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Abstract. We explore the minimal assumptions that are necessary for non-
trivial argument systems, such as Kilian’s argument systenNfmwith poly-
logarithmic communication complexitykP2]. We exhibit an oracle relative to
which there is a 2-round argument system with poly-logarithmic communication
complexity for some language P, but no one-way functions. The language
lies outsideBPTime(2°(), so the relaxation to computational soundness is
essential for achieving sublinear communication complexity. We obtain as a
corollary that under black-box reductions, non-trivial argument systems do not
imply one-way functions.

1 Introduction

Pessiland, coined by Impagliazz®5], is a world in which there are hard-on-average
languages iIMP but no one-way functions. In Pessiland, generating hard instances
of NP-languages is easy, but we do not know of a way of exploiting these hard-
on-average problems in cryptography. In fact, Impagliazzo and Lut39] proved

that most cryptographic applications, including bit commitment, private-key encryption
and digital signatures, require one-way functions (which allow us to generate hard
instances oNP-languages along with a witness) and are therefore impossible to realize
in Pessiland.

Recently, Barak’s construction of (non-black-box) zero-knowledge argunahtg [
renewed interest in the round complexity and the minimal assumptions necessary for the
existence of non-trivial argument systems P and NEXP [Kk92M008G02wO05].

We consider an argument system P or NEXP to be non-trivial if the communi-
cation complexity is subpolynomial in the length of the witness. Currently, the best
construction forNEXP is a 4-round protocol based on the existence of (standard)
collision-resistant hash functiong¢02]. If we could relax the assumption to one-
way functions, then Barak’s construction would yield a constant-round zero-knowledge
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argument forNP under the same assumption. On the other hand, we do not even
know if one-way functions are necessary for non-trivial argument systems. For 2-round
argument systems, it is known that a relaxation of hard-on-average languddjessn
necessaryf05] (also, Appendix A.2).

1.1 Main results

In this work, we establish a connection between the two problems: we provide a
relativized construction of Pessiland which contains a non-trivial 2-round argument
system for a language MP.

Theorem 1. There exists an oracle relative to which there exists a strongly hard-on-
average language iftNP N coNP, but no one-way functions. Furthermore, there is a
2-round public-coin argument system with poly-logarithmic communication complexity
for a language that lies withilP but outsideBPTime(2°(").

It is important that our argument system is for a language ouBRIEime(2°("),
as it means that the relaxation to computational soundness is essential for achiev-
ing sublinear communication complexity. This rules out trivial 2-round argument
systems with poly-logarithmic communication complexity for languageBR#® or
NTime(log?n). In particular, a relativizing argument i 198] implies that languages
outside BPTime(ZO(")) do not have interactive proof systems with sublinear (total)
communication complexity, regardless of the number of rounds, and even if the verifier
is allowed a polynomial amount of private randomness.

As a corollary, we deduce that there does not exist a black-box construction (such
as those used irvp4 w05]) of one-way functions or collision-resistant hash functions
from non-trivial 2-round argument systems. This partially explains why we have not
been able to prove a statement of the form “if there exists a non-trivial 2-round
argument system, then there exists one-way functions”. In particular, a proof of this
statement must use a non-relativizing argument or make some stronger assumptions on
the underlying language. On the other hand, we do not expect to disprove this statement.
Suppose non-trivial 2-round argument systems do not exist (which is quite plausible);
then, the statement is vacuously true.

The black-box construction of primitives from interactive protocolsvif4w05]
only yields auxiliary-input primitives, as the input instance for the protocol is hard-
wired into the algorithm computing the primitive. As such, one would ideally like to
rule out auxiliary-input one-way functions (that is, we only require that the function be
computable by a nonuniform polynomial-time algorithm) while exhibiting a non-trivial
argument system. At this point, we are only able to achieve a much weaker result:

Theorem 2. There exists an oracle relative to which there exists a strongly hard-on-
average language ifNP, but no auxiliary-input one-way functions.



The analysis of our first construction is fairly straight-forward apart from some
subtle details, and uses several techniques from previous work (suct8asT00]);
the insight lies in the construction and in establishing a connection between Pessiland
and non-trivial argument systems. Our second construction, on the other hand, requires
a more intricate and novel analysis.

