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Abstract. We explore the minimal assumptions that are necessary for non-
trivial argument systems, such as Kilian’s argument system forNP with poly-
logarithmic communication complexity [K92]. We exhibit an oracle relative to
which there is a 2-round argument system with poly-logarithmic communication
complexity for some language inNP, but no one-way functions. The language
lies outsideBPTime(2o(n)), so the relaxation to computational soundness is
essential for achieving sublinear communication complexity. We obtain as a
corollary that under black-box reductions, non-trivial argument systems do not
imply one-way functions.

1 Introduction

Pessiland, coined by Impagliazzo [I95], is a world in which there are hard-on-average
languages inNP but no one-way functions. In Pessiland, generating hard instances
of NP-languages is easy, but we do not know of a way of exploiting these hard-
on-average problems in cryptography. In fact, Impagliazzo and Luby [IL 89] proved
that most cryptographic applications, including bit commitment, private-key encryption
and digital signatures, require one-way functions (which allow us to generate hard
instances ofNP-languages along with a witness) and are therefore impossible to realize
in Pessiland.

Recently, Barak’s construction of (non-black-box) zero-knowledge arguments [B01]
renewed interest in the round complexity and the minimal assumptions necessary for the
existence of non-trivial argument systems forNP andNEXP [K92,M00,BG02,W05].
We consider an argument system forNP or NEXP to be non-trivial if the communi-
cation complexity is subpolynomial in the length of the witness. Currently, the best
construction forNEXP is a 4-round protocol based on the existence of (standard)
collision-resistant hash functions [BG02]. If we could relax the assumption to one-
way functions, then Barak’s construction would yield a constant-round zero-knowledge
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argument forNP under the same assumption. On the other hand, we do not even
know if one-way functions are necessary for non-trivial argument systems. For 2-round
argument systems, it is known that a relaxation of hard-on-average languages inNP is
necessary [W05] (also, Appendix A.2).

1.1 Main results

In this work, we establish a connection between the two problems: we provide a
relativized construction of Pessiland which contains a non-trivial 2-round argument
system for a language inNP.

Theorem 1. There exists an oracle relative to which there exists a strongly hard-on-
average language inNP∩ coNP, but no one-way functions. Furthermore, there is a
2-round public-coin argument system with poly-logarithmic communication complexity
for a language that lies withinNP but outsideBPTime(2o(n)).

It is important that our argument system is for a language outsideBPTime(2o(n)),
as it means that the relaxation to computational soundness is essential for achiev-
ing sublinear communication complexity. This rules out trivial 2-round argument
systems with poly-logarithmic communication complexity for languages inBPP or
NTime(log2n). In particular, a relativizing argument in [GH98] implies that languages
outsideBPTime(2o(n)) do not have interactive proof systems with sublinear (total)
communication complexity, regardless of the number of rounds, and even if the verifier
is allowed a polynomial amount of private randomness.

As a corollary, we deduce that there does not exist a black-box construction (such
as those used in [V04,W05]) of one-way functions or collision-resistant hash functions
from non-trivial 2-round argument systems. This partially explains why we have not
been able to prove a statement of the form “if there exists a non-trivial 2-round
argument system, then there exists one-way functions”. In particular, a proof of this
statement must use a non-relativizing argument or make some stronger assumptions on
the underlying language. On the other hand, we do not expect to disprove this statement.
Suppose non-trivial 2-round argument systems do not exist (which is quite plausible);
then, the statement is vacuously true.

The black-box construction of primitives from interactive protocols in [V04,W05]
only yields auxiliary-input primitives, as the input instance for the protocol is hard-
wired into the algorithm computing the primitive. As such, one would ideally like to
rule out auxiliary-input one-way functions (that is, we only require that the function be
computable by a nonuniform polynomial-time algorithm) while exhibiting a non-trivial
argument system. At this point, we are only able to achieve a much weaker result:

Theorem 2. There exists an oracle relative to which there exists a strongly hard-on-
average language inNP, but no auxiliary-input one-way functions.



The analysis of our first construction is fairly straight-forward apart from some
subtle details, and uses several techniques from previous work (such as [IR89,GT00]);
the insight lies in the construction and in establishing a connection between Pessiland
and non-trivial argument systems. Our second construction, on the other hand, requires
a more intricate and novel analysis.

