (V, E, x) with only one source node and only one sink
node and a total of m < 2" nodes, define f¢ : {0,1}"™—{0,1}" as follows:

— Since m < 2", we can view x as a map from E to GF(2")*, i.e. the non- zero
elements of the field.

— Let the input to f& be mn bit string P, which is divided into m n-bit strings
P, P, ..., Pp.

— Since |V| = m, let Vi,.....,V;;, be an enumeration of the nodes. When it is
clear from context, we will identify the index of a vertex with the vertex
itself. Let the unique source node be V;, and the unique sink node be V.

— For the unique source node, define M; = P;.

— For every non-source node Vj, j > 1, inductively (over <) define M; =
Pj + 35y X(u, 1)) * f(My), where f(M,), which is an n-bit quantity,
is viewed as an element of GF(2"). The summation is addition in the field,
which is the same as n-bit exclusive-or.

— For notational convenience, for every j, we denote f(M;) by Cj.



— The output of the function f& is just C,.

Theorem 2. : (Main Theorem) For a non-singular edge-colored DAG G =
(V,E, x) with unique source and sink nodes, and m < 2" total nodes, let f¢
be as above. Then, no adaptive adversary, with q queries, can distinguish be-
tween (a) f¢ where f is chosen uniformly at random from F(n—n), (b) and
a function chosen uniformly at random from F(nm—n), with probability more
than (mgq)?2~("+1),

Theorem 3. Given a PRF F : {0,1}F x {0,1}"—={0,1}", and a non-singular
edge-colored DAG G = (V, E, x) with unique source and sink nodes, and m < 2"
total nodes, a function F : {0,1}* x {0,1}™"—{0,1}" can be defined be letting
for each K, (F%)k to be (Fx) (as in definition 6). Then,

Secpe (¢, T) < Secr(q,T) + (mg)?2~(+1)

The proof follows from Theorem 2 by standard techniques.

4.1 Background

Most theorems in cryptography involving PRF [3, 2, 5, 6, 11] and PRP [21, 22,
15, 12] constructions, as well as modes of operations of block ciphers [4, 16, 11,
24, 19]!, from other primitives must tackle the issue of collisions in the oracle
calls to the smaller primitive. Fortunately, these collision probabilities are usually
low, and conditioning on distinctness of oracle calls, the target construct can be
shown to behave like a random function or permutation.

Upper bounding the collision probability requires different techniques in
many of these theorems, and the difficulty in the proof can depend on issues
like whether there are two independent oracles (as in [22, 16]) or if a fresh initial
vector is used in each invocation (as in [4, 16, 24, 19]). In particular, the proof of
security of CBC-MAC [3] is more involved than that of CBC [4] for precisely this
reason, i.e. in the former there is no fresh initial vector in each invocation. As
our theorem generalizes CBC-MAC, we expect similar intricacies in our proof.
However, as mentioned in the introduction, we prove a novel technical lemma
which precisely captures this nuance of CBC-MAC.

4.2 Notation

Before we prove theorem 2, we need to fix more notation and give a general idea
of the proof. We first note that we allow arbitrary functions as adversaries and
not just computable functions. Then without loss of generality, we can assume
that the adversary is deterministic, as every probabilistic adversary is just a
probability distribution over all deterministic adversaries [18].

Fix an adaptive adversary. Since the adversary is deterministic, the first
query’s plaintext (say P! = (PL, ..., PL)) is fixed for that adversary. Thus, the

! These references are not meant to be exhaustive.



first query’s output, say C, is only a function of f. The adversary being adaptive,
its second query is a function of C},. But, since C}, is only a function of f, the
second query’s plaintext can also be written just as a function of f. Thus, C2,
is only a function of f, and so forth.

We will denote probabilities under the first scenario, i.e. (a) in the theorem 2
statement, as Pr, and the probabilities in the second scenario, i.e. (b) in the
theorem 2 statement, as Pr(;). Most of the analysis will be devoted to the first
scenario. So, unless otherwise mentioned, all random variables from now on are
in the first scenario.