1.2 Perspective and related works

Round-efficient argument systerm#sll previous constructions of non-trivial argument
systems (in the standard modeR92,8G02] require 4 rounds and the existence of
collision-resistant hash functions. MicaliD0] gave the first relativized construction of

a non-trivial 2-round argument system, by using a random oracle to instantiate collision-
resistant hash functions and the Fiat-Shamir paradigm in Kilian’s 4-round protocol
[K92]. While these previous constructions were for eitNéf-complete orNEXP-
complete languages, our relativized construction (which does not require one-way
functions or collision-resistant hash functions) is for a languadéFibut possibly not
NP-complete. We stress that previous wovk(5] deducing hard-on-average problems

in NP from non-trivial argument systems f&P (and NEXP) does not exploit the
structure ofNP in any way; it merely uses the fabtP does not have a proof system
with the same communication complexity as the underlying argument system under
standard complexity assumptions.

Relationships between cryptographic primitiv&arting with the work of Impagliazzo

and Rudich [R89], the study of relationships between cryptographic primitives has
focused on the impossibility of basing complex primitives on simpler ones, particularly
one-way functions and one-way permutations. Our main result goes in the reverse
direction: it shows the impossibility of constructing simpler primitives from a specific
cryptographic application (in a black-box manner). It also provides an example of a
cryptographic application (for a contrived language, unfortunately) which may be based
on weaker assumptions than the existence of one-way functions. In an unpublished
work, Impagliazzo and Rudich gave the firselativized construction of Pessiland,
which yields a black-box separation between hard-on-average languafes and
one-way functions.

1 We only learnt about the work of Impagliazzo and Rudich after independently arriving at the
same construction. We also clarify tHigadingin the title alludes to the search for constructions
of Pessiland with stronger cryptographic implications (and a positive result for exploiting
average-case hardness) than a mere separation between hard-on-average languages and one-
way functions.



2 Preliminaries

We useIl, to denote the set of all permutations ¢@,1}¢, F,, to denote the set
of all functions from{0,1}" to {0,1}, andU, to denote the uniform distribution
over {0,1}". A negligible function is a function of the form~®(). In the context of
describing probability distributions, we write~ Uy, to denote choosingaccording to

the distributionU,,; we also usex € Sto denote choosing an elemenfrom the setS
uniformly at random. We useto denote the standard dot product of binary strings, and
H(-) to denote the Shannon entropy function, name(yp)H= —plogp— (1— p)log(1—

p), for p€ [0,1].

2.1 Models of computation

A circuit hasAND and OR gates where each gate has in-degree 2 and out-degree 1,
and is labeled with a bit that indicates whether its value should be negated. The size of
a circuit is the number of gates. A nonuniform polynomial-time algorithm refers to a
family of polynomial-size circuits; specifically, we may consider the polynomial-time
algorithm as being circuit evaluation and the nonuniformity being the corresponding
circuit. An oracle circuit has 3 types of gatesiD, ORrR and oracle gates. The in/out-
degree of the oracle gate matches the input/output length of the oracle. It is easy to
see that an oracle circuit of sizehaving input/output length and oracle access to a
function f : {0,1}" — {0,1} can be encoded usirmg(snlog(sn)) bits. A nonuniform
oracle polynomial-time algorithm refers to a family of polynomial-size oracle circuits.

2.2 Average-case hardness and one-way functions

Definition 1. For anya € [0,1/2], a function f: {0,1}" — {0,1} is a-hard for sizes
if every circuit of size s fails to compute f on arfraction of inputs.

Definition 2. For any functione : N — [0,1/2], a function f: {0,1}* — {0,1} is a-

hardif for every nonuniform polynomial-time algorithm A, for all sufficiently large n’s,
PrIAR) # ()] > a(n)

A function f isweakly hard-on-averaggesp.strongly hard-on-averadé f is o-hard

for somea(n) = n—¢ where c> 0 is a constant (resp. somg(n) = 1/2 —n-°D). A

language L isx-hardif the characteristic function for L ist-hard. We also extend the

notions of weakly and strongly hard-on-average to languages.