1.2 Perspective and related works

Round-efficient argument systems.All previous constructions of non-trivial argument
systems (in the standard model) [K92,BG02] require 4 rounds and the existence of
collision-resistant hash functions. Micali [M00] gave the first relativized construction of
a non-trivial 2-round argument system, by using a random oracle to instantiate collision-
resistant hash functions and the Fiat-Shamir paradigm in Kilian’s 4-round protocol
[K92]. While these previous constructions were for eitherNP-complete orNEXP-
complete languages, our relativized construction (which does not require one-way
functions or collision-resistant hash functions) is for a language inNP but possibly not
NP-complete. We stress that previous work [W05] deducing hard-on-average problems
in NP from non-trivial argument systems forNP (and NEXP) does not exploit the
structure ofNP in any way; it merely uses the factNP does not have a proof system
with the same communication complexity as the underlying argument system under
standard complexity assumptions.

Relationships between cryptographic primitives.Starting with the work of Impagliazzo
and Rudich [IR89], the study of relationships between cryptographic primitives has
focused on the impossibility of basing complex primitives on simpler ones, particularly
one-way functions and one-way permutations. Our main result goes in the reverse
direction: it shows the impossibility of constructing simpler primitives from a specific
cryptographic application (in a black-box manner). It also provides an example of a
cryptographic application (for a contrived language, unfortunately) which may be based
on weaker assumptions than the existence of one-way functions. In an unpublished
work, Impagliazzo and Rudich gave the first1 relativized construction of Pessiland,
which yields a black-box separation between hard-on-average languages inNP and
one-way functions.

1 We only learnt about the work of Impagliazzo and Rudich after independently arriving at the
same construction. We also clarify thatfindingin the title alludes to the search for constructions
of Pessiland with stronger cryptographic implications (and a positive result for exploiting
average-case hardness) than a mere separation between hard-on-average languages and one-
way functions.



2 Preliminaries

We useΠ` to denote the set of all permutations on{0,1}`, Fn,` to denote the set
of all functions from{0,1}n to {0,1}`, andUn to denote the uniform distribution
over{0,1}n. A negligible function is a function of the formn−ω(1). In the context of
describing probability distributions, we writex∼Un to denote choosingx according to
the distributionUn; we also usex ∈ S to denote choosing an elementx from the setS
uniformly at random. We use· to denote the standard dot product of binary strings, and
H(·) to denote the Shannon entropy function, namely, H(p)=−plogp−(1−p) log(1−
p), for p∈ [0,1].

2.1 Models of computation

A circuit hasAND and OR gates where each gate has in-degree 2 and out-degree 1,
and is labeled with a bit that indicates whether its value should be negated. The size of
a circuit is the number of gates. A nonuniform polynomial-time algorithm refers to a
family of polynomial-size circuits; specifically, we may consider the polynomial-time
algorithm as being circuit evaluation and the nonuniformity being the corresponding
circuit. An oracle circuit has 3 types of gates:AND, OR and oracle gates. The in/out-
degree of the oracle gate matches the input/output length of the oracle. It is easy to
see that an oracle circuit of sizes having input/output lengthn and oracle access to a
function f : {0,1}n→ {0,1} can be encoded usingO(snlog(sn)) bits. A nonuniform
oracle polynomial-time algorithm refers to a family of polynomial-size oracle circuits.

2.2 Average-case hardness and one-way functions

Definition 1. For anyα ∈ [0,1/2], a function f: {0,1}n→ {0,1} is α-hard for sizes
if every circuit of size s fails to compute f on anα fraction of inputs.

Definition 2. For any functionα : N→ [0,1/2], a function f : {0,1}∗ → {0,1} is α-
hardif for every nonuniform polynomial-time algorithm A, for all sufficiently large n’s,

Pr
x∼Un

[A(x) 6= f (x)] > α(n)

A function f isweakly hard-on-average(resp.strongly hard-on-average) if f is α-hard
for someα(n) = n−c where c> 0 is a constant (resp. someα(n) = 1/2−n−ω(1)). A
language L isα-hardif the characteristic function for L isα-hard. We also extend the
notions of weakly and strongly hard-on-average to languages.

Definition 3. For any functionα : N→ [0,1], a function f: {0,1}∗→{0,1}∗ is α-one-
way (resp.auxiliary-inputα-one-way) if f is computable in polynomial time (resp. by



a nonuniform polynomial-time algorithm) and if for every nonuniform polynomial-time
algorithm A, and all sufficiently large n’s,

Pr
x∼Un

[A( f (x)) /∈ f−1( f (x))] > α(n)

A function f isweakly one-way(resp.strongly one-way) if f is α-one-way for some
α(n) = n−c where c> 0 is a constant (resp. someα(n) = 1−n−ω(1)).