For all variables corresponding to a query, we will use superscripts to denote
the query number. Subscripts will be used to denote blocks within a query.
The variables will be as in Definition 6, i.e. P standing for plaintext input, M
standing for the variable on which the f function is applied, and C' standing for
the output of f.

Thus, by the convention above C]’: is the output of f in the ith query’s jth
block. We will use C to denote the whole transcript {C;:}ie[q],je[m] of f outputs.
There will often be a need to just refer to the sequence of last blocks of each
query; we will use C}, to denote the sequence CJ,,...,C%, i.e. the mth block
from all the queries. More precisely, as argued earlier, these variables should be
written as a function of f, e.g. C(f), but we will drop the argument when it is
clear from context.

Let ¢ denote a constant mgn-bit transcript, i.e. a prospective value for C(f).
For a fixed c, Pj and M ]’ can be viewed as functions of only ¢ (see definition 6),
and we will write them as Pj}(c) and M(c). Just as for C, we will use P(c) to
denote the whole sequence.

Definition 7. Given a constant mgn-bit transcript c, let the plaintext chosen
by the adversary be p = P(c). For any vertices j,j', and query indices 4,7’ we
say that (i,j) =, (¢',5") if

(j =4') and Vk < j : p}, = pj,
Define
Nc(iaj) = min{il|(ilaj) =c (7'7.7)}

Not every mgn-bit constant ¢ can be a real transcript C(f) for some f. So, we
define a notion of consistent c¢. We call ¢ consistent (con(c)) if

Vje[l.m],Vi: cé- = cgc(i’j)

Define the following “correcting” function p from mg n-bit blocks to mgq n-bit
blocks: y
p(c) =¢, where ¢, = c;“(m).

The above definition of a correcting function is similar to the one used in the

proof of the Luby-Rackoff theorem (see [20]).

Define the core index set of ¢ to be I = {(4,j)|pc(¢,5) = i}. Informally, I is
the set of indices which are not required to be “consistent” with smaller indices.
Thus, p(c) retains the values at core indices, and corrects them otherwise.



Consider the following condition PD (pairwise different).

Definition 8. For any constant ¢, define PD(c) to be
Vi, it € [1.q),Vj,5 € [Lam, j # 5+ Mi(e) # Mi(0),

and Vi, i' € [1.q],Vj € [L.m] : (4,5) Zc (', §) = Mi(c) # M} (o).

4.3 Proof of Main Theorem

Lemma4. (PRF Technical Lemma) For every qn-bit constantr = (r');cp. 4

Proc,to1yman jep Finosm) | C(F) =¢ A PD(c) | ¢y = 7]
=27 % Pree, fo,1yman [ PD(p(c)) | ¢}, = 7]

In the left hand side of the lemma, we have that ¢ is consistent, as it is not
difficult to see that C(f) is consistent (as proven below in lemma 5(i)). Now for
consistent c, it is also easy to see that “correcting” it leaves it unchanged, i.e.
p(c) = ¢ (see lemma 5(f)). Hence, we can replace PD(c) by PD(p(c)) in the left
hand side above. Thus, the lemma can be restated as

Pr. [ C(f) = c| PD(p(c)) A ¢, =r] =27

To prove this, we can try to see what constraints are imposed on f and ¢ by
C(f) = c. For C(f) to be same as ¢, the transcript ¢ must be consistent, as
C(f) is consistent. Let I be the core index set of c¢. Let [ = |I|. Then for ¢ to
be consistent, there are exactly (mq — [) n-bit linear constraints on ¢. We will
also see that for every consistent ¢ (in which case ¢ = p(c)), such that PD(c)
holds, a function f. can be defined using the M and the ¢ values at core indices
I such that C(f.) = ¢ (see lemma 6). Moreover, such an f. is unique on these
! input values M (lemma 5(f)). Thus, there are exactly ! n-bit constraints on f
such that C(f) = c. Thus, there are a total of mgq n-bit constraints on f and
c. However, we have not addressed the issue of whether the condition PD(p(c))
perhaps influenced this count of mq total constraints. We show below rigorously
that even under the condition PD(p(c)) the number of n-bit constraints on f
and c is exactly mgq.