Definition 3. For any functiono : N — [0, 1], a function f: {0,1}* — {0,1}* is a-one-
way (resp.auxiliary-inputo-one-way if f is computable in polynomial time (resp. by



a nonuniform polynomial-time algorithm) and if for every nonuniform polynomial-time
algorithm A, and all sufficiently large n’s,
L IATR9) ¢ F2(F()] > a(n)

A function f isweakly one-way(resp.strongly one-wayif f is a-one-way for some
a(n) = n—¢where c> Oiis a constant (resp. somg(n) = 1 —n~-°(1),

All of these notions extend naturally to the setting of oracle nonuniform polynomial-
time algorithms (and oracle circuits). We will often appeal to the following technical
lemma from TOO0] stating that random permutations are strongly one-way. We will
also use the fact that the proof relativizes.

Lemma 1 ([cT00]). For all sufficiently large?, with probabilityl — 272" overn € 11,
for all oracle circuits A of siz&’/>,

Pr [A™(n(x)) #X >1-27/°

x~Uy

2.3 Interactive proofs and argument systems

For a relationR C {0,1}* x {0,1}*, the language associated with B Lgr = {X:
Jy (xy) €R}.

Definition 4. An interactive protocol(PV) is an interactive proof systenfor a
language L if there is a relation R such that=tLg, and functions ¢s: IN — [0, 1]
such thatl — c(n) > s(n) 4+ 1/poly(n) and the following holds:

— (efficiency): the length of all the messages are bounded by a polynomial in the
length of the common input X, and V is computable in probabilistic polynomial
time.

— (completeness): for allx,w) € R, then V accepts itP(w),V)(x) with probability
atleastl—c(|x|),

— (soundness): for all % L, then for every P, V accepts in(P*,V)(x) with
probability at most §x|).

We callc(-) thecompleteness errands(-) thesoundness errolWe say thatP V)
hasnegligible errorif both c andsare negligible. We say that it hasrfect completeness
if c=0. P is anefficient proveiif P(w) is computable by a probabilistic polynomial-
time algorithm wher(x,w) € R. Thecommunication complexityf the proof system is
the total length of all the messages exchanged by both parties, amdtftecomplexity
is the total number of messages exchanged by both parties (in both directions).



Definition 5. Anargument systerfP,V) is defined in the same way as an interactive
proof system, with the following modification:

— The soundness condition is replaced withmputational soundnesBor every
nonuniform polynomial-time machine’ Rnd for all sufficiently long % L, the
verifier V accepts ifP*,V)(x) with probability at most §x|).

In this paper, we focus on public-coin argument systems with perfect completeness,
negligible soundness error, and an efficient prover.

2.4 Relativization and black-box reductions

In each of our relativized constructions, we consider a family of oragles{On}n>1,

with an oracle for each input length. For simplicity, we will only present our results for
the model where an oracle Turing machine (respectively an oracle circuit) on an input of
lengthmonly queries9, for a single value oh, wheren = n(m) is polynomially related

tom. This is already sufficient to capture most black-box reductions and transformations
used in cryptography.

For black-box constructions of cryptographic primitives from interactive protocols,
we require that the construction uses oracle access to the efficiently computable entities
in the protocol, such as the verifier, the efficient prover (if one exists), and the simulator
(in the case of zero-knowledge). An example is the construction of one-way functions
from zero-knowledge proof systems (4], where the function is computed using
black-box access to the simulator and the verifier for the underlying proof system. Such
constructions usually only yield auxiliary-input cryptographic primitives because we
need to hardwire the instance used in the protocol into the algorithm for computing the
primitive. We omit a formal definition of black-box constructions used in this work (as
a sufficiently general framework will be fairly involved without yielding any additional
insight); instead, we refer the reader tor{/04] for a formal treatment of black-box
constructions and reductions.

3 The Impagliazzo-Rudich construction

We begin by reviewing the relativized construction of Pessiland due to Impagliazzo and
Rudich (unpublished). We use some of the ideas and proofs in our main constructions.

Theorem 3 (Impagliazzo-Rudich). There exists an oracle relative to which there
exists a strongly hard-on-average languageé\ih N coNP, but no one-way functions.