All of these notions extend naturally to the setting of oracle nonuniform polynomial-
time algorithms (and oracle circuits). We will often appeal to the following technical
lemma from [GT00] stating that random permutations are strongly one-way. We will
also use the fact that the proof relativizes.

Lemma 1 ([GT00]). For all sufficiently largè , with probability1−2−2`/2
overπ ∈Π`,

for all oracle circuits A of size2`/5,

Pr
x∼U`

[Aπ(π(x)) 6= x] > 1−2−`/5

2.3 Interactive proofs and argument systems

For a relationR⊆ {0,1}∗ × {0,1}∗, the language associated with Ris LR = {x :
∃y (x,y) ∈ R}.

Definition 4. An interactive protocol(P,V) is an interactive proof systemfor a
language L if there is a relation R such that L= LR, and functions c,s : IN → [0,1]
such that1−c(n) > s(n)+1/poly(n) and the following holds:

– (efficiency): the length of all the messages are bounded by a polynomial in the
length of the common input x, and V is computable in probabilistic polynomial
time.

– (completeness): for all(x,w) ∈ R, then V accepts in(P(w),V)(x) with probability
at least1−c(|x|),

– (soundness): for all x/∈ L, then for every P∗, V accepts in(P∗,V)(x) with
probability at most s(|x|).

We callc(·) thecompleteness errorands(·) thesoundness error. We say that(P,V)
hasnegligible errorif bothcandsare negligible. We say that it hasperfect completeness
if c = 0. P is anefficient proverif P(w) is computable by a probabilistic polynomial-
time algorithm when(x,w) ∈ R. Thecommunication complexityof the proof system is
the total length of all the messages exchanged by both parties, and theround complexity
is the total number of messages exchanged by both parties (in both directions).



Definition 5. An argument system(P,V) is defined in the same way as an interactive
proof system, with the following modification:

– The soundness condition is replaced withcomputational soundness: For every
nonuniform polynomial-time machine P∗ and for all sufficiently long x/∈ L, the
verifier V accepts in(P∗,V)(x) with probability at most s(|x|).

In this paper, we focus on public-coin argument systems with perfect completeness,
negligible soundness error, and an efficient prover.

2.4 Relativization and black-box reductions

In each of our relativized constructions, we consider a family of oraclesO = {On}n≥1,
with an oracle for each input length. For simplicity, we will only present our results for
the model where an oracle Turing machine (respectively an oracle circuit) on an input of
lengthmonly queriesOn for a single value ofn, wheren= n(m) is polynomially related
tom. This is already sufficient to capture most black-box reductions and transformations
used in cryptography.

For black-box constructions of cryptographic primitives from interactive protocols,
we require that the construction uses oracle access to the efficiently computable entities
in the protocol, such as the verifier, the efficient prover (if one exists), and the simulator
(in the case of zero-knowledge). An example is the construction of one-way functions
from zero-knowledge proof systems in [V04], where the function is computed using
black-box access to the simulator and the verifier for the underlying proof system. Such
constructions usually only yield auxiliary-input cryptographic primitives because we
need to hardwire the instance used in the protocol into the algorithm for computing the
primitive. We omit a formal definition of black-box constructions used in this work (as
a sufficiently general framework will be fairly involved without yielding any additional
insight); instead, we refer the reader to [RTV04] for a formal treatment of black-box
constructions and reductions.

3 The Impagliazzo-Rudich construction

We begin by reviewing the relativized construction of Pessiland due to Impagliazzo and
Rudich (unpublished). We use some of the ideas and proofs in our main constructions.

Theorem 3 (Impagliazzo-Rudich). There exists an oracle relative to which there
exists a strongly hard-on-average language inNP∩ coNP, but no one-way functions.



For any f ∈ Fn,n (namely, a function from{0,1}n to {0,1}n), we define a
verification oracle forf :

Vf (x,y) =

{
1 if f (x) = y

0 otherwise

The construction used in the proof of Theorem 3 is as follows:

Construction 1. For each n∈ N, we have an oracle Vπ , for some permutationπ ∈Πn

(specifically, one that satisfies the condition in Lemma 1 and that in Lemma 2 below).
In addition, we provide access to aPSPACE oracle.

We chooseπ by sampling a random permutation on{0,1}n. If π is strongly one-
way, then theNP-relation{(x,w) | π(w) = x} yields a hard-on-average search problem
(with a unique witness), and upon applying the Goldreich-Levin transformation
[GL89], we obtain a strongly hard-on-average language inNP∩ coNP. Furthermore,
a polynomial-time oracle Turing machineM makes a query toVπ of the form(x,π(x))
with negligible probability, soMZ agrees withMVπ on almost all inputs. Here,
Z : {0,1}∗ → {0,1} denotes the function that evaluates to 0 everywhere. Using the
PSPACE oracle, we may then invertMZ everywhere and thusMVπ almost everywhere.

