
Non-Interactive Zero-Knowledge from
Homomorphic Encryption

Ivan Damg̊ard1, Nelly Fazio2⋆, and Antonio Nicolosi2⋆

1 Aarhus University, Denmark⋆⋆,
ivan@brics.dk

2 Courant Institute of Mathematical Sciences, New York University, NY, USA
{fazio,nicolosi}@cs.nyu.edu

Abstract. We propose a method for compiling a class of Σ-protocols
(3-move public-coin protocols) into non-interactive zero-knowledge ar-
guments. The method is based on homomorphic encryption and does
not use random oracles. It only requires that a private/public key pair
is set up for the verifier. The method applies to all known discrete-log
based Σ-protocols. As applications, we obtain non-interactive threshold
RSA without random oracles, and non-interactive zero-knowledge for NP
more efficiently than by previous methods.

1 Introduction

In a zero-knowledge proof system, a prover convinces a verifier via an interac-
tive protocol that some statement is true i.e., a given word x is in some given
language L. The verifier must learn nothing beyond the fact that the assertion is
valid. Zero-knowledge is an extremely useful notion and has found innumerable
applications.

One efficient variant is known as Σ-protocols, which are three-move protocols
where conversations are tuples of the form (a, e, z) and e is a random challenge
sent by the verifier. A large number of such protocols are known for languages
based on discrete logarithm problems, such as Schnorr’s protocol [16] and many
of its variants, e.g., for proving that two discrete logs are equal [4]. This last
variant is useful, for instance, in threshold RSA protocols [17], where a set of
servers hold shares of a private RSA key, and clients can request them to apply
the private key to a given input. The Σ-protocol is used here by the servers to
prove that they follow the protocol.

One well-known technique for making Σ-protocols non-interactive is the Fiat-
Shamir heuristic [11], where e is computed by the prover himself as a hash of the
statement proved and the first message a. In the random oracle model, where
the hash function is replaced by a random function, this can be shown to work.

⋆ Research conducted while visiting BRICS.
⋆⋆ Supported by BRICS, Basic Research in Computer Science, Center of the Danish Na-

tional Research Foundation, and FICS, Foundations in Cryptography and Security,
funded by the Danish Research Council.

However, it is not in general possible to instantiate the random oracle with a
concrete function and have the security properties preserved (cf. [12]). In other
words, a proof in the random oracle model does not guarantee security in the
real world.

Cramer and Damg̊ard [7] suggest a different type of proof for equality of
discrete logarithms in the secret-key zero-knowledge model, where prover and
verifier are assumed to be given private, but correlated secret keys initially.
These proofs can be applied to build non-interactive threshold RSA protocols
without random oracles, but unfortunately, it is required that every client using
the system must have keys for the proofs set up with every server. This seems
quite impractical in many cases, due to the large amount of interaction and
secure memory needed to set up and manage these keys. Moreover, [7] does not
include any protocols for more general statements (such as NP-hard problems).

In this paper, we present a technique to compile a class of Σ-protocols into
efficient non-interactive protocols, in the registered public-key model [1]. This
model includes a trusted functionality for setting up a private/public key pair
individually for each player (in fact, we only need this for the verifiers). Hence,
unlike [7], the key setup is not tied to a particular prover/verifier pair: it can
be implemented, for instance, by having the verifier send her public key to a
trusted “certification authority” who will sign the key, once the verifier proves
knowledge of her private key. Now, any prover who trusts the authority to only
certify a key after ensuring that the verifier knows her private key, can safely
(i.e., in zero-knowledge) give non-interactive proofs to the verifier.

Our technique requires homomorphic public-key encryption such as Paillier’s
cryptosystem [15], and it preserves the communication complexity of the original
protocol up to a constant factor. This is in contrast to the NIZK construction of
Barak et al. [1] for the registered public-key model, which provides a much less
efficient transformation from CCA-encryption and ZAP’s [10].

The zero-knowledge property of our protocols is unconditional, whereas the
soundness is based on an assumption akin in spirit to “complexity leveraging” [3].
More precisely, we assume that, by choosing large enough keys for the cryptosys-
tem, the problem of breaking it can be made much harder than the problem
underlying the Σ-protocol (for a particular meaning of “much harder” that we
formalize in the paper).

An immediate consequence of our results is non-interactive threshold RSA
and discrete-log based cryptosystems without random oracles, and assuming
only that each client has a registered key pair. In the context of threshold cryp-
tography where keys must be set up initially anyway, this does not seem like a
demanding assumption. Our protocols are as efficient as the best known previous
solutions (that required random oracles) up to a constant factor.

Another consequence is efficient non-interactive zero-knowledge arguments
for circuit satisfiability, and hence for NP (in the registered public-key model).
Namely, the prover commits to his satisfying assignment using a bit-commitment
scheme for which appropriate efficient Σ-protocols exist. Then, using well-known
techniques, for instance from [6], he could prove via a Σ-protocol that the com-

mitted bits satisfy the circuit. Compiling this protocol using our technique leads
to the desired non-interactive protocol, whose communication complexity is es-
sentially O(ksc) bits, where sc is the size of the circuit, and k is the security
parameter. This compares favorably to the solution of Kilian and Petrank [14]
in the common random string model, which have complexity O(k2sc), even when
using similar algebraic assumptions as we do here. Recently, Groth et al. [13]
proposed non-interactive zero-knowledge proofs for NP in the common reference
string model based on a specific assumption on bilinear groups, and with the
same communication complexity as our protocol. This result is incomparable
to ours: [13] uses a more conventional setup assumption and does not need a
complexity-leveraging type of cryptographic assumption. On the other hand, it
needs to assume that the statement shown by the prover is chosen independently
from the reference string; in our model, the prover may see the verifier’s public
key first and then attempt to prove any theorem of his choice.

2 Preliminaries

We start by introducing some concepts and assumptions that will be useful later.

2.1 Problem Generators and a Complexity Assumption

A problem generator G is a pair G = 〈G, g〉, where G is a probabilistic polynomial-
time algorithm and g : {0, 1}∗ → {0, 1}∗ is an arbitrary (and possibly non-
efficiently computable) function. On input 1k, algorithm G outputs a string u,
which we call an instance; we refer to g(u) as the solution to u, and we require
that g(u) has length polynomial in k. For instance, u might be the concatenation
of a public key and a ciphertext while g(u) is the corresponding plaintext. We
will only be considering problems with unique solutions, since that is all we need
in this paper.

We will say that a probabilistic algorithm A breaks G = 〈G, g〉 on instances

of size k, if setting u
r
← G(1k) and y

r
← A(1k, u), results in y = g(u) with non-

negligible probability. We will be looking at the running time of A as a function
only of its first argument 1k; notice that A will not always be restricted to time
polynomial in k.