So to start with, for each consistent ¢, we would like to define a function
fe such that C(f.) = c. We also show below (lemma 5(h)) that for consistent c,
Mi(c) = M]’-‘c(“) (c). Thus, if we define f. at core indices, i.e. define f.(M}(c)) =
c;'- for all ¢ in I, we might have C(f.) = ¢. There is a slight problem however,
i.e. f. may not be well-defined, as the M (c) values at core indices may not be
distinct. In fact, we will need an even stronger distinctness condition, i.e. PD
defined above, than just being distinct at core indices.

Definition 9. For each ¢, such that PD(c¢) holds, define f. as follows. Let I =
{(4,5) | pe(i,5) = i} be the core index set. For (i,j) € I, define f.(M}(c)) = .
This is well defined as PD(c) holds. We will not need to define f. on other values.



In Lemma 6 below we show that for every consistent ¢ such that PD(c¢) holds
it is indeed the case that C(f.) = c.

We collect all simple statements about y, p and consistency and their rela-
tionships to each other in the following lemma.

Lemmab. For all i,i' € [1..q], i # ', for all j € [1..m] and mgn bit constant
transcript c:

(a) (i,m) #. (i',m), i.e. pc(i,m) =1,

(b) =. is an equivalence relation,

(c) pe(pe(i, 5),5) = pe(i, §),

(d) He = Hp(c)»

(e) p(c) is consistent,

(f) Let c be consistent, and let b be such that for all i s.t. pc(i,j) = i, b = ct.
Then p(b) = c. Also, for consistent ¢, p(c) = ¢

(9) For u = j, pe(i,u) = pe(pe(is ), u).

(h) For consistent ¢, Mi(c) = MJ’-‘“("J) (c)

(i) C(f) is consistent,

(5) For the transcript ¢ let p = P(c) be its corresponding plaintext. If for all u
5.t E(u,j), pelisu) = po(i'y ), and pi, = pt , then pe(i,§) = po(i',j).

Proof: (a) As we have assumed, wlog, that the adversary does not repeat queries,
it follows that ¢ and i’ (¢ # 4') can never be equivalent over all vertices V. In
particular, it is not the case that (i,m) =. (i, m). To see this, note that we have
assumed that the graph has only one sink node, i.e. V,,,. It follows that for every
node j, j < m, hence the claim.

(b) & (c) straightforward.

(d) Note that the adversary’s choice of p = P(c) depends only on ¢,. So we
first show that for all 4, p(c)i, = ¢!, . This follows as p.(i,m) = i by (a). Thus p
remains same for p(c).

(e) We just note that for all 4,4', (i,5) =. (¢, ) implies p.(i,5) = pc(i', j). Thus,
by definition of p, we have p(c)} = p(c)jl. . .

(f) We first note that, since by (a), p.(i,m) = i, we have b}, = ¢,. Thus, as in
proof of (d) above, uy = .. Now, p(b)§ = b;-“’(l’]) = b?c"'(l) = cé-‘c’j(z), the last
equality following from (c) and condition on b. For consistent ¢, this is same as
c;-

(8) For u < j, (5,§) =. (&', ) implies (i,u) =, (i',u). Now, (i,7) Z¢ (e(i, ), J)-
Thus, (i,u) =¢ (pc(4, J), u)- o

(h) Mi(c) = PH(c)+ Xy .puyy X({4,4)) *ci. First note that Pi(c) = Pl<(9)(c).

Also, for conmsistent ¢ and u < j, ¢, = che@w) pptelpe(@g)w) o (g). Again

by consistency of ¢, the latter is same as t<(®)  Thig shows that M;(c) =
M;Lc(i’j) ().

(i) by induction on the finite partial order <.