Lemma 2. Fix T(n) = nlogn and an encoding of oracle Turing machines. For all
sufficiently large n, with probability at least1/2n2 over π ∈ Πn, for all oracle Turing
machines M that can be described using at mostlogn bits and makes at most T(n)
oracle queries,

Pr
x∼Un

[
MVπ (x) = MZ(x)

]
≥ 1− 1

2T(n)

Proof. Fix an oracle Turing machineM. By linearity of expectations, we have

Eπ∈Πn

[∣∣{x∈ {0,1}n : MVπ (x) 6= MZ(x)}
∣∣]≤ 2n · T(n)

2n−T(n)

By Markov’s inequality,

Pr
π∈Πn

[∣∣{x∈ {0,1}n : MVπ (x) 6= MZ(x)}
∣∣≥ 2n

2T(n)

]
≤ 2T(n)2

2n−T(n)
<

1
4n3

This allows us to take a union bound over all oracle Turing machinesM with description
at most logn bits (there are at most 2n of them). ut

Remark 1.As stated, the above lemma only allows us to rule out one-way functions
computed by oracle Turing machinesM that on an input of lengthn, only queriesVπ

corresponding to a permutation on{0,1}n. To handle the case whereM queries oracles



corresponding to permutations on different input lengths, we chooseπ ∈ Πn to allow
for a union bound over all oracle Turing machinesM that can be described using at most
logn bits and makes at mostT(n) queries toVπ on some input of lengthm(n) where
m(n) is polynomially related ton (instead of only consideringm(n) = n).

Lemma 3 ([LTW05]). Let f,g : {0,1}n → {0,1}n be functions that agree on anε
fraction of inputs. Let A() be the probabilistic procedure that, for every y∈ {0,1}n,
A(y) outputs⊥ if f (−1)(y) = /0, and a uniformly random element of f(−1)(y) otherwise.
Then, the probability that A(g(x)) ∈ g(−1)(g(x)) is at leastε2, when taken over the
uniform choice of x∈ {0,1}n and over the internal coin tosses of A.

Remark 2.Since we also provide access to aPSPACE oracle, we should say that
with overwhelming probability overπ, MZ,PSPACE agrees withMVπ ,PSPACE almost
everywhere. This is true since the proof of Lemma 2 relativizes. With aPSPACE oracle,
we may uniformly sample pre-images forMZ,PSPACE in probabilistic polynomial time,
which together with Lemma 3, is sufficient to rule out one-way functions.

Lemma 4 ([GT00,GL89]). For all sufficiently large n, with probability1−o(1/n2) over
π ∈Πn, the function f: {0,1}2n→{0,1} given by f(y, r) = π−1(y) ·r is (1/2−n− logn)-
hard against oracle circuits of size nlogn with oracle access toπ.

4 Our first Pessiland

We present our construction that establishes Theorem 1. Fixn and` = 100log2n. For
each f ∈ Fn,3n and a collection of permutations{πy ∈ Π` | y∈ {0,1}3n}, we define a
3-tuple(Vπ ,Vf ,T) whereVπ andVf are verification oracles for checking the relations
induced by{πy} and f , andT is a trapdoor permutation oracle for computingπy and
π−1

y if given (w,y) such thatf (w) = y.

Our 2-round protocol for the languageL f = {y | ∃w : f (w) = y} is shown in Fig 1.
On inputy∈ {0,1}3n, the prover is asked to invertπy on a random input, and the verifier
checks the answer using the verification oracleVπ . The trapdoor permutation oracle
yields an efficient prover for theYES instances. For theNO instances, generating an
accepting response is as hard as inverting a random permutation.

Vπ(y,α,β ) =

{
1 if πy(α) = β

0 otherwise

Vf (w,y) =

{
1 if f (w) = y

0 otherwise

T(w,y,b,z) =


πy(z) if f (w) = y andb = 0

π−1
y (z) if f (w) = y andb = 1

⊥ otherwise



Common input: An instancey∈ {0,1}3n.

Prover’s private input : A witnessw∈ {0,1}n.

V→ P : Sendβ
R←− {0,1}O(log2 n).

P→V : Sendα = T(w,y,β ).

Verification : V accepts ifVπ(y,α,β ) = 1 (that is,πy(α) = β ).

