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Abstract. The Random Oracle Model and the Ideal Cipher Model are
two of the most popular idealized models in cryptography. It is a fun-
damentally important practical and theoretical problem to compare the
relative strengths of these models and to see how they relate to each
other. Recently, Coron et al. [8] proved that one can securely instantiate
a random oracle in the ideal cipher model. In this paper, we investigate
if it is possible to instantiate an ideal block cipher in the random oracle
model, which is a considerably more challenging question. We conjec-
ture that the Luby-Rackoff construction [19] with a sufficient number of
rounds should suffice to show this implication. This does not follow from
the famous Luby-Rackoff result [19] showing that 4 rounds are enough to
turn a pseudorandom function into a pseudorandom permutation, since
the results of the intermediate rounds are known to everybody. As a
partial step toward resolving this conjecture, we show that random or-
acles imply ideal ciphers in the honest-but-curious model, where all the
participants are assumed to follow the protocol, but keep all their in-
termediate results. Namely, we show that the Luby-Rackoff construction
with a superlogarithmic number of rounds can be used to instantiate
the ideal block cipher in any honest-but-curious cryptosystem, and re-
sult in a similar honest-but-curious cryptosystem in the random oracle
model. We also show that securely instantiating the ideal cipher using
the Luby Rackoff construction with upto a logarithmic number of rounds
is equivalent in the honest-but-curious and malicious models.

1 Introduction

Designing provably secure as well as efficient cryptographic protocols is never
an easy task. When one tries to achieve provable security without making any
assumptions, it often comes at the expense of simplicity and efficiency of the
design. On the other hand, practical and efficient schemes are often based on
heuristics that cannot be justified with a formal proof. In the late 1990s, this
problem was addressed and several ideas were proposed to strike a balance be-
tween these two conflicting requirements.

Random Oracle Model. One of these was the formalization of the well known
Random Oracle Model (ROM) by Bellare and Rogaway [3]. In this model, we

? Supported in part by NSF career award CCR-0133806 and NSF grant CCR-0311095.



assume the existence of a publicly accessible ideal random function and prove
protocol security based on this assumption. As was shown by a huge body of
literature (for a small set of representative examples, see [3, 6, 4, 15, 24, 25]), the
ROM often allows one to design very simple, intuitive and efficient protocols
for many tasks, while simultaneously providing a seemingly convincing security
guarantee for such practical constructions. Of course, in practice an ideal random
function is instantiated by a concrete, “heuristically-secure” hash function, such
as one of the SHA functions. The hope of the security of such a substitution
comes from the optimistic belief that, — although no security proof is currently
found with the heuristic hash function, — the only way such composition can
fail is if some unexpected inter-dependency between a protocol and the code of
a concrete hash function is found. For practical protocols and real-life, “messy”
hash functions, it seems unlikely that such unexpected inter-dependency should
be found, at least not without directly attacking a carefully-designed heuristic
hash function, which is also considered unlikely. On the other side, in theory
such security proofs in the ROM have came under scrutiny, after a series of
results showed artificial schemes that are provably secure in the ROM, but are
uninstantiable in the standard model [10, 22, 16, 11, 2]. Still, none of these results
directly attack any of the widely used cryptographic schemes, such as OAEP [6]
or PSS [4], that rely on secure hash functions. In particular, all the practical
applications of the random oracle methodology still appear to be “plausibly
secure”. Additionally, in some cases the protocols in the ROM came before and
influenced the first (often slower) solutions in the standard model, and in some
other cases the ROM solutions are still the only known solutions. To summarize,
the random oracle model remains a useful and popular tool in the protocol
design.

Ideal Cipher Model. Another example of such an ideal assumption model
is the Ideal Cipher Model (ICM) (also known as the “Shannon Model”). In this
model, we assume the existence of a publicly accessible Ideal Block Cipher. This
is a block cipher, with a k bit key and a n bit input, that is chosen uniformly
from all block ciphers of this form. All parties in the ICM can make both forward
(encryption) or inverse (decryption) queries to the ideal block cipher. One proves
the security of a cryptosystem under this assumption, and then instantiates
the ideal block cipher with a practical block cipher construction, such as AES.
Although the ICM is not as popular as the random oracle model, there are still
several examples of schemes where this model has been used [5, 13, 14, 17, 18].

Several questions have been raised regarding security in the ideal cipher
model. Existing block cipher constructions, such as DES, AES etc. are vulner-
able to related key attacks and have distinguishing patterns that are unlikely
to occur in a random permutation. Hence it may not be entirely secure to use
these constructions to instantiate the ideal block cipher. As in the case of the
random oracle model, uninstantiable schemes that are secure in the ideal cipher
model have also been presented (see [1]). But, all these problems withstanding,
the ideal cipher model does provide security against generic attacks that do not
exploit weaknesses of the underlying block cipher.



Comparing The Models. From a theoretical viewpoint, it is interesting to
compare different ideal assumption models (such as ROM and ICM). That is,
compare two ideal assumption models to see which one provides a better secu-
rity guarantee. There was no satisfactory definition that captured this idea until
recently. In TCC 2004, Maurer et al [20] proposed an extension of the classi-
cal notion of indistinguishability, called indifferentiability. Based on this notion
of indifferentiability, Coron et al [8] gave the definition of an “indifferentiable
construction” of one ideal primitive (F ) using another (G). If a construction
satisfies this definition, then any application that is provably secure in the for-
mer ideal model (F ) remains provably secure in the latter model (G) as well,
when instantiated using this construction.

It is an interesting question to analyze the relationship between the Random
Oracle Model and the Ideal Cipher Model using this notion of indifferentiability.
It had been believed for quite some time that it should be possible to instantiate
a random oracle in the ideal cipher model. This is because an ideal block cipher
seems to be a much stronger primitive than a random oracle, as it seems plausible
that one can construct “unstructured” functions from permutations. In [8], a
formal proof of this conjecture was given. The authors analyzed the Merkle-
Damg̊ard construction [12, 21] for extending the domain of a random function in
the indifferentiability scenario. The Merkle-Damg̊ard construction is the basis of
almost all practical hash functions, such as SHA or MD5. It was shown in [8] that,
although the plain Merkle-Damg̊ard construction does not work in extending
the domain of a random oracle in the indifferentiability model, several slight
(and easily implementable) modifications of this construction formally satisfy the
indifferentiability requirement. In fact, they also extended these constructions to
the ideal cipher model and showed that, by using the Davies Meyer hash function
[26] in place of a “fixed-size” random oracle, any of these modified constructions
still satisfy the indifferentiability definition. This result, in turn, implies that a
random oracle can be securely instantiated in the ideal cipher model.

What about the other direction of this question? Can one securely instan-
tiate an ideal cipher in the random oracle model? This direction seems much
more difficult to tackle. Actually, it is widely believed that a positive answer
holds in this direction too [9]. In fact, it is conjectured that, with a sufficient
number of rounds, the Luby-Rackoff (LR) construction [19] (with independent
random oracles, indexed by the ideal cipher key and the round number, as round
functions) is a secure construction of an ideal block cipher in the random oracle
model.1 In spite of this, there has not been much progress in getting a formal
proof of this conjecture.