We define that a probabilistic algorithm A completely breaks G = 〈G, g〉 on

instances of size k by considering the same experiment: Set u
r
← G(1k) and

y
r
← A(1k, u); however, this time we demand that there exists a polynomial P

such that, except with negligible probability (over the random choices of G),
and for all large enough k, we have Pr(y = g(u)| u) ≥ 1/P (k), where the last
probability is only over the random choices of A. In other words, A should be
able to solve (almost) any instance u with good probability.

Definition 1. Consider two problem generators G and H and let f be a polyno-
mial. We say that H is f-harder than G if there exists a probabilistic algorithm
A running in time T (k) such that A completely breaks G on instances of size k,

but no algorithm running in time O(T (k) + poly(k)) breaks H on instances of
size f(k)k or larger.

In other words, completely breaking G on instances of size k requires time
T (k), but given a similar amount of time, there is no significant chance to break
H—where, however, the H-instances to be solved have size at least f(k)k. Note
that if T (k) is polynomial in k, then O(T (k) + poly(k)) = poly(k) and the
definition amounts to say that H generates instances that are hard in the usual
sense. But if T (k) is superpolynomial, more is required about the hardness of
H-instances—essentially that the complexity of breaking H grows “fast enough”
with the security parameter k.

For problem generators F ,G, we will say that F is as easy as G, if there exists
an algorithm that completely breaks F on instances of size k in time polynomial
in k, plus a constant number of oracle calls to any algorithm that completely
breaks G. The lemma below now follows trivially from the above definitions:

Lemma 1. Let F ,G,H be problem generators. If F is as easy as G and H is
f-harder than G, then H is also f-harder than F .

As an example, consider the following problem generator Gdlog = 〈Gdlog, gdlog〉:
on input 1k, Gdlog outputs an instance u

.
= (p, p′, g, h), where p, p′ are primes,

p′ is k-bit long, p = 2p′ + 1, g is an element of Z∗
p of order p′ and h = gw mod p,

for some w ∈ Zp′ . In this case, the solution is gdlog(u)
.
= w.

As another example, let HPaillier = 〈HPaillier, hPaillier〉, where HPaillier(1
k)

outputs a k-bit RSA modulus n along with c
.
= (1 + n)wrn mod n2 (i.e., c is

a Paillier encryption of w), where w is chosen in some given interval. Here,
hPaillier(n, c)

.
= w is the solution. We can then make the following:

Assumption 1 HPaillier is 2-harder than Gdlog.

To discuss why this might be a reasonable assumption, note that no method
is known to break one-way security of Paillier encryption other than factoring
the modulus n. Furthermore, state of the art is (and has been for several years)
that discrete log and factoring are of similar complexity for moduli of the same
size. Moreover, with the current best known attacks (based on the number field
sieve), doubling the modulus length has a dramatic effect on the expected time to
solve the problem. Indeed, this is the reason why 1024-bit moduli are currently
considered secure, even though 512-bit moduli can be broken in practice. It
would therefore be very surprising, if it turned out to be possible to factor 2k-
bit numbers using only the time we need to find k-bit discrete logs. Note that if
we had chosen a constant larger than 2 in Assumption 1, the assumption would
be weaker, but all our results would remain essentially the same. We could even
have used a polynomial f of degree ≥ 1, but then our compilation would be less
efficient.

Definition 1 calls for an algorithm that completely breaks G, and we will need
this for technical reasons in the following. This makes Assumption 1 stronger
than if we had only asked for one that breaks G in the ordinary sense. However,

in the concrete case based on discrete logs, this makes no difference, as far as
current state of the art is concerned: The best known attack on the discrete
logarithm problem modulo p is the index calculus algorithm which works for all
prime moduli, and has complexity that only depends on the size of the modulus.
Furthermore, the discrete-log problem is random self-reducible and hence an
algorithm solving a random instance modulo p with probability ǫ can solve any
fixed instance modulo p with the same probability. In other words, the best
known attack on the discrete log problem does in fact break it completely in our
sense (albeit in superpolynomial time, of course).

2.2 Σ-protocols

Consider the following protocol (adapted from [4]), which we will call Peqdlog:
Prover P and Verifier V get as common input x

.
= (p, p′, g1, g2, h1, h2), where

p, p′ are prime, p′ is k-bit long, p = 2p′+1, g1 ∈ Z∗
p has order p′, g2, h1, h2 ∈ 〈g1〉

and h1 = gw
1 mod p, h2 = gw

2 mod p, for some w ∈ Zp′ . P gets w as private input.

1. P chooses a random 3k-bit integer r and sends a
.
= (a1, a2) to V , where

a1

.
= gr

1 mod p, a2

.
= gr

2 mod p;
2. V chooses e at random in Zp′ and sends it to P ;
3. P sends z

.
= r+ew to V who checks that gz

1 = a1h
e
1 mod p, gz

2 = a2h
e
2 mod p.

Define the relation Rdlog as the set of pairs (x,w) as specified above, and
LRdlog

.
= {x| ∃w : (x,w) ∈ Rdlog}. It is easy to see that the protocol above is

an interactive proof system for membership in LRdlog
, that is, it proves to the

verifier that logg1
(h1) = logg2

(h2).
In general, we define a Σ-protocol [5] for a relation R to be an interactive

proof systems P for LR
.
= {x| ∃w : (x,w) ∈ R} with conversations of the form

(a, e, z) and with the following additional properties:

Relaxed Special Soundness: Consider an input x 6∈ LR, and any a. We say
that a value of e is good if there exists z such that x, (a, e, z) would be
accepted by the verifier. The requirement now is that for any pair x 6∈ LR, a,
at most one good e exists.

Special Honest-Verifier Zero-Knowledge: There exists a probabilistic poly-
nomial time simulator which on input x, e outputs a conversation (a, e, z)
with distribution statistically indistinguishable from conversations between
P and V , for the given statement x ∈ LR and challenge e.

Usually, one considers Σ-protocols for R, which have the standard Spe-
cial Soundness property, namely that from x ∈ LR and accepting conversa-
tions (a, e, z), (a, e′, z′) where e 6= e′, we can efficiently compute w such that
(x,w) ∈ R. This clearly implies Relaxed Special Soundness, which is all we will
need here.

The properties are straightforward to verify for the example protocol Peqdlog.
In addition, Peqdlog is an example of what we call a Σ-protocol with linear answer:

Definition 2. A Σ-protocol with linear answer is a Σ-protocol where the prover’s
final message z is a sequence of integers, z = (z1, . . . , zm), where zj = uj + vje,
and where uj , vj are integers that can be computed efficiently from x, P ’s random
coins and his private input w.