Fig. 1.2-round public-coin protocolprot for the languageL f = {y | ∃w : f (w) = y}

Construction 2. For each n∈ N, we have an oracle(Vπ ,Vf ,T), for some appropriate
choices of f∈ Fn,3n and{πy ∈ΠO(log2 n) | y∈ {0,1}3n}. In addition, we provide access
to aPSPACE oracle.

We begin with an overview of the analysis for our construction.

Computational soundness.A successful cheating prover is one that invertsπy on a
noticeable fraction of inputs, for somey /∈ L f . However, for eachy /∈ L f , the random
permutationπy is one-way against oracle circuits of sizenlogn with probability

1− 2−nlogn
(Lemma 1). This holds even if the circuit is given oracle access to

Vf ,πy and (πy′ ,π
−1
y′ ) for all y′ 6= y (which are sufficient to simulate the oracles

(Vπ ,Vf ,T)), becauseπy′ and f are chosen independently ofπy. We can then take
a union bound to ensure that every permutation in the collection{πy} is strongly
one-way, as shown in Lemma 5.

Ruling out low-communication proof systems.A 2-round argument system forL f

with communication complexitỳ(n) is only interesting if we could rule out 2-
round interactive proof systems for the languageL f with the same communication
complexity. We prove in Lemma 6 that there is no subexponential-size oracle
circuits for decidingL f , given oracle access toVf and to {(πy,π

−1
y )}y∈{0,1}3n,

which is sufficient to simulate oracle access to(Vπ ,Vf ,T). This implies L f /∈
BPTime(2o(n)). Note that an algorithm running in timeBPTime(2O(`(n))) can
compute and invert the permutationsπy everywhere given oracle access toVπ . It is
therefore essential to our proof that the collection of permutations{πy} is defined
independently off .

Ruling out one-way functions.The analysis is virtually identical to that for the
Impagliazzo-Rudich Pessiland, since a polynomial-time oracle Turing machine is
unlikely to query(Vπ ,Vf ,T) at any input where the answer is neither 0 nor⊥. Note
that in order to satisfy the efficient prover condition (forYES instances), it suffices
to provide oracle access toπ−1

f (w) in T. By incorporating oracle access toπ f (w) into

T, we also rule out the trivial auxiliary-input one-way permutation given byπ
−1
f (w).



However, we do not know how to rule out every auxiliary-input one-way function
for this construction.

A strongly hard-on-average language.We can construct the language from the
strongly hard-on-average function given byg : {0,1}3n+2`→{0,1}whereg(y,β , r)=
π−1

y (β ) · r.

Lemma 5. For all sufficiently large n, for every f∈ Fn,3n, with probability 1−
2−Ω(nlogn) over {πy}y∈{0,1}3n ∈ Π23n

` , for all y ∈ {0,1}3n and for all oracle circuits A

of size nlogn,

Pr
x∼U`

[AVf ,πy,{(πy′ ,π
−1
y′ )|y′ 6=y}(πy(x)) = x] < 2−nlogn

Proof. By Lemma 1 (and the fact that it relativizes), if we fix a sufficiently largen,
along with anyf ∈ Fn,3n, anyy∈ {0,1}3n, and anyπy′ ∈Π` for all y′ 6= y, we know that

with probability 2−Ω(nlogn) overπy ∈Π`, for all oracle circuitsA of sizenlogn,

Pr
x∼U`

[AVf ,πy,{(πy′ ,π
−1
y′ )|y′ 6=y}(πy(x)) = x] < 2−nlogn

The lemma follows from taking a union bound over ally∈ {0,1}3n. ut

Lemma 6. For all sufficiently large n, for every collection of permutations{πy}y∈{0,1}3n,

with probability1−2−Ω(2n) over f ∈ Fn,3n, there is no oracle circuit of size2n/5 that
given oracle access to Vf and to{(πy,π

−1
y )}y∈{0,1}3n decides Lf .

Proof. We establish this result following the counting argument in [GT00]. We may
neglect oracle access to{(πy,π

−1
y )}y∈{0,1}3n since the argument relativizes. The idea is

to show that any functionf for which there is an oracle circuitA that given oracle access
toVf decidesL f has a “short” description (givenA). There are very few such functions,
so a randomf satisfies the hardness property with overwhelming probability.

Formally, fix an oracle circuitA : {0,1}3n→ {0,1} of size 2n/5 and supposeA on
oracle access toVf decidesL f for some f ∈ Fn,3n. We simulateA on every input in
{0,1}3n in lexicographic order and observe the queries thatA makes toVf . WLOG,
assumeA never makes the same query twice on a given input. DefineX ⊆ {0,1}n to be
all x such thatA queriesVf on (x, f (x)).