Our Main Result. In this paper, we take a step toward finding such a proof.
Namely, we will show that the Luby-Rackoff construction works in the honest-
but-curious model, where all the participants are assumed to follow the pre-

1 We notice that the famous Luby-Rackoff result [19], showing that 4 rounds are
enough to turn a pseudorandom function into a pseudorandom permutation, is not
applicable here, since it crucially relies on the secrecy of the intermediate round
values, while in our setting such intermediate round values are public.



scribed protocols, but keep all the intermediate results (such as the intermediate
round values in the LR construction). Namely, we show that the LR-construction
(with a superlogarithmic number of rounds in the security parameter) can be
used to instantiate the ideal block cipher in any honest-but-curious cryptosys-
tem, and result in a similar honest-but-curious cryptosystem in the random
oracle model. While weaker than a result in the malicious model, we stress that
the conclusion works for any application in the honest-but-curious model, even
a “maliciously chosen one”. In essence, we are using the honest-but-curious as-
pect only in assuming that the participants will not use the random oracle for
purposes other than honestly evaluating the LR construction on adversarially
chosen points. We now describe our results in more detail.

1.1 Our Results in More Detail

We will start by recalling the definition of indifferentiability of a construction of
an ideal primitive. This is the same definition as described in [8]. We will then
describe what it means to implement an ideal primitive G using an ideal primitive
F in the “honest-but-curious model”. We will present a restricted version of the
definition of general indifferentiability that captures this notion, which we will
call indifferentiability in the honest-but-curious model. This definition is weaker
than general indifferentiability, but is considerably stronger than the classical
notion of indistinguishability (see below). We will also describe special types of
constructions, which we call transparent constructions, for which this restricted
definition is equivalent to general indifferentiability.

Once we have a suitable definition, we will describe the random permutation
model where we assume the existence of a publicly accessible random permuta-
tion π (and its inverse π−1). Note that this can be thought of as a very special
case of the ideal block cipher, where the key space has a single element. We will
show that if we can find an indifferentiable construction of a random permuta-
tion from a random oracle, it can be easily extended to get an indifferentiable
construction of an ideal block cipher from a random oracle. This is simply done
by prepending the key to the block cipher to the input of the random oracle.
Thus, it is (necessary and) sufficient to study constructions of a single random
permutation from a random oracle.

We will then describe a construction of a random permutation from a random
oracle: namely, the LR-construction described above, where we derive the round
functions from the random oracle (indexed by the round number). We conjecture
that the LR-construction is indifferentiable from a random permutation, with a
sufficient number of rounds. As we said, though, we will not be able to prove this
result in general. Our main result, however, will prove this implication in the
honest-but-curious model, as long as the number of rounds is super-logarithmic
in the security parameter λ. The proof of this theorem is quite non-trivial, and
will essentially show that any distinguisher needs to make an exponential number
of queries to have a non-negligible chance of telling apart this construction from
a true random permutation in the honest-but-curious indifferentiability scenario.



We conjecture that our result is sub-optimal in a sense that the LR con-
struction seems to be secure even with a “large enough” constant number of
rounds (see below on what large enough could be), and even in the malicious
model. However, we show its “optimality” in the following sense: we prove that
for upto a logarithmic number of rounds the LR-construction is a transparent
construction. Thus, short of resolving our conjecture in the malicious model, any
improvement in the number of rounds even in the honest-but-curious model will
right away imply the same result in the malicious model as well. From a positive
spin, for upto logarithmic number of rounds one can without loss of generality
concentrate on the honest-but-curious model (although we have no indication if
such proof will be any simpler). From a negative side, we show that for super-
logarithmic number of rounds the LR-construction is provably not transparent,
which means that our positive result in the honest-but-curious model does not
trivially imply the same result in the malicious model.

Finally, we mention that for any less than 6 rounds, the LR-construction is
not an indifferentiable construction of a random permutation. (The same will
also hold in the honest-but-curious model since for less than 6 rounds the LR-
construction is a transparent construction.) Aside from showing that at least
6 rounds are needed, this result can be seen as a separation between indiffer-
entiability, even in the honest-but-curious model, and the classical notion of
indistinguishability. This is because, in [19], Luby and Rackoff proved that for
≥ 4 rounds this construction is indistinguishable from a random permutation.
To put it differently, even in the context of the LR-construction the ability to
observe “intermediate results” gives a noticeable edge to the adversary, partially
explaining why the indifferentiability result seems to be much harder to get.

2 Definitions

In this section, we introduce the main notations and definitions that we will
use henceforth. An ideal primitive is an algorithmic entity that receives a query
from one of the parties and responds to the querying party immediately, and
which implements some functionality in an ideal fashion. The ideal primitives
we will consider in this paper are random oracles and ideal ciphers. A random
oracle is an ideal implementation of a function that assigns a uniformly random
value (chosen from a prespecified range) to each input. An ideal cipher is an
ideal implementation of a block cipher E : {0, 1}κ ×{0, 1}n → {0, 1}n. Each key
k ∈ {0, 1}κ to the block cipher E defines a random permutation Ek = E(k, ·) on
{0, 1}n. The ideal cipher E accepts both forward queries (E) as well as inverse
queries (E−1) ((0, k, m) or (1, k, c) resp.).

2.1 Preliminaries

Let us first establish some basic notation that we will be using. We denote the
set of all functions {0, 1}n → {0, 1}n by Fn and the set of all permutations on
{0, 1}n by Pn (clearly, Pn ∈ Fn). For a bit string x, x|

L
and x|

R
denote the left

and right halves of x, respectively. ⊕ denotes bit by bit XOR of two bit strings.



Definition 1 (Feistel Permutation). Given a function f ∈ Fn, the Feistel
permutation Ψf is a permutation in P2n that outputs x|

R
‖ x|

L
⊕ f(x|

R
) where

x|
L

and x|
R

are the left and right halves of the 2n bit input x, respectively.

It is easy to see that Ψf is a permutation in P2n for any function f ∈ Fn. In fact,
it is really easy to invert the Feistel permutation as well. Indeed, Ψ−1

f (S ‖ T ) =
(f(S) ⊕ T ) ‖ S.

Luby and Rackoff [19] define pseudorandom permutation ensembles (PPE)
to be distributions of permutations that are indistinguishable from the uniform
distribution for any efficient distinguisher. When the distinguisher has access to
both the forward and inverse permutation, it is called a strong pseudorandom
permutation ensemble (SPPE). It was proven in [19], that a 3 (4 resp.) round
application of the Feistel permutation, with independent round functions in each
round is a PPE (SPPE resp.)

