
Mercurial Commitments: Minimal Assumptions
and Efficient Constructions

Dario Catalano1, Yevgeniy Dodis2, and Ivan Visconti3

1 CNRS-Ecole Normale Supérieure, Laboratoire d’Informatique, 45 Rue d’Ulm,
75230 Paris Cedex 05 - France. dario.catalano@ens.fr

2 Department of Computer Science, New York University, 251 Mercer Street, New
York, NY 10012, USA. dodis@cs.nyu.edu

3 Facoltà di Scienze Matematiche, Fisiche e Naturali, Università di Salerno, via S.
Allende n. 2, 84081 Baronissi (SA) - Italy. visconti@unisa.it

Abstract. (Non-interactive) Trapdoor Mercurial Commitments (TMCs)
were introduced by Chase et al. [8] and form a key building block for
constructing zero-knowledge sets (introduced by Micali, Rabin and Kil-
ian [28]). TMCs are quite similar and certainly imply ordinary (non-
interactive) trapdoor commitments (TCs). Unlike TCs, however, they
allow for some additional freedom in the way the message is opened:
informally, by allowing one to claim that “if this commitment can be
opened at all, then it would open to this message”. Prior to this work, it
was not clear if this addition is critical or not, since all the constructions
of TMCs presented in [8] and [28] used strictly stronger assumptions than
TCs. We give an affirmative answer to this question, by providing sim-
ple constructions of TMCs from any trapdoor bit commitment scheme.
Moreover, by plugging in various trapdoor bit commitment schemes, we
get, in the trusted parameters (TP) model, all the efficient constructions
from [28] and [8], as well as several immediate new (either generic or ef-
ficient) constructions. In particular, we get a construction of TMCs from
any one-way function in the TP model, and, by using a special flavor of
TCs, called hybrid TCs [6], even in the (weaker) shared random string
(SRS) model.
Our results imply that (a) mercurial commitments can be viewed as sur-
prisingly simple variations of trapdoor commitments; and (b) the exis-
tence of non-interactive zero-knowledge sets is equivalent to the existence
of collision-resistant hash functions. Of independent interest, we also give
a stronger and yet much simpler definition of mercurial commitments
than that of [8], which is also met by our constructions in the TP model.

1 Introduction

Commitment schemes are important cryptographic primitives. They allow one
party to commit to some value v so that v is kept secret from the rest of the world
(this is called hiding), and yet everybody knows that the value v is uniquely de-
fined at the time v was committed (this is called binding). In particular, binding
ensures that the party cannot announce the commitment first, and then decide

later how to open it depending on the circumstances. In this sense, commitment
schemes force the party to fully decide on what he is committing to.

At Eurocrypt 2005, Chase et al. [8] introduced an intriguing variant of com-
mitments called mercurial commitments. The main difference comes from the
fact that mercurial commitments allow for a small, and yet noticeable relax-
ation of the strict binding property of regular commitments. Namely, they allow
for a two-stage opening protocol. In the soft-open stage the committer can claim
that “if I committed to anything at all, then this value is m”, while in the
hard-opening stage he would indeed declare that “Yes, I really committed to
the value m.” In particular, any committed value c can either be both soft- and
hard-opened only to one (correct!) message m, or can be soft-opened to arbitrary
messages, but then it cannot be hard-opened at all! Moreover, the committer
must decide before forming the commitment which one of the two cases suits
him better: to commit to only one value, or not to commit to anything at all.
Although this is seemingly not much better than regular commitments, the ex-
tra freedom of the committing party comes from the fact that by showing a
soft-opening of his commitment to some value m, the receivers still cannot tell
if m was really committed to by c, or if c was simply a “non-commitment” to
anything (and the committer might be just going around and soft-opening c to
arbitrary values m′). The receivers are sure, however, that it is impossible to
hard-open c to any m′ 6= m.

Chase et al. [8] distilled the above natural primitive to abstract away a rela-
tively complicated (but efficient!) construction of zero-knowledge sets by Micali
et al. [28]. Such ZK sets allow one to commit to some secret set S over some
universe, and then to be able to non-interactively prove statements of the form
x ∈ S and x 6∈ S, and yet no other information (which cannot be deduced from
the inclusions/exclusions above) about S is leaked — not even its size! With the
abstraction of mercurial commitments, Chase et al. [8] obtained an elegant and
easy-to-follow general “explanation” of the construction from [28]. Namely, they
showed that the construction of [28] is an instance of a general construction of
ZK sets from any mercurial commitment scheme and any collision-resistant hash
function.