For any f € Fnn (namely, a function from{0,1}" to {0,1}"), we define a
verification oracle forf:

Vi(y) = { 1 iff(x) =y

0 otherwise

The construction used in the proof of Theorem 3 is as follows:

Construction 1. For each ne N, we have an oracle )/ for some permutatiom € IT,
(specifically, one that satisfies the condition in Lemma 1 and that in Lemma 2 below).
In addition, we provide access toRSPACE oracle.

We chooser by sampling a random permutation ¢8,1}". If x is strongly one-
way, then the\NP-relation{(x,w) | =(w) = x} yields a hard-on-average search problem
(with a unique witness), and upon applying the Goldreich-Levin transformation
[GL89], we obtain a strongly hard-on-average languagsfm coNP. Furthermore,

a polynomial-time oracle Turing machiié makes a query t¥; of the form(x, z(x))

with negligible probability, soM? agrees withMYz on almost all inputs. Here,
Z:{0,1}* — {0,1} denotes the function that evaluates to 0 everywhere. Using the
PSPACE oracle, we may then inveM? everywhere and thuglV= almost everywhere.

Lemma 2. Fix T(n) = n'°®" and an encoding of oracle Turing machines. For all
sufficiently large n, with probability at leadt/2n? over & € IT,, for all oracle Turing
machines M that can be described using at mogh bits and makes at most(i)
oracle queries,

Pr [MVﬂ(x) - Mz(x)] >1-

x~Un 2T(n)
Proof. Fix an oracle Turing machiné. By linearity of expectations, we have

T(n)

Erern, [|{x€ 10,17 MY () £ M0} | < 27 s

By Markov’s inequality,

n 2
D{xe {0,1}": MVx(x) £ M%(x)} | 2 } 2T (n) 1

Pr > < < —
el ~—2T(n)| — 2"—T(n) ~ 4n3
This allows us to take a union bound over all oracle Turing machhesth description
at most logqn bits (there are at moshdbf them). O

Remark 1.As stated, the above lemma only allows us to rule out one-way functions
computed by oracle Turing machinbkthat on an input of length, only queriesv,
corresponding to a permutation ¢8,1}". To handle the case whek& queries oracles



corresponding to permutations on different input lengths, we chaasédl, to allow
for a union bound over all oracle Turing machim¢shat can be described using at most
logn bits and makes at mo3t(n) queries tov; on some input of lengtim(n) where
m(n) is polynomially related tm (instead of only consideringn(n) = n).

Lemma 3 ([LTwO5]). Let f,g: {0,1}" — {0,1}" be functions that agree on afn
fraction of inputs. Let §) be the probabilistic procedure that, for everyey{0,1}",
A(y) outputsL if f(=Y(y) = 0, and a uniformly random element of ) (y) otherwise.
Then, the probability that @(x)) € g9 (g(x)) is at leaste?, when taken over the
uniform choice of x {0,1}" and over the internal coin tosses of A.

Remark 2.Since we also provide access toP&PACE oracle, we should say that
with overwhelming probability overr, M%PSPACE agrees withMVr:PSPACE gimost
everywhere. This is true since the proof of Lemma 2 relativizes. WRBRACE oracle,
we may uniformly sample pre-images k% "SPACE in probabilistic polynomial time,
which together with Lemma 3, is sufficient to rule out one-way functions.

Lemma 4 ([cT00,6L89]). For all sufficiently large n, with probabilit — o(1/n?) over
7 € I, the function £ {0,1}2" — {0, 1} given by fy,r) = z~%(y) ris (1/2—n~'09")-
hard against oracle circuits of sizé°A" with oracle access ta.

4 OQur first Pessiland

We present our construction that establishes Theorem 1n &id/ = 100lodf n. For
eachf € J, 3, and a collection of permutationst, € IT; | y € {0,1}3"}, we define a
3-tuple (g, Vi, T) whereV,; andV; are verification oracles for checking the relations
induced by{ny} and f, andT is a trapdoor permutation oracle for computimgand
m,* if given (w,y) such thatf (w) =y.