2.2 Indifferentiability and the honest-but-curious model

We will use the notion of indifferentiability introduced by Maurer et al [20] to
define a secure implementation of an ideal primitive. The ideal primitive that
we will attempt to implement is an ideal cipher. In [8], the notion of indifferen-
tiability was used to define the security of hash functions (as random oracles).
Thus the treatment in [8] is suitable for our problem as well. We now briefly
recall the main definitions involved here:

Definition 2. A Turing machine CG with oracle access to an ideal primitive F
is said to be (tD, tS , q, ε) indifferentiable from an ideal primitive G if there exists
a simulator S, such that for any distinguisher D it holds that |Pr[DCG ,F = 1]
−Pr[DG,S = 1]| < ε. The simulator has oracle access to the ideal primitive G
and runs in time tS. The distinguisher runs in time at most tD and makes at
most q queries.

It is shown in [20] that if CF
G is indifferentiable from G, the CF

G can replace G in
any cryptosystem, and the resulting cryptosystem will be at least as secure in
the F model as in the G model. See [8] for more details.

The above definition works for any malicious adversary. We will now present
a relaxed version of this notion that we will refer to as indifferentiability in
the honest-but-curious model for reasons that will be clear soon. In the new
definition, the distinguisher effectively has active access to only one oracle. To
illustrate this, in the F model the distinguisher can only query the G construction
CF

G , and not the F oracle. In addition, it also has access to the queries made by
the construction CG to F , which we will denote as the communication transcript
TCG↔F . Thus the role of the simulator S in the G model changes from trying to
simulate F in the general indifferentiability (defn. 2), to trying to simulate the
communication transcript TCG↔F in G model. When the distinguisher has access
to CG and F , its queries can be divided into two types. Those for which it does
not observe the queries of CG , and those for which it does. In the G mode, the
former queries are sent directly to the G oracle and the responses of G are sent



back. While the latter queries are made through the simulator S, which forwards
the same query to the G oracle. But apart from sending back G’s response to the
distinguisher, it also sends a simulated communication transcript TS . These two
views of the distinguisher are depicted in figure 1.

Definition 3. A Turing machine CG (with oracle access to F) is said to be
(tD , tS , q, ε) indifferentiable from an ideal primitive G in the honest-but-curious
model if there exists a simulator S such that for any distinguisher D it holds
that:

∣

∣Pr
[

DCG ,TCG↔F = 1
]

− Pr
[

DG,TS = 1
]
∣

∣ < ε

The simulator S simulates the transcript TS for queries made by the distinguisher
to it and runs in time tS. The distinguisher D runs in time at most tD and makes
at most q queries to its oracle. The distinguishing advantage ε is a negligible
function of the security parameter λ. If tS and q are both polynomial in λ then
the construction CG is said to be polynomially indifferentiable from G in the
honest-but-curious model.

FCG

D

F model G model

G

TSTCG↔F

S

Fig. 1. Indifferentiability in honest-but-curious model: The distinguisher D either in-
teracts with CG and gets the transcript TCG↔F or it interacts with G and gets the
simulated transcript TS

Note that the simulator S does not make any extra queries to G apart from
forwarding the queries made by the distinguisher D. This fact is crucial since
we want the property that the distinguisher should not learn anything from
observing the internal functioning of CG (i.e. queries made to F), that it cannot
learn from an ideal G itself.

Consider a construction CG that is (polynomially) indifferentiable from G in
the honest-but-curious model. Our new definition guarantees that any cryptosys-
tem P , possibly involving honest-but-curious parties, that uses the construction
CG in the F model behaves in exactly the same way as it does in the G model.
This fact is formally stated in the following lemma.

Lemma 1. If a construction CG using F is indifferentiable from G in the honest-
but-curious model, as stated in definition 3, then any cryptographic protocol P
(involving honest-but-curious parties possibly) using CG in the F model behaves
exactly the same way as in the G model.



Proof: [also see figure 2] Say there exists a protocol P = (Phon,Pcur) that
behaves differently when using CG in F model. Phon represents the conventional
honest parties of the protocol, and Pcur represents the curious ones. We claim
that the curious parties Pcur do not gain any extra information when using the
construction CG . We will prove this by simulating the view of all parties in P
in the F model, in the G model as well. But this is exactly what definition
3 guarantees. We simply replace the construction CG with G. And we use the
simulator S guaranteed by our definition to simulate the transcript TCG↔F for
the curious parties Pcur. Thus the queries made by the curious parties Pcur are
directed through the simulator S, which along with the response of G adds a
fake transcript TS for the curious parties. The conventional honest parties Phon

are given direct access to the ideal primitive G. And the indistinguishability of
the two scenarios (CG , TCG↔F) and (G, TS) implies that the views of all parties
in the protocol remains the same.
We note here that the notion of “indifferentiability of CG from G in the honest

CG F

G modelF model

Distinguisher D

PhonPcur PcurPhon

G S

TSTCG↔F

new curious
parties in G model

Fig. 2. An idea of the proof of lemma 1. The conventional honest parties Phon along
with the curious ones Pcur can be seen together as a distinguisher D

but curious model” is at least as strong as (in fact, as we shall see later, strictly
stronger than) the notion of “indistinguishability of CG and G”. Clearly, a dis-
tinguisher in the indistinguishability scenario will work in the former scenario
(def. 3) simply by ignoring the transcripts TCG↔F (or TS).

2.3 Transparent Constructions

Even though general indifferentiability (definition 2) seems to be much stronger
than indifferentiability in the honest-but-curious model (definition 3), we now
show that for certain types of constructions these two definitions are, in fact,
equivalent.

Definition 4 (Transparent Constructions). A construction CG of G (using
oracle access to F) is a (tE , qE) transparent construction if there exists a Turing
machine E (called an “extracting algorithm”) such that for any x ∈ dom(F) it



is the case that ECF
G ,TCG↔F (x) = F(x). Here TCG↔F denotes the transcript of

all the communication between CG and F . E runs in time tE and makes at most
qE queries to CF

G for any input x, while dom(F) represents the domain of F .
And |x|, tD and qE are polynomial in the security parameter λ.

Thus a transparent construction CF
G is such that it is possible to efficiently

compute F(x) at any input x by making a polynomial number of queries to CG
and observing the communication between CG and its oracle F .

Lemma 2. If a transparent construction CG (using F) is (polynomially) in-
differentiable from G in the honest-but-curious model (defn. 3) then it is also
(polynomially) indifferentiable from G (defn. 2).

Proof: Say that a construction CG is indifferentiable from ideal primitive G in
the honest-but-curious model. Then we have a simulator Shon that successfully
fakes the transcript TCG↔F (with TShon

) in the G model.
First, we will design a simulator Smal for general indifferentiability using the

simulator Shon. The simulator Smal needs to simulate the ideal primitive F in
G model. On getting a query x ∈ dom(F), Smal uses the extracting algorithm E

(for CG) to compute F(x). The extracting algorithm needs oracle access to the
construction CG and the communication transcript TCG↔F . The simulator Smal

replaces the construction CG with the ideal G oracle, which it has access to. And
it uses the “honest-but-curious” simulator Shon to produce a fake transcript for
E. By definition 3 the extracting algorithm E has no way to tell that it has
oracle access to (G, TShon

) instead of (CG , TCG↔F ). This simulator conversion is
illustrated in figure 3a.