Plain vs. Trapdoor Mercurial Commitments. We remark that to match
a very strong zero-knowledge definition of ZK sets from [28], Chase et al. [8]
had to require that mercurial commitments satisfy the following “equivocation”
property: there exists some trapdoor information msk (ordinarily not available
to anybody) which enables one to completely destroy all the binding proper-
ties of mercurial commitments. Namely, using msk one can construct fake com-
mitments, which look just like regular commitments and yet can be soft- or
hard-opened to completely arbitrary values. (This is very similar to the notion
of regular trapdoor commitments [4], where the knowledge of the corresponding
trapdoor key can enable somebody to create fake regular commitments which
can be opened to any message.) As already observed by [8], this strong equivoca-
tion property does not seem to be inherent for the “plain” primitive of mercurial
commitments, but they chose to insist on this extra property since it was need

for their main application. Since we believe that mercurial commitments are also
interesting without equivocation, in our results we will distinguish between plain
and trapdoor mercurial commitments. (Although our results described below will
hold equally naturally for either case.) Indeed, we observe that one can define a
weaker notion of ZK sets, which we informally call indistinguishable sets, which
have the same functionality as ZK sets, but the privacy property is relaxed to
only state that for any two sets and any sequence of inclusion/exclusion asser-
tions which does not “separate” these sets, seeing the proofs of the corresponding
assertions does not allow one to distinguish between these two sets. (This is some-
what similar to the distinction between witness indistinguishable [17] and ZK
proofs [21].) And then it is easy to see that the same generic construction from [8]
would give indistinguishable sets when applied to plain mercurial commitments.
To summarize, we believe that both plain and trapdoor mercurial commitments
are useful and deserve investigation.

Minimal Assumptions for Mercurial Commitments. Having introduced
a new cryptographic primitive, it is always very important to understand where
it lies in the hierarchy of cryptographic assumptions. Towards this goal, [8] gave
a general construction of (trapdoor) mercurial commitments in the plain model
from any zero-knowledge proof system for NP. This construction, however, re-
quires interaction. Then [8] showed a construction of non-interactive (trapdoor)
mercurial commitments from non-interactive zero-knowledge proofs (NIZK) for
NP, which are known, for example, to be implied by trapdoor permutations in
the shared random string (SRS) model. However, this construction is mainly of
theoretical interest, since it is very inefficient in practice. They also gave a more
efficient (although bit-by-bit) construction of non-interactive (trapdoor) mercu-
rial commitments from an even stronger assumption of claw-free permutations
[22] in the trusted parameters (TP) model. On the other hand, [8] observed that
(trapdoor) mercurial commitments are similar and trivially imply (trapdoor)
regular commitments, although they pointed out some important differences as
well. Thus, the following two questions were left open:

Question 1: What minimal cryptographic and set-up assumptions are sufficient
for non-interactive plain/trapdoor mercurial commitments?

Question 2: Can plain/trapdoor mercurial commitments be (efficiently) built
from plain/trapdoor commitments?

Our first result resolves these questions in a surprisingly simple fashion. We
show a very simple and efficient construction of (bit) plain/trapdoor mercurial
commitments from any bit plain/trapdoor regular commitment. The construc-
tion is a very simple generalization of the claw-free construction from [8], and
since regular/trapdoor commitments are in principle equivalent to one-way func-
tions in the SRS/TP model, we get

Theorem 1. There exists a simple and efficient construction of (non-interactive)
bit plain/trapdoor mercurial commitments from bit plain/trapdoor commitments.
In particular, (non-interactive) plain/trapdoor mercurial commitments exist in
the SRS/TP model if and only if one-way functions exist.

The above result leaves open a question of basing (only trapdoor) mercurial
commitments on one-way functions in the SRS model, which is a weaker set-
up assumption than the TP model. Luckily, we observe that by using the same
construction with a slight relaxation of trapdoor commitments, called hybrid
trapdoor commitments, which were introduced by Catalano and Visconti [6]
and shown to be equivalent to one-way functions even in the SRS model, we get

Theorem 2. There exists a simple and efficient construction of (non-interactive)
bit trapdoor mercurial commitments from (non-interactive) bit hybrid trapdoor
commitments. In particular, non-interactive trapdoor mercurial commitments ex-
ist in the SRS model if and only if one-way functions exist.