(j) We just need to show that (i,5) =. (¢',7). But pc(i,u) = pc(d',u) implies
(i,u) =, (¢',u). This along with pj- = pj-' shows that p agrees in queries ¢ and 7'
over all blocks j' < j. a



Lemma 6. For any consistent ¢ such that PD(c) holds:
C(fe)=c
Proof: Follows by induction. See the appendix for a full prove. O

Lemma 4 (PRF Technical lemma restated) For every gn-bit constant r =
(ri)ie[l..q]

Prch{O,l}"‘q",fEU}-(n—)n)[C(f) =c A PD() | ¢y, =71]
= 277" % Preg, o,13men [PD(p(c)) | € = 7]

Proof: We first show that the LHS above is same as
I' = Pre e qo,13man [05 = Kl jynetinyy=i A con(c) A PD(c) | ¢}, = 7]

By lemma 5(i), the conjunct con(c) can be added to the LHS of the lemma.
We show that the two probabilities are same for every constant c¢. So, fix a c.
As before, let I = {(i,7) | pc(i,j) = i} be the core index set of ¢. Let S =
{MJZ(C) | (i,7) € I'}. Since PD(c) holds, |S| = |I]. Let S’ be an arbitrary set of n
bit strings, disjoint from S, and |S’| = mq — |I|. Thus, |SU S’| = mgq.

By lemma 6, C(f.) = c¢. Thus, for each b agreeing with ¢ on I, we have
a function f. defined on |I| inputs S, such that C(f.) = ¢. We can use the
remaining mq — |I| values of b (i.e. from indices which are not in I) to extend f,
to be defined on S U S’. This map from b to the extended f. is 1-1.

Similarly, for any function f defined on S U S’, such that C(f) = ¢ (note
that f need only be defined on S for C(f) to be well defined), we can define an
mgn-bit long b which agrees with ¢ on I. For indices in (¢,5) € I, use f(M J’ (c))
to define b%, and use f(s), s € S, to define the remaining part of b. This map
from f to b is also 1-1. This shows that the LHS of the statement of the lemma
is same as I'.

We next show that, the RHS of the statement of the lemma, is same as I". To
this end, we show that the following two sets are equinumerous, i.e. we show a
bijection between the two sets. The two sets are

¢ = {cle € {0,1}™" PD(p(c)), and ¢, =}
D = {(c,b)|e,b € {0, 1}mq",bj- = c§|(i,j)61, con(c), PD(c), and ¢}, =r}

That they are equinumerous follows easily from lemma 5(e,f,a,d), but to be rig-
orous consider the following extension of p to a function p from C to D.

ple) = (p(c), )

It needs to be shown that the function has D as its range, is 1-1 and onto.
The function is obviously 1-1. To prove that its range is D, we need to prove
three things:

1. p(c) is consistent: follows by lemma 5(e).



2. ¢ = p(e)ily, (o) ()= : follows directly from definition of p and lemma 5(d).

3. Vi, p(c)}, = r': by lemma 5(a) and definition of p we have p(c)}, = ck,; and
hence ¢, = r! implies p(c), = r'.

To prove that it is onto, for any (¢, b) in D, we show that bis in C and p(b) = (¢, b).
But for any (¢, b) in D, by lemma 5(f), p(b) = ¢. Thus, p(b) = (¢, b). It also follows
that PD(p(b)) holds. Moreover, by lemma 5(a), b}, = ¢},. Thus b is in C.

The lemma follows by noting that I" = |D|/22min = 2-min  (|C|/2™™). O

Lower bounding the right hand side of the above lemma is a much easier task,
as there is no function f involved.

We will denote by A the quantity (mg)22~("t1).
Lemma 7. For every qn bit constant r,

Precyqo,3man[ PD(p(0)) | € =7] 21— A
Proof: First note that for all i, ¢i, = p(c)i , by lemma 5(a) and definition of p.
Thus, once ¢}, is fixed (and hence p(c)y,) to 7, the plaintext p = P(c) is fixed,
independent of other cj- (i € [1..q], 7 < m). We will prove the lemma by upper
bounding the probability of =PD by union bound.

For each vertex j, let V; be its set of incident vertices, i.e. V; = {u| E(u, j)}.