Now we will show that the simulator Smal designed above actually works.
To the contrary, say there is a distinguisher Dmal with non-negligible advan-
tage in the general indifferentiability game. Then we will design a distinguisher
Dhon for the honest-but-curious indifferentiability scenario. Dhon simply runs
the “malicious” distinguisher Dmal and uses the extracting algorithm E to sim-
ulate the F oracle for Dmal. Note that it is easy for Dhon to run the extracting
algorithm E, which needs the exact same oracles that Dhon has access to. The
new distinguisher is illustrated in figure 3b.

Say CG is a (tE , qE) transparent construction. Then if the simulator Shon

runs in time tShon
for every query, then Smal runs in time O(tShon

· qE + tE).
And if Dmal makes qDmal

queries and runs in time tDmal
then Dhon makes at

most O(qDmal
· qE) queries and runs in time O(tDmal

· tE).
This theorem essentially implies that if one is able to find a transparent con-

struction CG for an ideal primitive G and prove its indifferentiability in the
honest-but-curious model. This will also imply the general indifferentiability of
the construction CG .

3 The Luby-Rackoff Construction

In this section, we will give a construction of an ideal cipher E : {0, 1}κ ×
{0, 1}2n → {0, 1}2n from a random oracle H : {0, 1}∗ → {0, 1}n. Note that it



Dmal

E

FCG

Dhon

TCG↔F

E

G

S
′

a〉 Simulator Conversion b〉 Distinguisher Conversion

depicted in F model

TS

S

Fig. 3. a. Conversion of the simulator S in honest-but-curious model to simulator S
′

in general indifferentiability.
b. Conversion of the malicious distinguisher Dmal into an honest-but-curious distin-
guisher Dcur.

suffices to give a construction Cπ of a single random permutation π : {0, 1}2n →
{0, 1}2n using H . Similar to the ideal cipher oracle, the random permutation
oracle π accepts both forward and inverse queries, but it has a key space of
cardinality 1. On input (0, x) the oracle outputs y = π(x) and on input (1, y)
it outputs x such that π(x) = y. A construction for the ideal cipher E can be
easily derived from this random permutation construction by prepending the key
of the ideal cipher to every query Cπ makes to H .

We will now concentrate on getting an indifferentiable construction of a ran-
dom permutation from a random oracle, and all our results can be carried over
to the ideal cipher model using the technique suggested above.

The Random Permutation Construction. We first note that the construc-
tions in [19, 23] etc. are not necessarily indifferentiable from a random permuta-
tion, since all these results are proven in the classical indistinguishability model.
Here we will give an indifferentiable construction of random permutation (RP)
from the random oracle (RO) H : {0, 1}∗ → {0, 1}n. Similar to [19, 23], our
construction is based on multiple rounds of the Feistel permutation. However,
our proofs will be in the indifferentiability model. We first formally define a “k

round LR-construction”.

Definition 5 (k round LR-construction). Given functions hi ∈ Fn : i =
1 . . . k, the k round LR-construction Ψh1,...,hk

is essentially the composition of k

rounds of Feistel permutation, Ψhk
◦ Ψhk−1

◦ . . . ◦ Ψh1
.

We will basically use a k round LR-construction (with sufficiently large k) to get
a random permutation π : {0, 1}2n → {0, 1}2n. We will use independent random
functions hi for each round of the k round LR-construction Ψh1,...,hk

. Note that
it is easy to get these independent random functions hi ∈ Fn from the random
oracle H . These can be simply defined as hi(x) = H(〈i〉 ‖ x) for i = 1 . . . k.
Here 〈i〉 represents the log(k)-bit binary representation of i. The k round LR



construction with round functions derived in this fashion is denoted as Cπ,k.
We conjecture that for sufficient number of rounds k this is an indifferentiable
construction of RP from RO.

Conjecture 1 For a sufficient number of rounds k, the k round construction
Cπ,k (using a random oracle H : {0, 1}∗ → {0, 1}n) is an indifferentiable con-
struction of a random permutation π : {0, 1}2n → {0, 1}2n.

Even though we believe this conjecture to hold, we have been unable to prove
it formally. However, we will formally show that the k round LR construction is
indifferentiable from a random permutation in the honest-but-curious scenario
with a sufficient number of rounds k.

3.1 Transparency for O(log λ) Rounds

The question now is how many rounds should suffice to prove indifferentiabil-
ity in the honest-but-curious model? We first show that for upto a logarithmic
(in security parameter λ) number of rounds proving indifferentiability of the
LR-construction in the honest-but-curious model is no simpler than proving its
indifferentiability in general. Recall from section 2 that a transparent construc-
tion is one for which indifferentiability in the honest-but-curious model implies
its indifferentiability in the general model. We prove that for upto a logarithmic
(in λ) number of rounds the LR-construction is a transparent construction.

Theorem 2. The k round LR-construction Cπ,k is a (tE , qE) transparent con-
struction of the random permutation π from random oracle H for number of
rounds k = O(log(λ)). The running time tE and number of queries qE are both
polynomial in the security parameter λ.

Proof: Consider the k round LR-construction Cπ,k for number of rounds k =
O (log(λ)). We will describe an extracting algorithm E that when given access
to (Cπ,k, TCπ,k↔H) can extract the values of H(〈i〉 ‖ x) for any x ∈ {0, 1}n and
i = 1 . . . k. Note that such an algorithm E will suffice for our purpose. This
is because the random oracle output at any other input is never used by the
construction Cπ,k. Thus we will assume that E gets inputs of the form (〈i〉 ‖ x),
and it outputs the value H(〈i〉 ‖ x) (or hi(x)). We will describe this algorithm
E in an inductive fashion.

– Input (〈1〉 ‖ x): On this input, E chooses an arbitrary n bit string, R0. It
then assigns R1 = x and makes the query Cπ,k(0, R0 ‖ R1). This is a forward
RP query. In response, it gets the transcript TCπ,k↔H , which includes the
value h1(R1).

– Input (〈i〉 ‖ x) , i ≥ 2: Such round function values are computed recursively.
• Choose arbitrary R0, R1 ∈ {0, 1}n, and query Cπ,k(0, R0 ‖ R1). This will

give us a random round value R1
i−1 and corresponding round function

value hi−1(R
1
i−1).

• Compute R1
i−2 = hi−1(R

1
i−1) ⊕ x. Recursively invoke E(〈i − 2〉 ‖ R1

i−2)
to get hi−2(R

1
i−2).



• Compute R1
i−3 = hi−2(R

1
i−2)⊕R1

i−1. Recursively invoke E(〈i−3〉 ‖ R1
i−3)

to get hi−3(R
1
i−3).

• Continue in this fashion to get (R1
i−4, hi−4(R

1
i−4)) , . . . , (R1

1, h1(R
1
1)).