CASE 1: |X| ≤ 3
4 ·2

n. Given the setX and f |X, we may simulateA on all inputs without
oracle access toVf , thereby recovering the setf ({0,1}n). We may then specifyf
on each input outsideX using justn bits (instead of 3n bits) since we only needn
bits to specify an element in the setf ({0,1}n).

CASE 2: |X| > 3
4 ·2

n. Over all possible inputs,A makes at most 23n ·2n/5 queries to
Vf . Therefore, there are at most1

4 · 2
n values ofx for which A makes more than



4 ·22n ·2n/5 queries toVf of the form(x, ·). In particular, there is a subsetX′ of X
with 1

2 ·2
n elements, and for eachx∈ X′, A makes at most 4·22n ·2n/5 queries toVf

of the form(x, ·). Given the circuitA, the setX′ and f |{0,1}n\X′ , we may specifyf
on each input inX′ using 11n/5+2 bits (instead of 3n bits) since we only need to
specifyi such that thei’th queryA makes of the form(x, ·) returns 1.

In both cases, givenA, we may specifyf with 2n(2n/5− 2) less bits (relative to the
2n ·3n bits required to specify a function inFn,3n). It takes an additionalO(2n/5n2) bits
to specifyA. ut

5 A second Pessiland

We present our next construction that establishes Theorem 2. It is similar to the
Impagliazzo-Rudich Pessiland except we provide a verification oracle for a random
function instead of a random permutation.

Construction 3. For each n∈ N, we have an oracle Vf , for some appropriate choice
of f ∈ Fn,n. In addition, we provide access to aPSPACE oracle.

First, we show that for mostf ∈ Fn,n, the languageL f = {y | ∃x : f (x) = y} is
weakly hard-on-average (Lemma 7); the proof is an extension of that for Lemma 6,
except more involved because we are establishing average-case hardness instead of
worst-case hardness. Since the main technical result from [HVV 04] on hardness
amplification withinNP relativizes, we may deduce that there is a strongly hard-on-
average languageL′f in NP/poly, obtained by applying some monotone transformation
to some padded variant ofL f . We provide an additional oracle that on input 1n, outputs
the nonuniformity needed to computeL′f in NP. To rule out auxiliary-input one-way
functions, it suffices to show that the function computed by any small oracle circuit
may be approximated by the function computed by a standard circuit with a polynomial
blow-up in size (Lemma 8).

Lemma 7. For all sufficiently large n, with probability1−2−Ω(n2) over f ∈ Fn,n, the
language Lf = {y | ∃x : f (x) = y} is 0.01-hard against oracle circuits of size2o(n) with
oracle access to Vf .

Proof (sketch).A standard “balls in bins” analysis (e.g. [MR95, Theorem 4.18]) tells us
that with probability 1−2−Ω(2n) over f ∈ Fn,n, | f ({0,1}n)| is bounded from above by
2
3 ·2

n (we may replace23 by any constant larger than 1− 1
e). We may then simply focus

on f such that| f ({0,1}n)|< 2
3 ·2

n, and proceed as in the proof of Lemma 6. Again, we
consider an oracle circuitA : {0,1}n→ {0,1} that solvesL f on at least a 0.99 fraction
of inputs and we defineX to be allx such thatA queriesVf on (x, f (x)).



CASE 1: |X| ≤ 0.02· 2n. Let Y = {y | A(y) 6= L f (y)}, that is, the subset of inputs
on whichA is wrong. Givenf |X and the setsX,Y (which may be specified using
(0.02n + H(0.02) + H(0.01) + o(1))2n bits), we may simulateA on all inputs
without oracle access toVf , thereby recovering the setf ({0,1}n). We may then
specific f on inputs outsideX using log(2

3 · 2
n) bits. Therefore, given the circuit

A, we may specifyf using 2nn− (0.98log3
2 −H(0.01)−H(0.02)− o(1))2n <

2n(n−0.35) bits.