Recall,

Mi(p(c)) = p’ + Z ) * chielin)

wE(u,j)

1

If j # j', and Vj # Vjr, wlog let w € Vj and w & V. Then M}(p(c)) = M/ (p(c))
iff

x((w,)) # clsti

Sper Y i) e s Y () e
wE(u,j),u#w w:E(u,j")

Since, c‘“*) does not appear on the RHS, and w < m, and x((w, 5)) # 0, the
probability of above is 27™.

It j # ', and V; = Vy, then for some w € Vj, x((w, ) # x((w,4")), as
the underlying graph G is non-singular. Thus, similarly to the argument above,
Mj=M J’: happens with probability 277.

When j equals j' (and i # ¢'), we have three cases. If for some u incident on
J (B(w,))), pe(i,u) # pe(i',u), then the probability of the two Ms being equal
is at most 27 ™. Otherwise, if p # pj , then the probability is zero. If p} = pJ ,
we have (1, J) ue(d' 7) by lemma 5( ), and hence the corresponding disjunct
in =PD is false.

Since all the probabilities are 27" or zero, the bound in the lemma follows. O



Lemma 8.
Pry[ PD(C(f))] > 1-A
Proof:

Pr;[ PD(C(f))]

= ZZPrf[C(f) =c¢ A PD(c) A ¢, =]

= ZPrc,f[C’(f) =c¢ A PD(c) A ¢, =r]x2™"

= ZPrc,f[C’(f) =c¢ A PD(c) | ¢}, =r] %2797 % 2mI"

= Z 279" x Pr.[PD(p(c)) | ¢}, = 7] (by lemma 4)

>1-—A (bylemma7)

O

Since the adversary A decides 0 or 1 based on the oracle replies, say O =
(01,02,...,0%), we can write its output as A(O). In scenario (a), O is really

Cr.(f), with f chosen randomly. Since in scenario (b), the oracle is a random
function with range n bits, O is just a uniformly random string of length ¢n.

Lemma 9.
Pr)[A(0) = 0] 2 Pr[A(C},) =0 A PD(C(f))] = (1 — A)Pr)[A(0) = 0]
Proof: To begin with, we have

Prs[A(C},) =0 A PD(C(f)) ] = D PrslA(c},) =0 AC(f) = ¢ A PD(c)]

= 27" x Prch{O,l}“"",f[A(C:n) =0 A C(f) =cA PD(C)]
— oman 4 Prceu{o,l}mq",f[c(f) =c A PD(C) | A(C:,L) = 0] * Pr(b) [A(O) = O]

The above is at least (1 — A)Pr)[A(O) = 0] by lemma 4 and lemma 7, and at
most Pr()[A(O) = 0]. O

Proof of Theorem 2 (Main Theorem): By lemma 9 and lemma 8 it follows that

| Prs[A(CL(f)) = 0] = Pr» [A(0) = 0] | < A



5 Variable Length Domain Extension and Family of
Graphs

The previous constructions were devoted to extending the domain of a function
from n bits to mn bits, for a fixed m. In other words, the plaintext queries of
the adversary were restricted to be exactly mn bits. We could fix m to be large
enough, say m = 2™, and use a canonical encoding of smaller sized plaintexts
into length mn bit strings. Such an encoding exists for all plaintexts of size less
than mn by appending plaintexts of size ¢ bits, by 10¢, where i = mn —q¢— 1. In
other words, 10? acts as an end marker. However, smaller sized plaintexts have
to undergo m = 2" applications of F', which is very inefficient. This problem of
a really long end marker was resolved by [23] (also see [7]) by noting that the
end marker can actually be of length zero, if it can be authenticated.

The simplest way to achieve this is to have two independent PRFs F'1 and
F2. Use F'1 when the plaintext is not a multiple of the block size n, and use F'2
when the plaintext is a multiple of n. In the former case, append an end marker
of the kind 10¢, but now i need only be of length at most n — 2.

So, given a function F} on n bits, consider a collection of graphs, one graph
G, in the family for each (plaintext) bit-length ¢. Then if we define Fkg ? similarly
to as before, we have a composite function from all strings to n bits. We know
that individually each F%e is a PRF given F is a PRF. As explained in the
previous paragraph, we need to assure that these different functions are (almost)
independent. We prove that if the family of graphs satisfy certain constraints
then this is indeed the case.