• Compute R1
0 = h1(R

1
1)⊕R1

2. Now query Cπ,k(0, R1
0 ‖ R1

1). This will give
us the round function values (R1

i , hi(R
1
i )). But R1

i = hi−1(R
1
i−1)⊕R1

i−2 =
x. Thus we have hi(x).

For a query (〈i〉 ‖ x), let the worst case running time of E be tE(i) and number
of queries be qE(i). From the above algorithm, we can deduce that tE(i) =
tE(i − 2) + tE(i − 3) + . . . + tE(1) + O(1) and qE(i) = qE(i − 2) + qE(i −
3) + . . . + qE(1) + O(1). Now one can verify that tE(i) and qE(i) are both
approximately equal to the ith Fibonacci number. And hence in the worst case

tE = qE = O
(

φk
)

, where φ =
√

5+1
2 . And thus when k = O(log(λ)), both tE

and qE are polynomial in the security parameter λ. Hence Cπ,k is a transparent
construction when k = O(log(λ)).

Thus one can hope to prove indifferentiability of the LR-construction for
O(log(λ)) rounds in the honest-but-curious model, and it will imply the general
indifferentiability of the construction. However, there is no indication to suggest
that this task might be any easier than the general result.

3.2 Main Result : Equivalence for ω(log λ) rounds

On the positive side, we prove the indifferentiability of the LR-construction in
the honest-but-curious model for a super-logarithmic number of rounds.

Theorem 3. The k round construction Cπ,k is
(

tD, tS , q, O
(

(q · k)4 · 2−n
) )

indifferentiable from a random permutation π : {0, 1}2n → {0, 1}2n (with security
parameter λ) in the honest-but-curious model for k = ω (log(λ)) rounds. tS, n

and q are all polynomial in λ.

Proof Intuition: The proof of this theorem consists of two parts. First, we will
describe the simulator S that fakes the communication between Cπ,k and H ,
in the random permutation model. The input to the simulator is either of the
form (0, x) (forward π query) or (1, y) (inverse π query), where x, y ∈ {0, 1}2n.
In the random oracle model, if the input (0, x) is given to the construction
Cπ,k in the random oracle model, then Cπ,k makes queries to the random oracle
H and computes the values R1 . . . Rk where R0 = x|

L
, R1 = x|

R
and Ri =

hi−1(Ri−1) ⊕ Ri−2 for i ∈ {2, . . . k + 1}. Inverse queries (1, y) are handled in a
similar fashion, albeit in reverse starting from Rk = y|

L
and Rk+1 = y|

R
and

computing Ri = hi+1(Ri+1) ⊕ Ri+2 for i ∈ {k − 1 . . . 0}.
In the random permutation model, the simulator performs essentially the

same computation except that it simulates the round functions hi itself. It main-
tains a table Thi

for each of the round functions hi, in which it stores all pre-
viously generated round function values. Consider a forward query (0, x), thus
R0 = x|

L
and R1 = x|

R
. The simulator S generates a fake transcript for this

query as follows:



1. First, it forwards this query (0, x) to the random permutation π and gets
y = π(x). Thus, in our representation of the LR-construction Rk = y|

L
and

Rk+1 = y|
R
.

2. Next, it checks to see if hk(Rk) is already defined. If so then it checks the tables
Thk−1

, Thk−2
, . . . and so on to see if there exists a chain of defined values of the

form [Ri−1 = hi(Ri) ⊕ Ri+1]i=k...bot, where bot ∈ {1, k}. If bot = 1 then the
entire chain is already defined, so it checks to see if the (Rbot−1 ‖ Rbot) = x.
If so, S returns this sequence of values as the transcript to the distinguisher,
otherwise the simulator exits with failure since there is no way to define the
round function values consistent with π.

3. If bot > 1 then it checks to see if similarly there exists a chain of defined round
function values going down from R0 = x|

L
, R1 = x|

R
. That is, a sequence

of round values [Ri+1 = hi(Ri) ⊕ Ri−1]i=1...top, where top ∈ {1, k}. It then
checks to see if top ≥ bot− 2. If so then it exits with failure since it cannot be
consistent with both π and its previous responses.

4. If everything goes well until now, then the simulator S starts defining the
missing round function values between top and bot. It defines the function
values htop+1(Rtop+1) . . . hbot−2(Rbot−2) at random. It joins the top and bot-
tom chains by defining hbot−1(Rbot−1) = Rbot ⊕ Rbot−2 and hbot(Rbot) =
Rbot+1 ⊕ Rbot−1.

5. After completing the entire chain in this fashion, S sends it to D.

Thus the simulator S simply tries to define all intermediate round function
values randomly. However, it first scans to see if part of the chain of round
function values is already defined. It does so both starting from top and bottom,
and defines the undefined values in the middle at random but making sure that
it joins the two partial chain. If it so happens that the two chains are so long
that there are no undefined round values left in the middle, then it realizes that
it cannot be consistent with both these chains simultaneously and exits with
failure.

The next task is to prove the indistinguishability of the random oracle model,
with the LR-construction Cπ,k and the transcript of its communication with the
RO H , and the random permutation model, with the random permutation π

and the fake transcript generated by the simulator S described above. Our proof
consists of a hybrid argument that starts in the random permutation model and
through a series of indistinguishable hybrid models it ends up in the random
oracle model. The most non-trivial part of the proof consists of the combinatorial
lemma 3, which involves counting the number of queries needed by D to induce
an inconsistency in the responses of S. This number is shown to be exponential
in the number of rounds k, and hence super-polynomial in the security parameter
λ when k = ω(log λ). The formal proof is given below.

A formal proof of the fact that the simulator described above works is given in
appendix A.



3.3 Non-transparency for ω(logλ) rounds

One can deduce from theorem 3 that if the LR-construction with ω(log λ) rounds
is a transparent construction, then it will imply the general indifferentiability
of this construction too. Unfortunately, we show that for number of rounds
ω(log(λ)) the LR-construction is not a transparent construction.

Theorem 4. The k round LR-construction Cπ,k is not a transparent construc-
tion of the random permutation π for number of rounds k = ω(log(λ)).

Proof: Say that we are given an extracting algorithm E that given oracle access
to Cπ,k along with the transcript of the communication between Cπ,k and the RO
H , is supposed to compute H on any input. We will give a query x for which E

cannot find H(x) with non-negligible probability.
In the proof of theorem 3, we used a hybrid argument to prove the indistin-

guishability of (Cπ,k, TCπ,k↔H) from (π, TS). Recall the hybrid scenario in figure
5b, where we had the simulator S1 that avoids XOR of any 3 of previously
defined round (function) values, and the relaying algorithm M1 that uses the
simulator S1 to respond to the random permutation queries made by the sim-
ulator. By our hybrid argument in the proof of theorem 3, we can see that the
random oracle scenario (Cπ,k, TCπ,k↔H) is also indistinguishable from this hybrid
scenario (M1, TS1

).
Coming back to our current proof, if we give the extracting algorithm E

access to (M1, TS1
), then it should be able to compute the output of any of the

round functions simulated by S1 on any input, just as it does in the random
oracle model. If this is not the case, then we can use the extracting algorithm E

to design a distinguisher that can tell apart the random oracle model from this
hybrid model with high probability. Let us denote the round functions simulated
by S1 as h1 . . . hk and the corresponding round values as R0, . . . , Rk+1.