Our 2-round protocol for the language = {y | 3w: f(w) =y} is shown in Fig 1.
Oninputy € {0,1}°", the prover is asked to inverj on a random input, and the verifier
checks the answer using the verification oraéle The trapdoor permutation oracle
yields an efficient prover for th&es instances. For theo instances, generating an
accepting response is as hard as inverting a random permutation.

1 ifmy(a)=p
V 7a7 =
wh ) { 0 otherwise
1 iff(w=y
Vi(wy) =
r(wy) { 0 otherwise

my(z) if f(w)=yandb=0
T(wy,bz) = { m, (z) if f(w)=yandb=1
L otherwise



Common input: An instancey € {0,1}3".
Prover’s private input: A witnessw € {0,1}".
V —P: Send <> {0,1}Clogn)
P—V: Sendo=T(WwWYy}j).
Verification: V accepts iV (y,a, B) = 1 (that is,my (o) = B).

Fig. 1. 2-round public-coin protocgirot for the languagé s = {y | Iw: f(w) =y}

Construction 2. For each ne N, we have an oracléV,,V;, T), for some appropriate
choices of f€ Fn 30 and{my € Il o2, | Y € {0, 1}®"1. In addition, we provide access
to aPSPACE oracle.

log?n

We begin with an overview of the analysis for our construction.

Computational soundnesa. successful cheating prover is one that inveryson a
noticeable fraction of inputs, for soryet L. However, for eacly ¢ L¢, the random
permutationm, is one-way against oracle circuits of sin@9" with probability
1—2-"" (Lemma 1). This holds even if the circuit is given oracle access to
Vi, my and (ny,nyjl) for all y # y (which are sufficient to simulate the oracles
(Vz,Vt,T)), becauser, and f are chosen independently of. We can then take
a union bound to ensure that every permutation in the colledtigh is strongly
one-way, as shown in Lemma 5.

Ruling out low-communication proof systems2-round argument system fdr¢
with communication complexity(n) is only interesting if we could rule out 2-
round interactive proof systems for the languagevith the same communication
complexity. We prove in Lemma 6 that there is no subexponential-size oracle
circuits for decidinglL¢, given oracle access t¢ and to {(my, nyfl)}ye{o’l}sn,
which is sufficient to simulate oracle access(4;,V;,T). This impliesL; ¢
BPTime(2°"). Note that an algorithm running in timBPTime(2°((M)) can
compute and invert the permutatiomseverywhere given oracle access/g It is
therefore essential to our proof that the collection of permutatiap$ is defined
independently of .

Ruling out one-way functionslhe analysis is virtually identical to that for the
Impagliazzo-Rudich Pessiland, since a polynomial-time oracle Turing machine is
unlikely to query(Vr, Vs, T) at any input where the answer is neither 0 noNote
that in order to satisfy the efficient prover condition (fas instances), it suffices
to provide oracle access nj&v) in T. By incorporating oracle access#g,, into

T, we also rule out the trivial auxiliary-input one-way permutation givemp&,).



However, we do not know how to rule out every auxiliary-input one-way function
for this construction.

A strongly hard-on-average languag®/e can construct the language from the
strongly hard-on-average function givengpy{0, 1}3"+2* — {0,1} whereg(y, 8,r) =
-1
m=(B)-r.

Lemma 5. For all sufficiently large n, for every & Fpna3,, with probability 1 —
2~ (o) over {7y }ye o1y € 12", for all y € {0,1}3 and for all oracle circuits A
of size 19",

nlogn

pr [V (577 Y A3}

0 my(X)) =X <27

Proof. By Lemma 1 (and the fact that it relativizes), if we fix a sufficiently large
along with anyf € J, 35, anyy € {0,1}3", and anymy € I, for all y #y, we know that
with probability 2- (") overmy € Iy, for all oracle circuitsA of sizen'9",

Pr [Avf‘ﬂyﬁ'{(ﬂy“nl;l)ly#y}(ﬂy(X)) _ X] < zinlogn
x~Uy
The lemma follows from taking a union bound overydf {0,1}". O

Lemma 6. For all sufficiently large n, for every collection of permutatio[n@}ye{ql}sn,

with probability 1 —2-22") over f e F,3,, there is no oracle circuit of siz2"/* that
given oracle access tof\and to{(my, n;l)}ye{ojl}Sn decides k.