For a relation R to be useful, it is typically necessary that one can efficiently
generate pairs (x,w) ∈ R from a security parameter 1k. We say that x is a
k-instance, and we will assume that R comes with a polynomial ℓx such that
k-instances have length ℓx(k).

Finally, we point out a consequence of Relaxed Special Soundness which will
be important in the following: Let us consider any probabilistic polynomial-time
algorithm GP that, given a security parameter 1k, generates a pair (x, a) where
x has length ℓx(k). This defines a problem generator GP = 〈GP , gP〉 in the sense
of Section 2.1, where (x, a) is the problem instance and the solution function gP
is defined as follows: If x 6∈ LR and there exists a good e for (x, a), this e-value
is the solution (which is unique by relaxed special soundness). These are the
interesting instances. In all other cases (i.e., if x ∈ LR or if there is no good e for
(x, a)), we define the solution to be gP(x, a)

.
= 0k (just to ensure that there is an

answer for any instance). We call any such problem generator GP a fake-proof
generator for P.

For the example protocol Peqdlog, it is straightforward to verify that we can
find the solution to any instance (x, a) by computing a constant number of
discrete logarithms mod p. Therefore, any fake-proof generator for Peqdlog is as
easy as Gdlog, and so by Lemma 1, we get

Proposition 1. Under Assumption 1, HPaillier is 2-harder than any fake-proof
generator for Peqdlog.

2.3 Homomorphic Encryption

A public-key cryptosystem is as usual defined by algorithms E,D for encryption
and decryption and a key generation algorithm KG. The key generation receives
1k as input and outputs a pair of private and public key (sk, pk). We will consider
systems where plaintexts are integers from some interval [0, n − 1] where n can
be computed from pk. Given plaintext a and random coins r, the ciphertext is
Epk(a; r), and we require, of course, that a = Dsk(Epk(a; r)).

We will be looking at systems that are homomorphic, in the following sense:
the set of ciphertexts is an Abelian group, where the group operation is easy
to compute given the public key. Furthermore, for any a, b, ra, rb it holds that
Epk(a; ra)·Epk(b; rb) = Epk((a+b) mod n; s) for some s. We will assume through-
out that n is a k-bit number. Note that by multiplying Epk(a; r) by a random
encryption of 0, one obtains a random and independently distributed encryption
of a; we denote such operation with randomize(Epk(a; r)).

A typical example of homomorphic encryption is Paillier’s cryptosystem,
where pk is a k-bit RSA modulus n, and sk is the factorization of n. Here,
Epk(a; r)

.
= (1 + n)arn mod n2, where r is uniformly chosen in Z∗

n.

2.4 The Registered Public-Key Model

Below we briefly review the registered public-key model (introduced in [1]), fo-
cusing on the aspects that we will need in the following. We refer the reader
to [1] for the original description of the model and its relation to other setup
assumptions (e.g., the common random string model).

Let KS(1k) (for Key Setup) be a probabilistic polynomial-time algorithm
which, on input a security parameter 1k, outputs a private/public key pair. We
write KS(1k; r) to denote the execution of KS using r as random coins.

The registered public-key model [1] features a trusted functionality FKS
reg ,

which the parties can invoke to register their key pairs and to retrieve other par-
ties’ public keys. Key registration takes place by having the registrant privately
sending FKS

reg the random coins r that she used to create her key pair. FKS
reg will

then run KS(1k; r), store the resulting public key along with the identity of the
registrant, and later give the public key to anyone who asks for it. Note that
this in particular means that to register a public key one needs to know the
corresponding private key. Note also that one need not have registered a public
key of his own to ask FKS

reg for somebody else’s public key.

2.5 Non-Interactive Zero-Knowledge with Key Setup

Below we present a stand-alone definition of Non-Interactive Zero-Knowledge in
the registered public-key model.1

Let KS(1k) be the key setup for the key-registration functionality FKS
reg , and

let R be a relation for which one can efficiently generate pairs (x,w) ∈ R from
a security parameter 1k. A non-interactive system for R with key setup KS is a
pair of efficient algorithms (P, V), where:

– P (1k, x, w, pkV) is a probabilistic algorithm run by the prover. It takes as
input a k-instance x and w such that (x,w) ∈ R, along with the verifier’s
public key pkV , which the prover obtains from FKS

reg . It outputs a string π
as a non-interactive zero-knowledge proof that x ∈ LR;

– V (1k, x, π, skV) is a deterministic 0/1-valued algorithm run by the verifier,
satisfying the following correctness property: for all k-instances x and w such
that (x,w) ∈ R, it holds that:

Pr[V (1k, x, π, skV) = 1 | (skV , pkV)
r
← KS(1k);π

r
← P (1k, x, w, pkV)] = 1

where the probability is over the random coins of KS and P ;

The system is zero-knowledge if there exists a probabilistic polynomial-time
algorithm M , such that for all k-instances x and w such that (x,w) ∈ R, the

1 We only consider the setting where the key setup is required just for the verifier, as
that is all we need in this paper. Adapting the definition to the case in which provers
also have private/public key pair is straightforward; we omit the details.

following two ensembles are indistinguishable:

Verifier’s Key Pair, Real Proof:

{(skV , pkV , π) | (skV , pkV)
r
← KS(1k);π

r
← P (1k, x, w, pkV)}

Verifier’s Key Pair, Simulated Proof:

{(skV , pkV , π) | (skV , pkV)
r
← KS(1k);π

r
← M(1k, x, pkV , skV)}

As usual, depending on the quality of the indistinguishability of the above en-
sembles, one obtains computational, statistical or perfect zero-knowledge.

To define soundness, we consider a probabilistic polynomial-time adversary
P̃ who plays the following game:

– Execute (skV , pkV)
r
← KS(1k) and give pkV to P̃ .

– Repeat until P̃ stops: P̃ outputs x, π and receives V (1k, x, π, skV).

We say that P̃ wins if he produces at least one x, π that V accepts, where x 6∈ LR.
The protocol is sound if any P̃ wins with probability negligible in k. We say that
the system is sound for a particular number of proofs m(k) if the game always
stops after at most m(k) proofs are generated.

3 A Compilation Technique

In this section, we assume we are given a relation R and a Σ-protocol P for
R with linear answer. When running the protocol on input (x,w), where x is
a k-instance, we let ℓx(k) be the bit-length of x, ℓe(k) be the bit-length of the
verifier’s challenge, and ℓz(k) be the maximal bit-length of a component in the
prover’s answer z i.e., z = (z1, . . . , zm) and ℓz(k)

.
= max(len(z1), . . . , len(zm)).