We will ask the extracting algorithm E to compute h k
2

(x). Say E finds

out h k
2

(x) in query number m, which can be assumed to be a forward query

without loss of generality. Denote the round values in query number m as

R
(m)
0 , . . . , R

(m)
k+1. We can deduce that R

(m)
(k/2) = x since it is in this query that E

finds the values h k
2

(x). Now if the round value R
(m)
(k/2)−1 is a new round value then

h k
2
−1(R

(m)
(k/2)−1) would have been assigned a random value and h k

2
−1(R

(m)
(k/2)−1)⊕

R
(m)
(k/2)−2 would have been equal to x with only a negligible probability. So it

must have been the case that R
(m)
(k/2)−1 was defined in some query prior to query

number m. We can make similar deductions to show that all the round values
R

(m)
0 , . . . , R

(m)
(k/2)−2 were also defined in queries previous to the mth query.

After this the proof of the theorem follows in pretty much the same way
as the combinatorial lemma 3. We show that the extracting algorithm must

have already made a φ
k
4 (for φ =

√
5+1
2 ) queries prior to the mth query. For a

super-logarithmic number of rounds k, this is super-polynomial in the security
parameter λ.



3.4 Negative Results for Constant Rounds

Finally, we mention that one does need to use sufficient number of rounds of
the Feistel permutation in the construction, to have any hope of proving it
indifferentiable. Coron [7] showed that for less than 6 rounds the LR-construction
is not indifferentiable from a random permutation.

Theorem 5 ([7]). Let Cπ,k be the k round LR-construction of a random permu-
tation π, with number of rounds k < 6. Then there is an efficient distinguisher
D such that for any simulator S, D can distinguish the oracle pair (Cπ,k, H) and
(π, S) with non-negligible probability.

It is easy to see that the construction (Cπ,k, H) cannot work for k < 4, since in
this case it does not even satisfy the classical indistinguishability definition [19].
Coron [7] gave attacks on 4 and 5 round LR-constructions in the indifferentia-
bility scenario. We give an attack on the 4 round LR construction in appendix
B for illustration.
This theorem also implies that indifferentiability (even in the honest-but-curious
model) is strictly stronger than classical indistinguishability. This is because the
LR-construction with 4 rounds or more is known to satisfy the latter [19]. Thus
we can derive the following corollary from theorem 5.

Corollary 1. A 4 round LR-construction is indistinguishable , but not indiffer-
entiable, from a random permutation (even in the honest-but-curious model).

4 Conclusions and Future work

In this paper, we have shown that the Luby-Rackoff construction with a super-
logarithmic number of rounds can be used to instantiate the ideal block cipher in
any honest-but-curious cryptosystem. We have also proved that improving this
result to upto a logarithmic number of rounds will imply that this construction
is indifferentiable from the ideal cipher in general. The main question that still
remains unanswered is whether the Luby-Rackoff construction is indifferentiable
from the ideal cipher in general.

Acknowledgements. We would like to thank Jean-Sébastien Coron and Joel
Spencer for useful discussions.
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A Formal Proof of Indifferentiability

Now we will prove that when the simulator S described in theorem 3 above
is used in the indifferentiability game, then any distinguisher D that makes at
most q queries to its oracles has only a negligible distinguishing advantage. Here
q and n (the output length of H) are both polynomial functions of the security
parameter λ, while the number of rounds in the LR construction is k = ω(log(λ)).
As we mentioned, our proof proceeds via a hybrid argument.
Hiding the random permutation π: Let us start in the random permutation
scenario. Here the distinguisher has oracle access to π and the simulator S. Our
first modification is to prevent D from directly accessing π, by replacing it with a
simple relaying algorithm M that acts as an interface to π. When M gets a query
from the distinguisher, it simply relays this query to the random permutation
π and sends back the response of π. In this new scenario, the distinguisher
has oracle access to Mπ and Sπ (see figure 5a). Since we have made no real
change from the point of view of the distinguisher, we have Pr[D(π,TSπ ) = 1] =
Pr[D(Mπ ,TSπ ) = 1].
Bounding out the “bad events”: Now we will modify the simulator S, so
that it never outputs certain types of collisions that will affect our analysis
later. Recall that the simulator S needs to define the round function values
h1(R1) . . . hk(Rk) in order to generate the transcript TS for every query made
to it. And S tries to assign random values to hi(Ri) for any new Ri.

Now we introduce a slightly modified simulator S1 that is essentially the
same as S except that it chooses round function values more carefully. Let
us first fix a little notation. We will number the queries made to the simu-
lator in the order they are made, query number 1 followed by 2 and so on.
And for the mth query made to the simulator, we will label its round values as

R
(m)
0 , R

(m)
1 , . . . , R

(m)
k , R

(m)
k+1.

Assume for now that query number m is a forward query. When assign-

ing a new round function value hi(R
(m)
i ) in this query, the distinguisher makes

sure that hi(R
(m)
i ) is cannot be represented as an XOR of upto three previ-

ously defined values. This includes all values R
(`)
j or h(R

(`)
j ) for ` < m , j ∈



{0, k + 1} and all values R
(m)
j or hj(R

(m)
j ) for j < i (and j > i for an inverse

query m). More formally, S1 assigns a value hi(R
(m)
i ) for the mth query (a for-

ward query) that does not satisfy the following equality for values x1, x2, x3 ∈

{R
(`)
j1

, hj1(R
(`)
j1

), R
(m)
j2

, hj2(R
(m)
j2

) | ` < m , j1 ≤ k + 1, j2 < i}

hi(R
(m)
i ) = x1 or (x1 ⊕ x2) or (x1 ⊕ x2 ⊕ x3)

The distinguisher cannot tell if it has oracle access to (M, S) or (M, S1) unless
the old simulator S outputs a round function value that satisfies one of the above
equalities. Let us denote this event by B1. Hence for any distinguisher D making
q queries,

∣

∣

∣
Pr

[

D(Mπ,TSπ ) = 1
]

− Pr
[

D
(Mπ,TSπ

1
) = 1

]∣

∣

∣
≤ Pr [B1]

We can bound the probability of B1 occurring by noticing that for randomly

assigned round function values, Pr [B1] = O
(

(q·k)4

2n

)

. This can be derived by

using the birthday paradox to bound the probability that any XOR of upto 4
round (or round function) values is 0n.
Transferring Control to the Simulator: Next we will modify the relaying
algorithmM so that it does not simply act as a channel between the distinguisher
and π. The new relaying algorithm, which we will call M1, responds to the π

queries by making the same queries to the simulator S1 and computing π(x) (or
π−1(y)) from the responses of S1 (see figure 5b).