We consider a fixed n throughout the rest of this section. We will assume that
we are only interested in domain extension up to length 2" x n bits, as theorem
2 is ineffective beyond that length (this restriction is only for sake of simplicity).
Each query of the adversary will be a string p of length ¢ bits, (0 < g < 2™ xn).
We let the composite function answers the query as follows: If ¢ is a multiple
of n, then it returns f%(p). Otherwise, let p’ be p appended with 10, where
i is the smallest positive number to make |p'| a multiple of n. The composite
function then returns f&'1(p').

For every 0 < [ < 27", since strings of length In + 1 to In + n — 1 bits get
canonically encoded in the above method, we can use the same graph for all these
lengths. Thus, for each [, we really need only two graphs ([7]), one for lengths
In+1toln+mn—1, and one for length In + n. From now on, we will assume
that all plaintexts are of bit length multiples of n. Each adversarial query will
be a pair: (p, z), where p is a bit string of length multiple of n, and z is in {0,1}
(z signifies if the plaintext was of length a multiple of n or if it was padded to
make it s0).

Definition 10. Let S be the set of all binary strings of length non-zero multiples
of n, but less than 2" x n. Let F be the set of all functions:

S x{0,1}—{0,1}"



Let F be a function with signature:
{0,1}* x S x {0,1}—={0,1}"

Given a PRF F from n bits to n bits, we need to define F' such that no adaptive
adversary can distinguish between Fi, with K chosen randomly, and a function
chosen uniformly at random from F. As in the previous sections, given a function
f from n bits to n bits, and given a collection of graphs G, we first define a
function fg in F.

Definition 11. Let G be a collection of edge-colored DAGs G(I) (see definition
5), 1 < (2™ — 1) % 2. Each G(!) is required to have unique source and sink nodes.
Further, each G(l) is required to have at least [£] nodes. Define a function fg
as follows:

ch(p7 z) = fO@IPI-2) ()

where f is as in definition 6. If the graph has more nodes than the length of
the plaintext, then append enough zeroes to the plaintext. Usually, graphs will
have exactly the required number of nodes. However, at the base cases, i.e. small
length plaintexts, it may be necessary to have extra nodes. For an example, see
Section 5.1.

For a theorem similar to theorem 2 to hold, we need further restrictions
on G. In particular, it will not be enough that individual graphs in G be non-
singular. Since, we will need to extend the notion of non-singularity to the whole
collection of graphs, it is best to fix a set of vertices V', and just define the edges
and colorings for the individual graphs. Thus, we will define E(l), and x(!). The
partial order <; is, as before, the transitive closure of E(l).

To motivate the generalized definition of non-singularity, we first consider an
example where it is not enough for individual graphs to be non-singular. Let
V = [1..4]. The graphs are identical (see fig 5), except that the second graph
G(2) has an extra edge from 3 to 4. The first graph G(1) is used to answer
queries of length 3 blocks, and the second to answer queries of length 4. Clearly,
both graphs are individually non-singular. Consider two queries, one of length
three, and another of length four, the latter being just an extension of the first.
However, the first graph’s output is C5, and is accessible to the adversary. Thus,
during the second query the internal state C'5 is available to the adversary, and
it can force My to be any value of its choice.

This suggests that for each graph G(7), the graph G(7) itself cannot be allowed
to be an induced subgraph of another graph G(i'). We prove that this condition
is sufficient for the composite function to be a PRF.

Definition 12. For any vertex j in V, let U]l- be the set of incident vertices of j
in G(1).
For any vertex j in V, we say (I,7) = (I, ) if either (j = 1) or

-Ul=UY, and

- for all u € Uk: xi({u, 7)) = xv ({4, 7)), and inductively (I,u) = (I',u).
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Fig. 5. An Incorrect Construction

Essentially, (I,7) is congruent to (I',j) if the two graphs G(I) and G(I') are
identical till j.

Definition 13. Let G = (G(l)), where each G(I) = (V, E(l), x(1)) is an edge-
colored DAG, be a collection of graphs.