We also use a homomorphic cryptosystem with key generation algorithm KG.
Our compilation technique works in the registered public-key model of [1]

(cf. also Section 2.4). Specifically, we assume that each player acting as verifier
has initially registered a private/public key pair with the trusted functionality
FKS

reg , using the following key setup algorithm:

KS(1k) (Key setup for the Verifier):

Set (sk, pk)
r
← KG(1k′

) where we choose k′ .
= max(f(k)k, ℓz(k) + 1), and where

f(k) is a polynomial specified in Theorem 2 below. Choose a challenge e as V
would do in the given Σ-protocol (that is, e will be a ℓe(k)-bit string), and set c
to be a random (homomorphic) encryption of e under pk. The public key is now
(pk, c) and the private key is (sk, e).

In Section 6, we discuss how our key setup functionality FKS
reg can be imple-

mented efficiently in a standard PKI setting.
Note that the algorithm KS(1k) for the verifier’s key setup can also be

thought of as defining a problem generator, where (pk, c) is the problem in-
stance, and e is the solution. We will call this problem generator HKG in the
following. It will be identical to HPaillier if we use Paillier encryption.

To understand the compilation technique itself, note that because the Σ-
protocol is with linear answer, it is possible to execute the prover’s side of the
protocol given only an encryption of the challenge e. Namely, the prover starts
by computing his first message a. Then, if the answer z is supposed to contain
zj = uj + vje, the prover will be able (by linearity) to derive the values of uj , vj

from x, his private input w and the random coins used to create a. At this point,
the prover can compute Epk(zj) as Epk(uj) ·c

vj . This can be decrypted and then
checked as usual by V .

Now, soundness of any Σ-protocol is based on the fact that a cheating prover
has to generate the first message a without knowing what the challenge is. Since,
in this case, the prover is only given an encryption of the challenge, we might
hope that soundness would still hold. More specifically, if the prover can, for
a false statement x, come up with a first message a, and encrypted responses
that the verifier would accept, then relaxed special soundness implies that x, a
uniquely determines the challenge e that the verifier encrypted. If the complex-
ity of finding e from x, a is much smaller than the complexity of breaking the
verifier’s cryptosystem, this gives a contradiction, as formalized below. On the
other hand, zero-knowledge simulation is easy if the challenge is known to V ,
and the key setup exactly guarantees that V knows the challenge.

A more detailed description of the compiled protocol follows. Our construc-
tion is designed to give proofs for instances x of length up to ℓx(k). It is in
general understood that the verifier will reject immediately if x is longer than
ℓx(k) or if the proof is in any other way obviously malformed.

Protocol compile(P)

1. Given a k-instance x,w to prove, P gets V ’s public key (pk, c) from FKS
reg and

computes the first message a in a proof according to P. Let the final message
z be of the form (u1+v1e, . . . , um +vme); then, for i = 1, . . . ,m, P computes

ci
r
← randomize(Epk(uj) ·c

vj). P sends x, π to V , where π
.
= (a, (c1, . . . , cm)).

2. On input x and a proof π
.
= (a, (c1, . . . , cm)), V sets z′i ← Dsk(ci), and

then verifies that x, (a, e, (z′1, . . . , z
′
m)) would be accepted by the verifier of

protocol P, and accepts or rejects accordingly.

Theorem 1. compile(P) is complete and statistical zero-knowledge (in the reg-
istered public-key model).

Proof. Completeness is clear by inspection. In particular, Dsk(ci) equals the
correct value zi

.
= ui + vie, since the fact that k′ > ℓz(k) ensures that zi < n.

As for zero-knowledge, the simulator M will as usual interact with V and
attempt to emulate the view V would see in real life. In particular, M will receive
the string V sends initially (namely, the random coins r intended for FKS

reg). This
allows M to generate V ’s private key, and in particular the e-value inside c. Now,
to simulate a proof for x ∈ LR, M will use the special honest-verifier simulator
for P on input x, e to generate (a, e, z) = (a, e, (z1, . . . , zm)). It then outputs
x, (a, (Epk(z1), . . . , Epk(zm))). The only difference between this simulation and
real proofs is that the values a, z1, . . . , zm are generated by the prover in P in

real proofs, while in M ’s output they are simulated. The theorem now follows
from special honest-verifier zero-knowledge of P. ⊓⊔

Theorem 2. Let P be a Σ-protocol with linear answer, and HKG be the problem
generator associated with the key setup for the verifier. Assume that HKG is f-
harder than any fake-proof generator GP for P, and that the verifier’s public key
for the homomorphic encryption scheme is generated with security parameter
1k′

, where k′ .
= max(f(k)k, ℓz(k) + 1). Then compile(P) is sound for provers

generating O(log k) proofs.

Proof. Assume we have a probabilistic polynomial-time cheating prover P̃ con-
tradicting the conclusion of the theorem. At a high level, our proof will pro-
ceed as follows: first, we describe how to use P̃ to obtain a fake-proof generator
G̃P = 〈G̃P , gP〉 for P; then, using P̃ and any algorithm A that completely breaks
G̃P , we will show how to construct an algorithm A′ breaking HKG on instances of
size k′ ≥ f(k)k, in time comparable to A’s. This will contradict the assumption
that HKG is f -harder than any fake-proof generator for P.

Consider the algorithm G̃P which, on input 1k, starts by generating a public
key (pk, c) for the verifier according to the protocol (i.e., (pk, c) was produced
by KS(1k′

)). Then, G̃P runs P̃ on (pk, c), and whenever P̃ outputs a state-
ment/proof pair, G̃P replies with a random bit to represent the verifier’s reaction
to each proof. Once P̃ halts, G̃P chooses uniformly one of the statement/proof
pairs generated by P̃ (it will be of the form x,(a,(c1, . . . , cm))), and outputs
(x, a).

Note that with probability 1/poly(k), all the bits that G̃P sends to P̃ are
identical to what the verifier would have sent. Hence, the fact that P̃ is a suc-
cessful cheating prover implies that, with non-negligible probability, one of the
statement/proof pairs x, (a, (c1, . . . , cm)) generated by P̃ is such that x 6∈ LR,
yet the verifier would accept. Given that there is such a proof, there is at least a
1/(log k) probability that G̃P chooses this proof to generate its output. In con-
clusion, with overall non-negligible probability, G̃P outputs x 6∈ LR, a for which
exactly one good e exists. This value of e must be identical to the plaintext
inside c since the verifier would accept the corresponding proof.

Algorithm G̃P defines a fake-proof generator G̃P = 〈G̃P , gP〉 for P (where,
as in Section 2.2, gP(x, a) is the good e-value if one exists and x 6∈ LR, and 0k

otherwise). Hence, the assumption that HKG is f -harder than any fake-proof
generator for P implies in particular that HKG is f -harder than G̃P .