To illustrate this point, say M1 gets a query (0, x) from the distinguisher D

(that is, a forward query to π). Then M1 forwards this query to S1, which in turn
gets y = π(x) from the random permutation and constructs a fake transcript
TS1

(0, x) (or round values R0 = x|
L
, R1 = x|

R
, . . . , Rk+1). If all goes well this

transcript is consistent with π. The simulator sends this transcript TS1
(0, x) to

M1, which can compute π(x) from TS1
and send it to the distinguisher D with

this value. Inverse queries 1, y) are handled in a similar fashion.
From the view of D, everything in this scenario is same as in the previous

one unless the simulator S1 exits with failure on some query made by M1. This
happens if and only if S1 fails to be consistent with the random permutation π on
some query. We claim that if the number of queries q made by the distinguisher
D is polynomial in the security parameter λ then the simulator S1 is always
consistent with π.

Lemma 3. For a polynomial number of queries q made to the simulator S1, the
responses of the simulator are always consistent with the random permutation
π.

Proof: Say query number m is the first time S1 is inconsistent with π. Without
loss of generality assume this to be a forward query (0, x), with π(x) = y. Thus

R
(m)
0 = x|

L
, R

(m)
1 = x|

R
and R

(m)
k = y|

L
, R

(m)
k+1 = y|

R
. Since S1 is inconsistent on

this query, there exist partial round value chains, R
(m)
0 , R

(m)
1 . . . R

(m)
top , R

(m)
top+1 and



R
(m)
bot−1, R

(m)
bot . . . R

(m)
k , R

(m)
k+1 with top ≥ bot− 2. But in this case either (top ≥ k

2 )

or (bot ≤ k
2 + 1). That is, at least one of these two partial chains consists of

more than k
2 defined round function values. Without loss of generality, assume

that the top ≥ k
2 . Thus all round function values h1(R

(m)
1 ) . . . htop(R

(m)
top ) were

defined before query number m was made. We will look at the queries where
each of these round function values was defined for the first time. For any round

value R
(j)
i , we denote by first(R

(j)
i ) the query number where the round function

value hi(R
(j)
i ) was first defined. Thus if R

(j)
i is a new round value that appeared

in query number j itself, then first(R
(j)
i ) = j otherwise first(R

(j)
i ) < j. We

can thus say that for i = 1 . . . top, it is the case that first(R
(m)
i ) < m.

Now consider any three consecutive round values R
(m)
i−1 , R

(m)
i and R

(m)
i+1 for

i ∈ {2 . . . top − 1}. Let first(R
(m)
i−1) = `i−1, first(R

(m)
i ) = `i and first(R

(m)
i+1) =

`i+1 (`i−1, `i, `i+1 < m). We wish to analyze the order of the queries `i−1, `i

and `i+1. First, note that `i−1 6= `i and `i 6= `i+1. Either case would imply that
the `i

th query is the same as the mth query, and the inconsistency should have
occurred there itself. Let us now look at the possible orders between `i−1, `i and
`i+1.

1. (`i > `i−1 ≥ `i+1) or (`i > `i+1 > `i−1): That is, query number `i occurs after

`i−1 and `i+1. We know that hi(R
(m)
i ) = R

(m)
i−1 ⊕ R

(m)
i+1 and hence hi(R

(`i)
i ) =

R
(`i−1)
i−1 ⊕R

(`i+1)
i+1 . But the round values R

(`i−1)
i−1 and R

(`i+1)
i+1 already exist when

hi(R
(`i)
i ) was defined for the first time in the `i

th query. And since the simu-
lator S1 avoids such an XOR collision, this order is impossible.

2. (`i−1 > `i > `i+1) or (`i−1 < `i < `i+1): These strictly increasing/decreasing
orderings are possible.

3. (`i < `i−1 < `i+1) or (`i < `i+1 < `i−1): Here the `i
th query comes before both

the `i−1
th and `i+1

th queries. These orders are possible.
4. (`i < `i−1 = `i+1): This is the same as above, except that the `i−1 = `i+1.

In this case, a short calculation gives that hi(R
(`i−1)
i ) = hi(R

(`i)
i ), where

R
(`i−1)
i 6= R

(`i)
i . And since R

(`i−1)
i exists before hi(R

(`i)
i ) is defined, this order

is impossible.

Thus we know that the possible orderings of the queries for any three consecutive
round values are the configurations 2 and 3. Now we can apply the same to all the

queries first(R
(m)
1 ) = `1, first(R

(m)
2 ) = `2, . . . , first(R

(m)
top ) = `top, considering

each triple of consecutive round values separately and then combining of these
orderings together. Using this, we obtain that there is a j ∈ {1, k} such that
(`1 > `2 > . . . > `j) and (`j < `j+1 < . . . < `top). That is, the query numbers
`1 . . . `top are strictly decreasing until some `j and strictly increasing after that.
One can verify that any other configuration will involve one of the “impossible”
triple orderings 1 or 4.

Now we will look for more structure in these queries. If j ≥ top
2 , then we will

analyze the decreasing sequence of queries `1 . . . `j , otherwise we will analyze the
increasing sequence of queries `j . . . `top. Without loss of generality, assume that



j ≥ top
2 ; the case j < top

2 is symmetrical. Since we earlier derived that top ≥ k
2 ,

we can also deduce that j ≥ k
4 .

Now we will show that these queries and others that led to the inconsistency
in the mth query form a Fibonacci tree of depth j (which we know is ≥ k

4 ). Each
node of the Fibonacci tree corresponds to a different query, with mth query at
the root of the tree. This would imply that m is at least as large as the number
of nodes in a Fibonacci tree of depth k

4 . But since we know that k = ω(log(λ)) it
also holds that m is superpolynomial in the security parameter λ. In turn, this
implies that the simulator S1 is always consistent with the random permutation
for any polynomial number of queries.

The queries from `1 . . . `j form the first level of the Fibonacci tree which we
will describe. To see this structure more explicitly, we will now move from the
mth query to these first level queries. Consider any three consecutive queries in
this ordering, `i, `i+1, `i+2 (recall `i > `i+1 > `i+2). Let us look at the `i

th query.
This query could be a forward or inverse query. For now we assume that it is a
forward query. As it will turn out, if this is an inverse query then the Fibonacci
tree of queries would be even larger, and so will the number of queries needed.
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Note that the `i+1
th and `i+2

th queries were made before query number `i.

And since the `i
th query is a forward one, R

(`i)
i−2 is defined before R

(`i)
i−1. Now

if R
(`i)
i−1 is a new round value then the simulator S1 would have avoided the

above XOR representation. Thus hi−1(R
(`i)
i−1) was already defined before the `i

th

query. Using similar analysis, one can also deduce that the round function values

h1(R
(`i)
1 ) . . . hi−2(R
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i−2) also had to be defined prior to the `i

th query.

Let first(R
(`i)
1 ) = b1, . . . , first(R

(`i)
i−1) = bi−1. Consider the queries bi−1 and

bi−2. Let us see in what order these queries could have occurred. We know that
queries bi−1 and bi−2 were both made before the `i

th query. We also know that
the `i+1

th query was also made before `i
th query. First note that bi−1 6= bi−2,

since otherwise the bi−1
th query would the same as query number `i, which is

not possible since R
(`i)
i is a new round values in the `i

th query.