Proof. We establish this result following the counting argumentamQ0]. We may
neglect oracle access {¢ry, ﬂy_l)}ye{O’l}Sn since the argument relativizes. The idea is
to show that any functioif for which there is an oracle circultthat given oracle access
toV; decided ; has a “short” description (givef). There are very few such functions,
so a randont satisfies the hardness property with overwhelming probability.

Formally, fix an oracle circuifs : {0,1}3" — {0,1} of size 2/> and supposé on
oracle access tWs decidesLt for somef € F,3n. We simulateA on every input in
{0,1}°" in lexicographic order and observe the queries thanakes toVs. WLOG,
assumeA never makes the same query twice on a given input. D&fiae{0,1}" to be
all x such thatA queriesvs on (x, f(x)).

CAsE1:|X| < 2.2". Given the seX andf|x, we may simulaté on all inputs without
oracle access td;, thereby recovering the sét{0,1}"). We may then specify
on each input outsid¥ using justn bits (instead of B bits) since we only need
bits to specify an element in the s&t{0,1}").

CASE 2: |X| > 2.2". Over all possible inputsh makes at most® - 27/5 queries to
V:. Therefore, there are at mon%t- 2" values ofx for which A makes more than



4.221.2"/5 queries tdvs of the form(x,-). In particular, there is a subskt of X
with % -2" elements, and for eache X/, A makes at most £2". 2"/5 queries to/s
of the form(x,-). Given the circuitA, the setX’ and f|o 1;n x/, we may specifyf
on each input irK’ using 11/5+ 2 bits (instead of 8 bits) since we only need to
specifyi such that thé'th query A makes of the forngx, -) returns 1.

In both cases, giveA, we may specifyf with 2"(2n/5— 2) less bits (relative to the
2"- 3n bits required to specify a function #, zn). It takes an additionaD(2"/°n?) bits
to specifyA. O

5 A second Pessiland

We present our next construction that establishes Theorem 2. It is similar to the
Impagliazzo-Rudich Pessiland except we provide a verification oracle for a random
function instead of a random permutation.

Construction 3. For each ne N, we have an oracle / for some appropriate choice
of f € Fnn. In addition, we provide access toP&PACE oracle.

First, we show that for most € F,p, the languagé s = {y | 3x: f(x) =y} is
weakly hard-on-average (Lemma 7); the proof is an extension of that for Lemma 6,
except more involved because we are establishing average-case hardness instead of
worst-case hardness. Since the main technical result frenv (4] on hardness
amplification withinNP relativizes, we may deduce that there is a strongly hard-on-
average languadé; in NP /poly, obtained by applying some monotone transformation
to some padded variant bf. We provide an additional oracle that on inp0f @utputs
the nonuniformity needed to computé in NP. To rule out auxiliary-input one-way
functions, it suffices to show that the function computed by any small oracle circuit
may be approximated by the function computed by a standard circuit with a polynomial
blow-up in size (Lemma 8).

Lemma 7. For all sufficiently large n, with probability. — 2-2(") over f e F,, the
language L = {y| 3x: f(x) =y} is 0.01-hard against oracle circuits of siz2(" with
oracle access to N

Proof (sketch)A standard “balls in bins” analysis (e.g4R95, Theorem 4.18]) tells us
that with probability 1- 2-2(2") over f € F,p, | f({0,1}")| is bounded from above by
2.2" (we may replacé by any constant larger than-11). We may then simply focus
on f such thatf({0,1}")| < 2", and proceed as in the proof of Lemma 6. Again, we
consider an oracle circut: {0,1}" — {0,1} that solved_; on at least a @9 fraction

of inputs and we definX to be allx such thatA queriesv; on (x, f(x)).



CAasE 1: |X]| <£0.02-2". LetY = {y | A(y) # Lt(y)}, that is, the subset of inputs
on whichA is wrong. Givenf|x and the setX,Y (which may be specified using
(0.02n + H(0.02) + H(0.01) + 0o(1))2" bits), we may simulatéA on all inputs
without oracle access ;, thereby recovering the sé({0,1}"). We may then
specific f on inputs outsideX using Iog[% -2") bits. Therefore, given the circuit
A, we may specifyf using 2'n— (O.98Iog% —H(0.01) — H(0.02) — 0(1))2" <
2"(n—0.35) bits.