Let A be a probabilistic algorithm that breaks G̃P completely in time T (k),
and consider the following algorithm A′ to break HKG. On input a k′-instance
(pk, c) for HKG (i.e., (pk, c) was produced by KS(1k′

)) A′ invokes P̃ on (pk, c)
and interacts with it according to the exact same strategy that we described
above for G̃P . At the end of such interaction, A′ will obtain a pair (x, a): at this
point, A′ runs A on (x, a), and outputs the value e returned by A.

By the above analysis of G̃P and the fact that A breaks G̃P completely, we
see that A′ returns the plaintext encrypted inside c with non-negligible proba-
bility. Since A′ runs in time T (k) + poly(k) and k′ ≥ f(k)k, this contradicts the
assumption that HKG is f -harder than G̃P . ⊓⊔

For the example protocol Peqdlog, the above theorem and Proposition 1 imply
the following:

Corollary 1. Suppose we construct compile(Peqdlog) using Paillier encryption

with security parameter 1k′

, where k′ .
= max(2k, ℓz(k) + 1). Then, under As-

sumption 1, compile(Peqdlog) is sound for provers generating O(log k) proofs.
Moreover, its communication and computational complexity are a constant fac-
tor times those of Peqdlog.

While the restriction to a logarithmic number of proofs may seem like a
serious one, there are in fact many applications where this result is good enough.
The point is that our reduction only fails for polynomially-many proofs because
we assume that the prover learns whether the verifier accepts each individual
proof. However, when a zero-knowledge protocol is used as a tool in a larger
construction, the prover often does not get this information, and thus in such
cases, it is enough that soundness holds for a single proof. The application to
threshold RSA in the next section is an example of this.

Moreover, we believe that compile(Peqdlog) is in fact sound, even for an ar-
bitrary polynomial number of proofs. We can show this under a stronger non-
standard assumption: we report the details in Appendix A.

4 Threshold RSA

Our technique can be used in most known threshold RSA- or discrete-log-based
cryptosystems to obtain efficient solutions not relying on random oracles. As a
concrete example, we consider here Shoup’s threshold RSA protocol [17].

In this construction, a trusted dealer generates an RSA modulus N = pq,
where p = 2p′ + 1, q = 2q′ + 1 and p′, q′ are k-bit primes. In addition, the dealer
publishes an element v ∈ Z∗

N of order p′q′, and sets up a secret sharing of the
private exponent. Each server Si in the protocol privately receives a share si

(which is a number modulo p′q′). Finally, the dealer publishes the value vi
.
=

vsi mod N for each server.
When the system is operational, a client may send an input α to be signed

to all servers. Each server Si in the protocol produces an element βi which is
guaranteed to be in the subgroup of Z∗

N of order p′q′ (because it is a square
of another element). Server Si then sends βi to the client, claiming that βi =
αsi mod N . Assuming that the majority of the servers are honest, the client can
reconstruct the desired signature, as long as he does not accept any incorrect
βi’s. Each server must therefore prove to the client that βi was correctly formed.

The following Σ-protocol PdlmodN can be used as the basis for a solution:

1. Si chooses a random 4k-bit integer r and sends a
.
= (a1, a2) to V , where

a1

.
= vr mod N, a2

.
= αr mod N .

2. The verifier chooses a random (k − 1)-bit string e and sends it to P .
3. Si sends z

.
= r + esi to the verifier who checks that vz = a1v

e
i mod N,αz =

a2β
e
i mod N .

Assuming that N, v are generated by the trusted dealer as described, it fol-
lows from the arguments given in [17] that this is a Σ-protocol for proving that
logv(vi) = logα(βi). Indeed, the non-interactive solution proposed in [17] is sim-
ply the Fiat-Shamir heuristic applied to this protocol.

We propose to apply instead our compilation technique based on Paillier
encryption to get a non-interactive solution. This leads to:

Theorem 3. Under Assumption 1, there exists a non-interactive threshold RSA
scheme, secure in the registered public-key model. Its communication and compu-
tational complexity are the same as in Shoup’s scheme, up to a constant factor.

Proof. The protocol given above has the right properties for applying the compi-
lation technique, the only exception being a small technical issue with soundness:
the protocol has relaxed special soundness only for inputs where N, v are cor-
rectly formed, while our definition requires it for all inputs. However, we can
simply instruct the verifier to reject all inputs not containing the N, v generated
by the dealer. This will force a cheating prover to only use inputs for which
relaxed special soundness holds, and the proof of Theorem 2 then goes through
in the same way as before.

To apply Theorem 2, we need to show that HPaillier is f(k)-harder (for
some f(k)) than any fake-proof generator GdlmodN = 〈GdlmodN , gdlmodN 〉 for
PdlmodN . To this end, observe that when we argue soundness, we may assume
that the factors p, q of N are known, since soundness is based only on security
of the (independently chosen) Paillier public key, specified by the verifier’s key
pair. Now, instances for a fake-proof generator GdlmodN have the form (x, a)

.
=

((N, v, vi, α, βi), (a1, a2)), whereas the solution gdlmodN (x, a) typically is the only
e-value that Si can answer (unless either there is no such e-value, or the theorem
x is true, in which cases gdlmodN (x, a)

.
= 0k). Since p, q are known, we can

reduce everything modulo p and q and the Chinese remainder theorem now
implies that we can find the solution by computing a constant number of discrete
logarithms mod p and q. Consequently, any fake-proof generator for PdlmodN is
as easy as Gdlog; therefore Assumption 1 implies that compile(PdlmodN) is sound
against provers giving O(log k) proofs (though, as we will see below, we only
need soundness for provers giving a single proof).

To prove that the RSA protocol is secure, we must first show that an adver-
sary corrupting at most half the servers learns nothing from the protocol, except
for the RSA signatures that the protocol is supposed to produce. This follows
from zero-knowledge of compile(PdlmodN) and the simulator given in [17].

Second, we must show that no probabilistic polynomial-time adversary can
make an honest client fail to output a correct RSA signature (even on input
messages chosen by the adversary). We will show that existence of an adver-
sary Adv doing this with non-negligible probability contradicts soundness of
compile(PdlmodN), namely we construct from Adv a prover that cheats the client
on a single proof with non-negligible probability.