CASE 2: |X|> 0.02·2n. We argue that there is a subsetX′ of X with 0.01·2n elements,
and for eachx∈X′, Amakes at most 100·2o(n) queries toVf of the form(x, ·). Given
the circuitA, we may then specifyf using(0.99+o(1))2nn bits. ut

To facilitate the proof of the next lemma, we introduction an additional notation: for
any f ∈ Fn,n and any subsetQ of {0,1}n, we define:

Vf ,Q(x,y) =

{
1 if f (x) = y andx∈Q

0 otherwise

Lemma 8. For all sufficiently large n, with probability1−2−Ω(n2) over f ∈ Fn,n, for
all oracle circuits C of size s where n≤ s≤ 2n/10 and for all ε ≥ 2−n/10, there exists a
circuit C′ of size O(s4n3/ε2) such that CVf and C′ agree on a1−ε/2 fraction of inputs.

To see why the naive approach of settingC′ =CZ (as in Lemma 2) fails, consider an
oracle circuitC that independent of its input, outputsVf (0n,1n). Then, with probability
1−2−n, C′ andC agree on all inputs, and with probability 2−n, disagree on all inputs.
This is not sufficient for a union bound over all polynomial-size circuits. To work
around this, we hardwire intoC′ information aboutf . Specifically, we show that with
overwhelming probability overf ∈Fn,n, for allC of sizes, there exists a setQ⊆{0,1}n
of sizeO(s4n2/ε2) such that the circuitCVf ,Q agrees withCVf on a 1− ε/2 fraction of
inputs. Note that we allowQ to depend onf . We may specifyf |Q using |Q|n bits of
nonuniformity, soCVf ,Q may be computed by a circuitC′ of sizeO(s4n3/ε2) (without
oracle access toVf ).

Here is an outline of the analysis. Let us examine the first oracle query made by
the circuitC on different inputs, and we defineQ1 to be allx such that the first query
C makes toVf matches(x, ·) on more than aε3/s3n2 fraction of inputs. Therefore,
|Q1| = poly(s,n,1/ε). Now, consider the oracle circuitC1 that behaves likeC, except
the first oracle query is made toVf ,Q1 instead ofVf . SupposeC andC1 differs on aε/2s
fraction of inputs. This must be because for aε/2s fraction of inputs, the first query
C makes toVf matches(x, f (x)), for somex /∈ Q1. For a randomf and a fixedx, this
happens with probability 2−n. Moreover, this must happen for at leasts2n2/ε2 different
values ofx not in Q1 (since eachx /∈ Q1 accounts for at most aε3/s3n2 fraction of
inputs). For a randomf , the evaluation off on each of thesex values are independent.



Thus, the probability (overf ) that C andC1 differs on aε/2s fraction of inputs is
roughly 2−Ω(ns2).

Proof. Formally, fix f ∈ Fn,n. We define oracle circuitsC0,C1, . . . ,Cs and subsets
Q0,Q1, . . . ,Qs of {0,1}n inductively as follows:

– Q0 = /0 andC0 = C.
– Qi is union ofQi−1 and the set{

x∈{0,1}n
∣∣ Pr

z

[
i’th oracle query for computingC

Vf
i−1(z) matches(x, ·)

]
≥ ε

2/s3n2
}

– Ci on inputz and oracle access toVf simulates the computation ofCVf (z) except
for j = 1,2, . . . , i, the j ’th oracle query is answered usingVf ,Q j instead ofVf . We
will hardwire the description of the setsQ1, . . . ,Qi intoCi , so upon oracle access to
Vf , Ci may simulate the oraclesVf ,Q j , j = 1, . . . , i.

Claim. For all i = 1,2, . . . ,s, Prf∈Fn,n

[
Prz

[
C

Vf
i−1(z) 6=C

Vf
i (z)

]
< ε/2s

]
≥ 1−2−Ω(sn2)

It follows readily from the claim that

Pr
f∈Fn,n

[
Pr
z

[
CVf (z) 6= C

Vf
s (z)

]
< ε/2

]
≥ 1−s·2−Ω(sn2)

This implies that with overwhelming probability overf , CVf andCVf ,Qs agree on a
1−ε/2 fraction of inputs. We may bound|Qs| by s4n2/ε2 since|Qi | ≤ |Qi−1|+s3n2/ε2.
Hence,CVf ,Qs may be computed by a circuitC′ of sizeO(s4n2/ε2). The lemma then
follows from taking a union bound over all circuits of sizes, all s betweenn and 2n/10,
and all 1/ε between 2 and 2n/10. ut

Now, we provide the proof of the above claim.