— With each G(I) we associate its size m(l) to be the largest numbered node
in V such that there is an edge directed to it in G(1).

— For each G(I) we define the graph G(I) = ([1.m(1)], E(), x(1)), to be the
induced subgraph of G(I) on vertices [1..m(l)].

The collection G is called PRF-preserving if

— each G(I) has only one source node, one sink node, has at least [4] nodes,
and

— if for any pair of nodes u, v (u # v), and graphs G(I) and G(I'), the set of
incident nodes of u in G(l), and the set of incident nodes of v in G(I') are
same (say W), then for at least one w € W, x;({(w, u)) # xr ((w, v)).

— for each graph G(l), it is not the case that there is another graph G(I'),
U'#1 st (I,m(l") = {",m(("))

Basically, the second condition above has extended the non-singularity require-
ment to be over all graphs.

Theorem 10. : For a PRF-preserving collection of 2 x (2 — 1) DAGs G, let
fg be as in definition 11. Then, no adaptive adversary, with q adaptive queries
((pt,2Y)) (i € [1..q], and |p}| < 2" —1), can distinguish between (a) fg where f is
chosen uniformly at random from F(n—n), (b) and a function chosen uniformly
at random from F, with probability more than (3¢, [P*)?27 (1),

Proof: To adapt the proof of theorem 2, we first need to redefine the notion of
consistent transcripts ¢. First note that, on a fixed transcript ¢, the queries of
the adversary are fixed, say (p,z%);c[1..q- Recall, by definition of fg, on input
pt, 2% the graph G(2 x |p?| — 2¢) is used. We just denote this graph by G*. The
corresponding edge relation, coloring and partial order will be denoted E¢, x?,



and <’ resp. Also, for the graph G, its induced subgraph as per definition 13,
will be denoted G?. Similarly, the size of the graph G? will be denoted by m?.
Note that m? = |ct| > [pf|.

Definition 14. For any vertex j in V, let VJ’ be the set of incident vertices of j
in G.
For any vertex j in V, we say (i,7) =, (i, j) if either (j = 1) or

-Vi=V/, and

-for all u € Vj: x'((u, §)) = x* ((u, ), and inductively (i,u) =, (i',u).
Essentially, (i, ) is congruent (w.r.t. ¢) to (¢',j) if the two graphs G* and G
are identical till j.

Once we generalize the definition of =., rest of the definitions and proofs

remain almost the same.

Definition 15. For any vertices 7, j, and query indices 4,4’ we say that (4, j) =,
(@', 4') if
(j =4') and (i, ) = (i',j) and Vk <* j : p}, = p}
As before, define
pe(i,g) = min{il|(ilaj) = (4,4)}-
We call ¢ consistent (con(c)) if

Vjel2m—1),Vi: ¢ = c;fc(i,j)

Define the following “correcting” function p:
p(c) =€, where ¢} = cé-‘c(m), for j € [L..m{]

Since the proof of theorem 10 will be adapted from the proof of theorem 2,
we will denote all lemmas for theorem 10 corresponding to lemmas for theorem 2
by the prime symbol. In the proof of lemma 5(a)’, if m* # m®, then (i,m) %.
(i',m'). Otherwise, if the plaintexts p’ and pi are different, then again (i, m?) %
(i',m?). If the plaintexts are also same, then as the adversary does not repeat
queries, wlog let G = G(2xmi—1), and G¥ = G(2xm?). But (i,m?) =, (', m?)
is not allowed in G which is PRF-preserving. That proves lemma 5(a)’.

Proof of rest of lemma 5’ is similar to proof of lemma 5. In the statement
and proof of lemma 5(f)’, j must be restricted to be [1..m?]. Similar restrictions
apply in the definition of PD (definition 8) and definition of f, (definition 9).
Proof of lemma 6’ is similar to proof of lemma 6.