For this, we will execute the dealer’s algorithm to set up the RSA key and
give shares of the private key to the adversary for those servers he wants to

corrupt. We also give him the public key of the client we want to attack. Assume
Adv chooses a maximum of imax input messages for the client before halting.
We pick i at random in [1, imax] and hope that the i-th message is the first
where Adv is successful in cheating the client. Since imax is polynomial in k, our
guess is correct with 1/poly(k) probability. Assuming our guess is correct, we
can perfectly simulate what Adv sees for any previous message mj , j < i: for
the actions of honest servers, we can simply follow the protocol (as we know the
private RSA key and all its shares); as for the client, for j < i he will just output
a correct RSA signature on mj , which we can also compute.

Since (assuming a correct guess of i) we can perfectly simulate Adv’s view up
to message mi, there is a non-negligible probability that Adv successfully cheats
the client when he tries to get a signature on mi. But for this to happen, Adv
must fool the client into accepting an incorrect share, which can only occur if
Adv produced (for at least one of the corrupt servers) an acceptable proof for an
incorrect statement. Thus, we choose at random one of the corrupt servers and
output its statement and proof. This is clearly a successful cheating prover. ⊓⊔

5 The OR-Construction and NIZKs for NP

5.1 Closure under OR-Construction

A construction that is widely used in designing efficient Σ-protocols is the so-
called OR-construction [8]. Given Σ-protocols Σl and Σr for relations Rl and Rr,
the OR-construction yields a Σ-protocol ΣOR for the following relation ROR:

((xl, xr), (wl, wr)) ∈ ROR ⇔ ((xl, wl) ∈ Rl ∨ (xr, wr) ∈ Rr).

The OR-construction is based on executing the two protocols for relations Rl,
Rr in parallel, where the prover derives the two challenges from a single value
chosen by the verifier. In our case, we do all computations on challenges over
the integers, which means that some details of the standard construction have
to be modified slightly; this is covered in Appendix B.

An attractive feature of the compilation technique proposed in Section 3
is that if it is applicable to both Σl and Σr, then it is also applicable to the
composed protocol ΣOR. In other words:

Theorem 4. The class of Σ-protocols that can be made non-interactive using
our homomorphic-encryption-based technique is closed under OR-construction.

Proof. Let Σl and Σr be Σ-protocols with linear answer. The theorem amounts
to proving that the Σ-protocol ΣOR resulting from the OR-construction also
features a “linear answer,” and so we can apply the compiler from Section 3.
Now, valid conversations of ΣOR (cf. Appendix B) have the form:

((al, ar), e, (el, zl, er, zr)),

where (el, er) is a “split” for e, that is, e = el − er and either el or er was chosen
randomly by the prover when preparing (al, ar). Hence, el and er are clearly
linear; moreover, since both Σl and Σr have linear answer, zl and zr are also
linear, and the theorem follows. ⊓⊔

5.2 Non-Interactive Bit Commitments

We now describe a non-interactive bit-commitment scheme for the registered
public-key model, along with non-interactive protocols to prove boolean relations
among committed bits.

Consider the Σ-protocol Peqdlog for equality of discrete logarithms described
in Section 2.2. Applying the OR-construction to two instances of Peqdlog yields
a Σ-protocol P1out2 for proving that one out of two pairs of discrete logarithms
is equal. In other words, P1out2 is a proof system for statements of the form
x

.
= (p, p′, g1, g

0
2 , g1

2 , h1, h2), where p, p′ are prime, p = 2p′ + 1, g1, g
0
2 , g1

2 ∈ Z∗
p

have order p′, h1 = gw
1 mod p (for some w ∈ Zp′) and either h2 = (g0

2)w mod p
or h2 = (g1

2)w mod p.
To commit to a bit b, the prover picks p, p′, g1, g0

2 , g1
2 as described above,2

randomly selects w ∈ Zp′ and computes h1 = gw
1 mod p, h2 = (gb

2)
w mod p.

At this point, the prover uses compile(P1out2) to prove (non-interactively) that
the statement x

.
= (p, p′, g1, g

0
2 , g1

2 , h1, h2) is well-formed. The commitment then
consists of x along with such NIZK, though in the following we will often refer
to x by itself as the commitment to keep the discussion simpler.

To open the commitment to b, it suffices to show that logg1
h1 = loggb

2

h2,

which the prover can do non-interactively via the protocol compile(Peqdlog).
Now, suppose that we want to show that three bits b1, b2, bf (hidden within

commitments x1, x2, xf , respectively) satisfy bf = f(b1, b2), for some binary
boolean function f . Proving such relation amounts to prove that (x1, x2, xf) can
be opened either to (0, 0, f(0, 0)), or to (0, 1, f(0, 1)), or to (1, 0, f(1, 0)), or to
(1, 1, f(1, 1)). But this is just the disjunction of statements that can each be
proven using three instances of Peqdlog; hence, applying the OR-construction we
get a Σ-protocol Σf that can be made non-interactive as described in Section 3.

5.3 NIZK for Circuit Satisfiability

The discrete-logarithm-based non-interactive bit-commitment scheme from Sec-
tion 5.2 can be used, in conjunction with the approach of [6], to obtain efficient
non-interactive zero-knowledge arguments for Circuit Satisfiability, and hence
for any NP language.

To show that a given circuit is satisfiable, the prover P commits to his satis-
fying assignment and to all intermediate bits resulting form the computation of
the circuit, and sends all these non-interactive bit-commitments to the verifier
V . Additionally, P non-interactively opens the output bit to 1, and prove non-
interactively to the verifier that the commitments to the inputs and the output
of each gate of the circuit are consistent.

Upon receiving such non-interactive proof, V checks that all the commitments
are well-formed, that the output of the circuit actually opens to 1, and that the
proof of consistency of each gate is correct, and if so, V accepts P ’s proof.

2 As a matter of efficiency, we notice that, when committing to many bits, the prover
can safely reuse the values p, p′, g1, g0

2 and g1

2 .

Notice that the length of such non-interactive proof is proportional to the
circuit’s size and to the security parameter 1k, and is thus “linear” in the sense
of the “Linear Zero-Knowledge” of [6], whereas previous constructions [14] in the
common random string model are quadratic in this regard, even under specific
number-theoretic assumptions.

6 Implementing the Key Setup

The compilation technique of Section 3 works in the registered public-key setting.
In this model, each verifier V registers her public key by sending the random
coins used to generate her private key/public key pair to a trusted functionality.
This is exploited in the proof of Theorem 1 to enable the simulator M to derive
the private key of the verifier, and to ensure the validity of the public key.

Of course, such a functionality can always be implemented using a more
standard PKI with a certification authority CA, and generic zero-knowledge
techniques. The verifier sends her public key to the CA and proves in zero-
knowledge that she knows a set of random coins that, using the given key-
generation algorithm, leads to the public key she sent.