1. bi−2 < bi−1 ≤ `i+1 or bi−1 < bi−2 ≤ `i+1: A short calculation in this case gives

hi+1(R
(`i+1)
i+1 ) = R

(`i+2)
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(bi−2)
i−2 ⊕ hi−1(R

(bi−1)
i−1 ). Since all 3 of these round

(function) values existed before hi+1(R
(`i+1)
i+1 ) was defined, the simulator S1

would have avoided their XOR. Hence these orderings are impossible.

2. bi−2 ≤ `i+1 < bi−1 or `i+1 < bi−2 < bi−1: These orderings are impossible since

here we can make a similar argument for hi−1(R
(bi−1)
i−1 ).

3. bi−1 ≤ `i+1 < bi−2: This ordering is possible.

4. `i+1 < bi−1 < bi−2: This ordering is also possible.



We note here a couple of things about these possible orderings before we move
on. First, query bi−1 could have only been made before query bi−2. Secondly,
query bi−2 could not have been made before the query `i+1. Now starting with
this ordering defined between queries bi−1 and bi−2, we can deduce the order
in which queries b1 . . . bi−3 could have been made. The analysis of this will be
pretty much the same as that for `1 . . . `top, with one major difference. Here the
only possible order amongst b1 . . . bi−1 we will get will be a descending order
b1 > b2 > . . . > bi−1. That is query b1 was made before b2 which was made
before b3 and so on. This happens because we were able to establish a strict
order between bi−2 and bi−1, which was not the case for `top−1 and `top. Thus
the i−1 queries, b1 . . . bi−1, had to be made in strict decreasing order. This fact
turns out to be really crucial since we do not lose half of the queries at this level
of the “Query tree”, as we did in the case of query number m.

Thus for each of the queries `i at the first level, we have at least i−2 queries
that lie strictly in between `i and `i+1. Note that the same counting method
can be extended to the bi queries to show that there are i − 2 queries strictly
in between bi and bi+1, and so on. This query structure takes the shape of a
Fibonacci tree. Since queries at any level lie strictly in between two consecutive
parent level queries, it turns out that each of the queries in the tree is, in fact,
different! An example this query structure is shown in figure 4.
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Fig. 4. An example of a “Fibonacci tree” formed by queries (showing three levels)

Let T (i) represents the number of queries in a “query tree” starting with

R
(m)
i (thus T (1) = 1). From the structure of the “query tree”, we can compute



that T (i) = T (i − 1) + T (i − 2). But this is exactly the expression for the
ith Fibonacci number. We will not recompute this expression here and just state
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, which is superpolynomial in

the security parameter λ, if k = ω(log(λ)).
Thus for any distinguisher D that makes q queries (q = poly(λ)), it is the case
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Removing the Random Permutation π: Until now, all queries are forced
to be consistent with π. Now we will modify the simulator S1 and get closer to
the actual random oracle scenario. The new simulator, which we shall denote
by S2, does not attempt to output transcripts consistent with π. As before it
implements the k round LR-construction with randomly assigned internal round
functions. But now it also implements the last (or first) couple of round functions
hk−1, hk (or h2, h1) with randomly chosen values (see figure 5c).

To illustrate this, when the new simulator S2 gets a forward query (0, x). It
computes R0 = x|

L
, R1 = x|

R
and assigns random values to h1(R1), . . . , hk(Rk).

It then sends the round values R0, . . . , Rk+1 as the transcript for the query (0, x).
Inverse queries are handled in a symmetrical fashion. The relaying algorithm,
M1, as before uses these transcripts to compute its responses to D’s queries.

Note that the distinguisher cannot tell this scenario apart from the previous
scenario, unless

• the new simulator S2 violates the XOR constraint satisfied by S1. We call this
event B3.

• the old simulator S1 exits with failure. We call this event B4.

Lemma 3 implies that the event B4 does not happen for any distinguisher D that
makes a polynomial number of queries. Thus for any distinguisher D making at
most a polynomial number of queries q,
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Onto the Random Oracle Model: Note that the previous scenario is essen-
tially the same as the random oracle scenario, since all round function values
chosen by S2 are random. Therefore for any distinguisher D (figure 5d), we have

Pr[D(MTS2 ,TS2
)] = Pr[D(CH
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Combining all the above hybrids, for any distinguisher D that makes at most

q queries,
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Here q and n are polynomial in the security parameter λ, and k = ω(log(λ)). In
fact, with a slightly more carefully designed simulator S1 that avoids an XOR
of specific round (function) values, one gets that the distinguishing advantage of

D is O
(

q4

2n

)
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Fig. 5. Overall Game Structure

B Attack on 4 round LR-construction

We will represent the round values of the construction Cπ,4 as R0, R1 . . . R4, R5,
such that Cπ,4(R0 ‖ R1) = (R4 ‖ R5). And the round functions will be denoted
as h1, . . . , h4. Now consider any simulator S for which we get the two scenarios:
(Cπ,4, H) and (π, S). We will design a distinguisher D that distinguishes these
two with high probability for any simulator S.

The distinguisher D essentially forces the simulator to satisfy a constraint
that holds with very low probability for an RP π. On the other hand, it always
holds for the LR-construction Cπ,4. The algorithm of D is as follows:

1. Choose 3 arbitrary n bit strings, R2, R′
2, R3.

2. Query the random oracle H to get h2(R2), h2(R
′
2) and h3(R3), in this order.

3. Compute R1 = h2(R2) ⊕ R3 and R′
1 = h2(R

′
2) ⊕ R3.

4. Query the random oracle to get h1(R1) and h1(R
′
1). Compute R0 = h1(R1)⊕

R2 and R′
0 = h1(R

′
1) ⊕ R2.

5. Query the random permutation on R0 ‖ R1 and R′
0 ‖ R′

1 to get the values
R4 ‖ R5 and R′

4 ‖ R′
5, respectively.

6. Check if R4 ⊕ R′
4 = R2 ⊕ R′

2. If so, then output 1 else output 0

Note that the values R2 and R′
2 were queried upon before R3. Hence the round

values R1 and R′
1 are completely arbitrary round values controlled by the dis-

tinguisher. The distinguisher D always outputs 1 when given access to the con-
struction Cπ,4. But when given access to the random permutation, the simulator
S will need to find h1(R1) and h1(R

′
1) that satisfy the constraint:

π((h1(R1) ⊕ R2) ‖ R1)|L ⊕ π((h1(R
′
1) ⊕ R′

2) ‖ R′
1)|L = R2 ⊕ R′

2

In this equation R1, R′
1, R2 and R′

2 are all effectively chosen by the distinguisher.
Hence no efficient simulator can find two round function values h1(R1) and
h1(R

′
1) that satisfy the above constraint with non-negligible probability for a

random permutation π.