Efficiency? Having resolved the question of feasibility, we can turn to the
question of efficiency. Of course, we can plug in various efficient bit trapdoor
commitment schemes to our previous construction, but this will only result in
bit-by-bit constructions for long messages, which is pretty inefficient for practical
use (e.g., for the ZK sets application). On the other hand, Chase et al. [8] gave
two efficient constructions for long messages based on specific number-theoretic
constructions (discrete log and factoring; the discrete log construction was im-
plicit in [28]). Examining these constructions, one can see that there seems to
be some kind of similarity between them, although it is not obvious exactly
where this similarity comes from. Also, it is relatively hard to understand why
each construction is really secure, without going into the details of the proof.
Motivated by this, we ask

Question 3: Is there an efficient and yet reasonably general construction of
plain/trapdoor mercurial commitments, which would abstract and explain the
efficient number-theoretic constructions from [8]?

Our second result gives a surprisingly general answer to this question. Namely,
we present a construction which directly transforms a plain/trapdoor bit com-
mitment C into an efficient and (typically) multi-bit plain/mercurial commitment
C′. Namely, we still base it on general plain/trapdoor commitment, just like in
Theorem 1. However, a small catch is that we will need to assume an extra
property from C (see Section 2.1 for a definition of Σ-protocol):

Theorem 3. Assume C is a plain/trapdoor bit commitment which has an effi-
cient Σ-protocol Π proving that one knows a witness d that a given (regular)
commitment c can be opened to 0.1 Then one one can construct an efficient
plain/trapdoor mercurial commitment C′ whose message space is equal to the
challenge space of Π.

Thus, to get message-efficient constructions, it will be important to design
“challenge-efficient” Σ-protocols for our plain/trapdoor commitment schemes.

1 As explained in Section 5 proving this theorem, we will need a slight extra property
(*) from such Σ-protocols, but it will always hold in any practical construction we
are aware of. So we omit it from this statement.

While such Σ-protocol’s Π in principle (see Theorem 5 below) can always be
built from one-way functions, in general this will not outperform the simple con-
struction in Theorem 1. However, the utility of this transformation comes from
the fact that all number-theoretic (trapdoor) bit commitment schemes have very
efficient Σ-protocols, and usually with rich challenge spaces. Plugging in vari-
ous such commitment schemes with efficient protocols, we get many efficient
constructions of mercurial commitments. In particular, both the discrete log
and the factoring construction of [8] become special cases of our general trans-
formation, when applied to an appropriate trapdoor commitment scheme! And
several new constructions can be obtained as well (e.g., from RSA and Paillier
[32] assumptions, as well as new discrete log and factoring constructions; see
Section 5.1). More generally, we also believe that our construction is much eas-
ier to understand and sheds more light onto why the previous number-theoretic
constructions where built in this particular way.

Simpler Definition. As another small contribution, by strengthening the
definition of trapdoor mercurial commitments as compared to the definition of
[8], we considerably simplified the equivocation property of mercurial commit-
ments. Since all our constructions (with the exception of Theorem 2) satisfy the
stronger definition, and it results in easier and shorter proofs, we believe our
strengthening is justified and could be of independent interest.

Implication To ZK Sets. It is known from [8] and [31] that collision-resistant
hash functions (CRHF) suffices for constructing interactive ZK sets in the plain
model. Chase et al. [8] also made a simple observation that ZK sets imply the
existence of CRHFs and therefore interactive ZK sets in the plain model and
CRHFs are equivalent. Chase et al. in [8] also show that non-interactive indistin-
guishable/ZK sets can be constructed from any non-interactive plain/trapdoor
mercurial commitment scheme and a collision-resistant hash function (CRHF).
Using Theorem 1, Theorem 2, Theorem 3, and the fact that CRHFs imply
both one-way functions (and, thus, plain/trapdoor/hybrid commitments in the
SRS/TP/SRS models) and efficient plain commitment schemes (see [12] and
[25]), we immediately obtain:

Theorem 4. The existence of ZK (and, thus, indistinguishable) sets in the SRS
model is equivalent to the existence of CRHFs. Moreover, ZK sets can be effi-
ciently constructed from CRHFs and trapdoor bit commitment schemes, while
indistinguishable sets can be efficiently constructed using CRHFs alone (by also
building commitments out of them). The constructions become even more effi-
cient if the commitment scheme in question has a challenge-efficient Σ-protocol
needed for Theorem 3.