This will be very inefficient in general. But in fact, taking a closer look at
the simulation for the case where the verifier uses Paillier encryption, one can
see that all that is needed is knowledge of the challenge value e and of the RSA
modulus n, plus assurance that e lies in the proper interval and that n is well-
formed. (Knowledge of the factorization of n, in particular, is not required.) In
our case, it is enough to know that n is the product of two distinct primes and
that n is relatively prime to φ(n). Hence, registration of the verifier’s key pair
for the key setup from Section 3 can be efficiently implemented by having V and
CA engage in the following protocol:

Step 0: V sends her public key (n, c) to CA;
Step 1: V proves to CA that n is well-formed;
Step 2: V proves knowledge of the plaintext e hidden within c; and that this

value e lies in the specified interval.

All the above steps can be efficiently realized leveraging known tools from
the literature [18, 2, 9]. In particular, Step 1 can be carried out by first using the
protocol of van de Graaf and Peralta [18], by which one can show that n = piqj

where p ≡ q ≡ 3 mod 4 and i, j are odd. Then one can use the following folklore
trick: the verifier chooses a random element in Z∗

n, and the prover proves in
zero-knowledge that it has an n-th root mod n. This will always be the case if
gcd(n, φ(n)) = 1, but fails with constant probability otherwise. As for Step 2,
one can first use an integer commitment scheme (like the one of Damg̊ard and
Fujisaki [9]) to create a commitment Com to e, and then prove knowledge of the
value committed within Com (e.g., using the protocol in Section 4.1 of [9]). Then,
using standard techniques, it is possible to show that the commitment Com and
the ciphertext c hide the same value e. For completeness, in Appendix C we
sketch a simple Σ-protocol to achieve this. Finally, Boudot’s efficient proof of

membership in intervals [2] allows the prover to prove that the e contained in
Com lies in the required range.

Acknowledgement. We thank the anonymous referees for useful advise on
improving the presentation.

References

1. B. Barak, R. Canetti, J. B. Nielsen, and R. Pass. Universally Composable Proto-
cols with Relaxed Set-Up Assumptions. In Proceedings of the 45th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’04), pages 186–195. IEEE
Computer Society, 2004.

2. F. Boudot. Efficient Proofs that a Commited Number Lies in an Interval. In
Advances in Cryptology—EUROCRYPT ’00, volume 1807 of LNCS, pages 431–
444. Springer, 2000.

3. R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali. Resettable zero-knowledge.
In STOC’99, pages 235–244. ACM Press, 1999.

4. D. Chaum and T. P. Pedersen. Wallet databases with observers. In Advances in
Cryptology—CRYPTO ’92, volume Volume 740 of LNCS, pages 89–105. Springer,
1992.

5. R. Cramer. Modular Design of Secure yet Practical Cryptographic Protocols. PhD
thesis, CWI and University of Amsterdam, 1996.

6. R. Cramer and I. Damg̊ard. Linear Zero-Knowledge—A Note on Efficient Zero-
Knowledge Proofs and Arguments. In Proceedings of the 29th Annual ACM Sym-
posium on Theory of Computing, pages 436–445. ACM Press, 1997.

7. R. Cramer and I. Damg̊ard. Secret-Key Zero-Knowledge. In Theory of
Cryptography—TCC ’04, pages 223–237. Springer-Verlag, 2004. LNCS 2951.

8. R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of Partial Knowledge
and Simplified Design of Witness Hiding Protocols. In Advances in Cryptology—
CRYPTO ’94, pages 174–187. Springer, 1994. LNCS 839.

9. I. Damg̊ard and E. Fujisaki. A Statistically-Hiding Integer Commitment
Scheme Based on Groups with Hidden Order. In Advances in Cryptology—
ASIACRYPT ’02, pages 125–142. Springer, 2002. LNCS 2501.

10. C. Dwork and M. Naor. Zaps and Their Applications. In Proceedings of the 41st
Annual IEEE Symposium on Foundations of Computer Science (FOCS’00), pages
283–293. IEEE Computer Society, 2000.

11. A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In Advances in Cryptology—Crypto’86, volume 263 of
LNCS, pages 186–194, Berlin, 1987. Springer.

12. S. Goldwasser and Y. Tauman Kalai. On the (In)security of the Fiat-Shamir
Paradigm. In FOCS ’03, pages 102–115. IEEE Computer Society, 2003.

13. J. Groth, R. Ostrovsky, and A. Sahai. Perfect Non-Interactive Zero Knowledge for
NP. http://eprint.iacr.org/2005/290, 2005.

14. Joe Kilian and Erez Petrank. An Efficient Non-interactive Zero-Knowledge Proof
System for NP with General Assumptions. J. Cryptology, 11(1):1–27, 1998.

15. P. Paillier. Public Key Cryptosystems Based on Composite Degree Rediduosity
Classes. In Advances in Cryptology—EUROCRYPT ’99, pages 223–238. Springer,
1999. LNCS 1592.

16. C. Schnorr. Efficient Signature Generation by Smart Cards. Journal of Cryptology,
4(3):161–174, 1991.

17. V. Shoup. Practical Threshold Signatures. In Advances in Cryptology—
EUROCRYPT ’00, pages 207–220. Springer, 2000. LNCS 1807.

18. J. van de Graaf and R. Peralta. A Simple and Secure Way to Show Validity of
Your Public Key. In Advances in Cryptology—CRYPTO ’87, volume 293 of LNCS,
pages 128–134. Springer, 1988.

A Unbounded Soundness of compile(Peqdlog)

Below we sketch an argument showing soundness of compile(Peqdlog) for provers
generating any polynomial number of NIZKs, assuming Paillier cryptosystem
is used for the homomorphic encryption. Throughout, all exponentiations are
meant modulo p, unless noted otherwise.

Recall that valid statements for the protocol Peqdlog have the form x
.
=

(p, p′, g1, g2, g
w
1 , gw

2), where w is the secret input to the prover. Using w, an
honest prover computes his proof as σ

.
= ((gr

1, g
r
2), En(r) · cw mod n2), where c

is the encrypted challenge and n is the verifier’s modulus.
Our argument works in a “generic model” for the homomorphic encryp-

tion scheme: namely, we assume that whenever the prover outputs a proof
σ

.
= ((a1, a2), c̄), the ciphertext c̄ is specified as a pair of integers (u, v) such

that c̄ = En(u) · cv mod n2.

Theorem 5. Suppose we construct compile(Peqdlog) using Paillier encryption.
Then under Assumption 1, compile(Peqdlog) is unboundedly sound for provers
using the homomorphic properties of Paillier encryption in a black-box fashion.

Proof. Let A be an algorithm completely breaking k-instances of Gdlog in time

T (k), and assume we have a cheating prover P̃ contradicting the conclusion
of the theorem. We show how to use A and P̃ to construct an algorithm A′

that breaks 2k-instances of HPaillier in time O(T (k) + poly(k)), contradicting
Assumption 1.