CAsE 2:|X| > 0.02-2". We argue that there is a sub¥&f X with 0.01-2" elements,
and for eachx € X/, Amakes at most 102°" queries td/s of the form(x, -). Given
the circuitA, we may then specify using(0.99+ 0(1))2"n bits. O

To facilitate the proof of the next lemma, we introduction an additional notation: for
any f € ¥, and any subsep of {0,1}", we define:

1 if f(x)=yandxeQ
0 otherwise

Vf,Q(Xv y) = {

Lemma 8. For all sufficiently large n, with probability. — 2-2(™) over f € Fp, for
all oracle circuits C of size s wherea s < 210 and for alle > 2-"/19, there exists a
circuit C' of size @s*n®/&?) such that &' and C agree on al — /2 fraction of inputs.

To see why the naive approach of settig= CZ (as in Lemma 2) fails, consider an
oracle circuitC that independent of its input, outpits(0", 1"). Then, with probability
1-27",C’ andC agree on all inputs, and with probability?, disagree on all inputs.
This is not sufficient for a union bound over all polynomial-size circuits. To work
around this, we hardwire int@’ information aboutf. Specifically, we show that with
overwhelming probability ovef € F, j,, for all C of sizes, there exists a s€ C {0,1}"
of sizeO(s*n?/£?) such that the circuitV".¢ agrees wittCVf on a 1— £/2 fraction of
inputs. Note that we allov® to depend orf. We may specifyf |g using|Q|n bits of
nonuniformity, saCV".¢ may be computed by a circu® of size O(s*n®/&?) (without
oracle access ;).

Here is an outline of the analysis. Let us examine the first oracle query made by
the circuitC on different inputs, and we defing@, to be allx such that the first query
C makes toVs matches(x,-) on more than a&3/s>n? fraction of inputs. Therefore,
|Q1] = poly(s,n,1/€). Now, consider the oracle circuli; that behaves lik€, except
the first oracle query is made ¥ o, instead oW;. Suppos€ andC; differs on ag/2s
fraction of inputs. This must be because fog &s fraction of inputs, the first query
C makes tovs matchegx, f(x)), for somex ¢ Q;. For a randont and a fixedx, this
happens with probability 2. Moreover, this must happen for at lea&t? /¢ different
values ofx not in Q; (since eachx ¢ Q; accounts for at most a?’/s”n2 fraction of
inputs). For a randonfi, the evaluation of on each of thesg values are independent.



Thus, the probability (over) that C and C; differs on ag/2s fraction of inputs is
roughly 2-2(0s)

Proof. Formally, fix f € Fnn. We define oracle circuit€y,Cy,...,Cs and subsets
Qo, Q1,...,Qs of {0,1}" inductively as follows:

- Qp=0andCy=C.
— Qj is union ofQ;_; and the set

{xe {0,1}" | Pr[ith oracle query for computinG, ", (2) matchegx, )] > 82/s3n2}

— C; on inputz and oracle access ¥ simulates the computation @7 (z) except
for j =1,2,...,i, the 'th oracle query is answered usig q; instead ofV;. We
will hardwire the description of the se§, ..., Q; into C;, so upon oracle access to
V¢, Gi may simulate the oraclég o, j =1,...,i.

Claim. Foralli=1,2,....s, Pricy,, [Prz[clvjl(z) #Civf (2)] <£/Zs] > 12~ Qs)
It follows readily from the claim that

Pr [Pr[cvf 2 #GC' (@] < 8/2} >1-s.2°20%)

feFnnl z

This implies that with overwhelming probability ovdr CVf and CVf.es agree on a
1—¢/2 fraction of inputs. We may boun@s| by s*n?/? since|Qj| < |Qi_1| +°n? /2.
Hence,CV".os may be computed by a circult’ of size O(s*n?/&?). The lemma then
follows from taking a union bound over all circuits of sigeall s betweem and 2V/10,
and all /¢ between 2 and™1°, 0

Now, we provide the proof of the above claim.