Lemma 4 is now restated as (recall S from definition 10):

Lemma 4'. For every gn bit constant (rt) (i € [1..q])
Precysa,f[C(f) =c A PD(e) |Vi :ct i =17

mi

= 274" 4 Proe, 54[PD(p(c)) | Vi : ¢t =17

mi

Proof Sketch: The proof is similar to proof of lemma 4, if we notice that we fix
¢ in the first part of the proof. For a fixed ¢, let I = {(4,7) | pc(4,5) = (4,7),5 €



[1.m"]}. Let T = {Mj(c) | (i,5) € I}. Since PD(c) holds, |T| = |I|. Let T' be
an arbitrary set of n bit strings, disjoint from T', and [T = 37, 4 m' — |1].
Thus, [TUT'| = Zz’e[l..q]
By, lemma 6', C(f.) = ¢. Thus, for each b agreeing with ¢ on I, we have
a function f. defined on |I| inputs 7', such that C(f.) = c¢. We can use the
remaining »;cn; g m¢ — |I| values of b (i.e. from indices which are not in I) to
extend f. to be defined on T'U T". This map from b to the extended f. is 1-1.
The reverse direction is done as in lemma 4.
Rest of the proof is also as in proof of lemma 4. O
Let A denote (> ]m")z s 2~ (nH1)

i€[
mt

i€[l..q

Lemma 7'. For every gn bit constant (r®) (i € [1..q]),

Precys:[ PD(p(c)) | cfpi =17] 2 1= A

Proof: First note that for all 4, ¢! ; = p(c)? ;, by lemma 5(a)" and definition
of p. As opposed to lemma 7, we need to show that it is not the case that a
p(c)é, with j # mi, can be defined to be a ¢!, such that j = m?. Suppose,
there is indeed an (i',j) =. (i,j), such that j = m®. Since, (i',§) =. (i,]),
we have (i',j) =, (i, ). Thus the graphs G? and G are identical till j = m® .
Thus, unless they are the same graph, this is not allowed by the condition on
PRF-preserving G. If they are the same graph, then j = m?, a contradiction.

Rest of the proof is similar to proof of lemma 7. m|

Rest of the proof of theorem 10 is identical to that of theorem 2.

5.1 Applications to Variable Length Domain Extension

As an application of theorem 10, we get the variable length domain extension
scheme as described in figure 6. In the figure, for each plaintext block length
two graphs are given as required in definition 11. The number on the left of
the graphs denotes the plaintext block lengths for which those graphs are to be
employed. The 0/1 bit signifies if the plaintext was padded to make its bit-length
a multiple of n. We have only illustrated graphs up to length five, as for larger
lengths, we follow similar methods as for length four and five. Note that for
plaintext block length one, we have graphs which have two nodes. As remarked
at the end of definition 11, this requires that plaintexts of length one block must
be appended with a zero block, before employing graphs “ONE-0” or “ONE-1”.

This mode has an advantage over XCBC [7], and OMAC [14] that it does not
even need to employ the initial F' on a constant like 0. Moreover, the scheme
shows that if the plaintexts are restricted to be more than three blocks in length,
then no Galois field arithmetic is required.
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Fig. 6. A Variable Length Mode
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APPENDIX

Lemma 6 For any consistent ¢ such that PD(c) holds:

C(fe)=c

Proof: Let p = P(c) and M = M(c) be shorthands. Also, we will use ¢ as
shorthand for C(f.). Similarly, let M = M(c), p = P(c).

We do induction over the query index.

Base Case: Since the adversary is fixed, the first plaintext message is the same,
ie. pt = pl. Since M{ = p}, & = f.(M}) = f.(M}) = ¢}, as (1,1) is trivially
inI. For j > 1, M} =pj; + 3, Buy) X((u,5)) * . But, by induction over the
partial order <, &, = ¢, hence M} = M}. Moreover, (1, j) is trivially in I, and
hence E; = c;.

So, assume that for all i' < i, and all j, & = c!. Thus, 5 = p'. Again,
M} = pi = Mj. Thus, & = f.(M}) = f.(M} “(i’l)) by lemma 5(h). By definition
of f., this is same as ¢=*") = ¢i. For j > 1, M} =pi+ 3, mu) X(us5)) *E,.
But, by induction over the partial order <, &, = ¢, thus M} = M}. As before,
using lemma 5(h), we are done. O
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