On input (n, c), A′ starts by executing P̃ on the same values n, c. During its
execution, P̃ produces several statement/proof pairs x, σ to which A′ ought to
reply with a bit representing the verifier’s reaction. Let x

.
= (p, p′, g1, g2, h1, h2)

and σ
.
= ((a1, a2), (u, v)); then A′ replies with 1 if and only if the following

relations hold:

h1 = gv
1 mod p, h2 = gv

2 mod p, a1 = gu
1 mod p, a2 = gu

2 mod p (♯)

When P̃ stops running, A′ picks at random a statement/proof pair x, σ among
those produced by P̃ . Then, calling A twice, A′ can compute w1

.
= logg1

h1 and
w2

.
= logg2

h2, thus being able to decide whether x is a valid statement or not.
In either case, A′ can recover e from σ with either one or two more calls to A:

A-1. if x is a false statement (i.e., w1 6= w2), then A′ invokes A to learn r1

.
=

logg1
a1, r2 = logg2

a2, and computes e
.
= (r2 − r1)(w1 − w2)

−1 mod p;
A-2. if x is a valid statement (i.e., w1 = w2 = w), then A′ invokes A to learn

r
.
= logg1

a1, and computes e
.
= (r − u)(v − w)−1 mod p (if w = v, then A′

aborts).

The running time of A′ is clearly O(T (k)+poly(k)). We now argue about its
success probability. In the analysis, we use the term “funny” proof to refer to a
proof σ for a true statement x that was not obtained according to the protocol,
yet it passes the verifier’s test. In our “generic model,” given the fact that Peqdlog

admits at most one valid answer z for any given x, a, e, a funny proofs satisfies
(u, v) 6= (logg1

a1, logg1
h1), but u + v · e = logg1

a1 + logg1
h1 · e.

The view that P̃ sees within the simulation put on by A′ deviates from
what P̃ would see in a real interaction with the verifier only after P̃ produces a
statement/proof pair x, σ for which either of the following two cases occurs:

B-1. x is a false statement, but σ passes the verifier’s test (whereas according
to the test (♯), A′ always rejects σ in such case);

B-2. x is a true statement, but σ is a “funny” proof (notice that the test (♯)
ensures that A′ rejects all proofs not created according to the protocol).

Observe that since P̃ is a successful cheating prover, then at least one of the
above cases will occur with non-negligible probability. Let i∗ be the index of the
first such occurrence. With 1/poly(k) probability, the random statement/proof
pair chosen by A′ will be exactly the i∗-th pair. Conditioning on such event, the
simulation of the verifier’s answers up to that point is perfect, and moreover:

C-1. if i∗ corresponds to a false statement (case B-1. above), then the fact that σ
passes the verifier’s condition, along with relaxed special-soundness, implies
that the value e computed by A′ according to case A-1. is indeed correct;

C-2. if i∗ corresponds to a “funny” proof (case B-2. above), then the fact that
σ passes the verifier’s condition implies that the value e computed by A′ ac-
cording to case A-2. is correct. (Notice that σ being a “funny” proof excludes
the possibility of aborting in case A-2.)

In conclusion, with non-negligible probability, A′ outputs the correct solution
e to the 2k-instance n, c in time O(T (k)+poly(k)), contradicting the assumption
that HPaillier is 2-harder than Gdlog. ⊓⊔

B The OR-Construction of [8]

The OR-construction [8] derives a Σ-protocol ΣOR from Σl and Σr by allowing
the prover to “split” the challenge e ∈ [0, 2k[into two parts el, er ∈ [0, 22k[as
he wishes, as long as el − er = e. This enables the prover to “simulate” the false
part of the statement, while actually carrying out the proof for the part which
is true. More in details, conversations in the OR-construction have the form:

((al, ar), e, (el, zl, er, zr)),

where an honest prover P constructs his flows differently depending on whether
P holds a valid witness wl for xl, or a valid wr for xr.

In the first case, P picks a random er from [0, 22k[and uses the simulator
for Σr to obtain an accepting conversation (ar, er, zr) for xr. Then, P selects al

according to Σl and sends (al, ar) to V . When P receives e, he sets el
.
= er + e

and computes zl with respect to xl, al, el and the witness wl, according to Σl.
The second case is completely analogous, except that P sets er

.
= el − e.

As for the verification condition, V checks that (al, el, zl), (ar, er, zr) are
accepting conversations respectively for xl and xr, and that (el, er) is a valid
“split” for e, that is, e = el − er.

Observe that choosing el and er to be k bits longer than e ensures that the
joint distribution of (el, er) does not reveal (to the verifier) information about
whether P had a valid witness for the “left” or for the “right” part of ΣOR.
Indeed, given any fixed value of e in [0, 2k[, the statistical distance between
the two marginal distributions on (el, er) induced by the experiments described
below is clearly negligible in k:

“Left” distribution: randomly choose er from [0, 22k[, and set el
.
= er + e;

“Right” distribution: randomly choose el from [0, 22k[, and set er
.
= el − e.

C An Efficient Sub-protocol for the Key Setup

Let n be the verifier’s modulus, e be her secret k-bit challenge, and c be a random
Paillier encryption of e under n, namely c ← (1+n)ern mod n2, for some random
r ∈ Z∗

n. Recall that in the integer commitment scheme of [9], a commitment Com
to e has the form Com

.
= GeHs mod N , where N is the product of two k-bit

strong primes, G,H are generators of the subgroup of quadratic residues modulo
N , and s is a 2k-bit randomizer.

For binding, it is important that the verifier does not know neither the fac-
torization of N nor the discrete log of H base G. In our setting, this can be
enforced by having CA choosing G,H and N . Afterward, V can prove to CA
that c and Com hide the same value via the following protocol:

1. V randomly selects ê ∈ [0, 23k[, ŝ ∈ [0, 24k[, r̂ ∈ Z∗
n, and sends CA the values

Ĉom ← GêH ŝ mod N and ĉ ← (1 + n)êr̂n mod n2;
2. CA replies with a random (k − 1)-bit challenge t;
3. V computes ẽ ← ê+et and s̃ ← ŝ+st (over the integers), and r̃ ← r̂·rt mod n,

and sends ẽ, r̃, s̃;

4. CA checks that GẽH s̃ ?
= Ĉom ·Comt mod N and (1+n)ẽr̃n ?

= ĉ · ct mod n2.

It is easy to check the usual properties of this protocol; in particular since t
is chosen so that it is less than each prime factor in N , ability to answer more
then one challenge unconditionally implies that the values hidden within Com
and c are the same.