Proof (of claim).We start with the casei = 1. Note that the definition ofQ1 does
not depend onf . Consider any inputz to CVf . If the first oracle query made by
CVf corresponds to an element inQ1, then Prf [C

Vf
1 (z) = CVf (z)] = 1. Otherwise,

Prf [C
Vf
1 (z) = CVf (z)] = 1−2−n. For eachx∈ {0,1}n, we define

αx =

{
Prz

[
first oracle query forCVf (z) matches(x, ·)

]
if x /∈Q1

0 otherwise

(note thatαx is independent off ) and Yx to be the random variable (where the
randomness is overf ∈ Fn,n) for the probability

Pr
z

[
first oracle query forCVf (z) matches(x, ·) andCVf (z) 6= C

Vf
1 (z)

]



Hence, we have∑x αx≤ 1 and for allx∈ {0,1}n:

0≤Yx≤ αx≤ ε
2/s3n2 and Ef [Yx] = αx2

−n

In addition,
Pr
f ,z

[
C

Vf
1 (z) 6= CVf (z)

]
= Ef

[
∑
x

Yx

]
By convexity, we have∑x α2

x ≤ ε2/s3n2. Applying the Hoeffding bound [H63] yields:

Pr
f

[
∑
x

Yx−2−n≥ ε/4s
]
≤ e−2(ε/4s)2/∑x α2

x ≤ e−sn2/8

In the general case, we fix an assignment tof |Qi−1, so the setQi is also fixed. As
before, we define

αx =

{
Prz

[
i’th oracle query forC

Vf
i−1(z) matches(x, ·)

]
if x /∈Qi

0 otherwise

(here,αx is independent off |{0,1}n\Qi−1
) andYx to be the random variable (where the

randomness is overf |{0,1}n\Qi−1
) for the probability

Pr
z

[
i’th oracle query forC

Vf
i−1(z) matches(x, ·) andC

Vf
i−1(z) 6= C

Vf
i (z)

]
Again, the Hoeffding bound yields:

Pr
f |{0,1}n\Qi−1

[
∑
x

Yx−2−n≥ ε/4s
]
≤ e−sn2/8

This holds for allf |Qi−1. Averaging over all possible assignments off |Qi−1, we have:

Pr
f

[
Pr
z

[
C

Vf
i−1(z) 6= C

Vf
i (z)

]
≥ ε/4s+2−n

]
≤ e−sn2/8

This completes the proof of the technical claim. ut
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A Appendix

A.1 The Hoeffding bound

We state the concentration result for sum of independent bounded random variables
(with possibly arbitrary distributions) used in the proof of Lemma 8.

Lemma 9 ([H63]). If X1, . . . ,Xn are independent random variables such that ai ≤ Xi ≤
bi , i = 1,2, . . . ,n, then for all t> 0,

Pr[X−E[X]≥ t]≤ e−2t2/∑i(bi−ai)2

where X= X1 + . . .Xn.

A.2 Necessity of hardness assumptions

For ease of reference, we reproduce the proof from [W05] (with a minor improvement
in the result) that a 2-round argument system forNP with subpolynomial communi-
cation complexity implies hard-on-average search problems inNP. Under complexity
assumptions, such a protocol cannot be a proof system [GH98]. Hence, there exists
infinitely manyNO instances that are merely “computationally sound”, from which we
may construct hard-on-average search problems inNP. We stress that the construction
of hard-on-average search problems uses the underlying verifier in a black-box manner.

Lemma 10 ([W05]). Suppose a promise problemΠ = (ΠY,ΠN) has a 2-round
public-coin argument system(P,V) with communication complexity m(n), perfect
completeness and negligible soundness error. Then, there exists a subset I⊂ ΠN such
that:

– Ignoring inputs in I,Π has a 2-round public-coin proof system with communication
complexity m(n), perfect completeness and soundness error less than 1. This
implies(ΠY,ΠN \ I) ∈ DTime(2O(m(n))).

– When x∈ I, the predicate V(x, ·, ·) induces a distribution over hard-on-average
search instances inNP. That is, for every x∈ I:

Pr
r
[∃ y : V(x, r,y) = 1] = 1,

but for every n, every x∈ I ∩ {0,1}n and every nonuniform polynomial-time
algorithm A, there exists a negligible functionε(n) such that

Pr
r
[V(x, r,A(r)) = 1] < ε(n)



Theorem 4 ([W05]). SupposeNP has a 2-round public-coin argument system(P,V)
with communication complexity no(1), perfect completeness and negligible soundness
error. Then, (at least) one of the following is true:

– NP⊆ DTime(2no(1)
)

– There exists an infinite set I such that for all x∈ I, the predicate V(x, ·, ·) induces
a distribution over hard-on-average search instances inNP (as formalized in
Lemma 10). This yields an auxiliary-input samplable distribution over satisfiable
instances inNP where the search problem is infinitely-often strongly hard-on-
average.