Proof (of claim).We start with the case= 1. Note that the definition of); does
not depend onf. Consider any input to CVf. vathe first oracle query made by
CVf corresponds to an element @y, then P¢[C,'(z) = CV'(z)] = 1. Otherwise,

Pr([C,' (2) = CVf(2)] = 1— 2. For eactx € {0,1}", we define

o — Pr;|[first oracle query fo€V' (z) matchegx, 0] ifx¢Qp
g 0 otherwise

(note thatay is independent off) and Yx to be the random variable (where the
randomness is over € J, ) for the probability

Pr{first oracle query fo€Vt (z) matchegx, -) andC¥ (2) £C)" (z) ]



Hence, we havg, ox < 1 and for allx € {0,1}":
In addition,

rfct i sciia) -5

)

By convexity, we haves, a2 < £2/s*n?. Applying the Hoeffding boundH63] yields:
PT{ZY)(* 27N> 8/45} < e—2(£/45)2/zxo‘>% < e—Sr12/8
v = = <

In the general case, we fix an assignmentlig ,, so the seQ); is also fixed. As
before, we define

o Pr,[i'th oracle query fo(:ivjl(z) matchegx,-)] if x¢ Q
o otherwise

(here,ax is independent of [(o 1yn\q,_,) andYx to be the random variable (where the
randomness is ovei| (g 13n\q,_,) for the probability

F;r[i’th oracle query foCile(z) matchegx, -) andC,\fl(z) # CiVf (2) ]
Again, the Hoeffding bound yields:

Pr [ZYX— 2> e/4s} < g ST/8
fllonme 4 %

This holds for allf|q,_,. Averaging over all possible assignmentsf@4, ,, we have:

PrPrCy(2) £C (2)] > e/4s+27"] < e=F/8

This completes the proof of the technical claim. ad
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A Appendix

A.1 The Hoeffding bound

We state the concentration result for sum of independent bounded random variables
(with possibly arbitrary distributions) used in the proof of Lemma 8.

Lemma9 ([H63)]). If Xq,..., X, are independent random variables such thataX; <
b,i=1,2,...,n,thenforall t> 0,

PHX — E[X] > t] < e~ 2%/Zi(bi-a)?

where X= X1 +...X.

A.2 Necessity of hardness assumptions

For ease of reference, we reproduce the proof frar@g] (with a minor improvement

in the result) that a 2-round argument system Nér with subpolynomial communi-
cation complexity implies hard-on-average search problenPinUnder complexity
assumptions, such a protocol cannot be a proof systam8]. Hence, there exists
infinitely manyNo instances that are merely “computationally sound”, from which we
may construct hard-on-average search probleniPinWe stress that the construction

of hard-on-average search problems uses the underlying verifier in a black-box manner.

Lemma 10 (wO05]). Suppose a promise probledd = (ITy,IIy) has a 2-round
public-coin argument syster(P,V) with communication complexity (m), perfect
completeness and negligible soundness error. Then, there exists a subskt such
that:

— Ignoring inputs in I,IT has a 2-round public-coin proof system with communication
complexity nn), perfect completeness and soundness error less than 1. This
implies (I, Iy \ 1) € DTime(20(M)),

— When xe |, the predicate Vx,-,-) induces a distribution over hard-on-average
search instances iNP. That is, for every x I:

F:r[EI y:V(x,ry =1 =1,

but for every n, every x | Nn{0,1}" and every nonuniform polynomial-time
algorithm A, there exists a negligible functietn) such that

I?r[\/(x, r,A(r)) =1 < e(n)



Theorem 4 ([w05]). SupposeNP has a 2-round public-coin argument syst¢R\V)
with communication complexity’®, perfect completeness and negligible soundness
error. Then, (at least) one of the following is true:

— NP C DTime(2™")

— There exists an infinite set | such that for alex, the predicate Vx, -, -) induces
a distribution over hard-on-average search instancesNif (as formalized in
Lemma 10). This yields an auxiliary-input samplable distribution over satisfiable
instances iNNP where the search problem is infinitely-often strongly hard-on-
average.