2 Definitions

2.1 Σ-Protocols

Let R = {(x,w)} be some NP-relation (i.e., it is efficiently testable to see if
(x,w) ∈ R and |w| ≤ poly(|x|)). We usually call x the input, and w — the witness

(for x). Consider a three move protocol run between a PPT prover P , with input
(x,w) ∈ R, and a PPT verifier V with input x, of the following form. P chooses
a random string rp, computes a = Start(x,w; rp), and sends a to V . V then
chooses a random string e (called “challenge”) from some appropriate domain
E (see below) and sends it to P . Finally, P responds with z = Finish(x,w, e; rp).
The verifier V then computes and returns a bit b = Check(x, a, e, z). We require
that Start, Finish, and Check be polynomial-time algorithms, and that |e| ≤
poly(|x|). Such a protocol (given by procedures Start,Finish,Check) is called a
Σ-Protocol for R if it satisfies the following properties, called completeness,
special soundness, and special honest-verifier zero-knowledge:

– Completeness: If (x,w) ∈ R then the verifier outputs b = 1 (with all but
negligible probability).

– Special Soundness: There exists a PPT algorithm Extract, called the
(knowledge) extractor, such that it is computationally infeasible to produce
an input tuple (x, a, e, z, e′, z′) such that e 6= e′ both lie in the proper “chal-
lenge” domain, Check(x, a, e, z) = Check(x, a, e′, z′) = 1, and yet Extract(x, a, e,
z, e′, z′) fails to output a witness w such that (x,w) ∈ R. Intuitively, if some
prover can correctly respond to two different challenges e and e′ on the
same first flow a, then the prover must “know” a correct witness w for x (in
particular, x has a witness).

– Special HVZK: There exists a PPT algorithm Simul, called the simulator,
such that for any (x,w) ∈ R and for any fixed challenge e, the following two
distributions are computationally indistinguishable. The first distribution
(x, a, e, z) is obtained by running an honest prover P (with some fresh ran-
domness rp) against a verifier whose challenge is fixed to e. The second dis-
tribution (x, a, e, z) is obtained by computing the output (a, z)← Simul(x, e)
(with fresh randomness rs). Intuitively, this says that for any a-priori fixed
challenge e, it is possible to produce a protocol transcript computationally
indistinguishable from an actual run with the prover (who knows w).

Since the standard zero-knowledge protocol for the Hamiltonian Cycle (see [16]
and [23]) language is a (binary challenge) Σ-protocol, we get

Theorem 5 ([23],[16]). Any NP-relation R has a (binary challenge) Σ-protocol
if secure commitment schemes exist (in particular, in the SRS model if one-way
functions exist).

Of course, we will see and crucially exploit the fact that many natural specific
languages have much more efficient Σ-protocols. We also notice that, aside from
computational efficiency, a good quality measure for a given Σ-protocol is the size
of its challenge space E (the larger the better). One reason for this dependency
comes because the special soundness property easily implies that if a malicious
prover does not “know” a valid witness w for x, then he can succeeds in fooling
the verifier with probability at most (only negligibly better than) 1/|E|. In our
application, we will also see that the large size of E will also naturally translate
to more efficient solutions, and we will therefore strive to use “challenge-efficient”
Σ-protocols.

Generalizations. First, we will allow R to depend on some honestly gener-
ated public parameter pk (known to everybody after generation); e.g. the stan-
dard discrete-log relation would be Rp,g(x,w) = 1 if and only if x = gw mod p,
where the prime p and the generator g could be randomly generated. In this case
the corresponding properties of the Σ-protocol should computationally hold over
the choice of such parameters. However, for one of our applications we will re-
quire an even stronger technical property. Namely, we will say that a family of
relations {Rpk} has a Σ-protocol which is strongly hiding w.r.t. instance gen-
eration procedure P if the special HVZK property holds even in the following
experiment: P produces (pk, x, w, I), where pk is the public key for R, x is the
input, w is the witness, and I is some side information available to attacker.
Then we either give to the distinguisher a tuple (I, pk, x, a, e, z) obtained by
having the prover run the real protocol with x and w, or where (a, z) is pro-
duced by the simulator Simulpk(x, e). To put it differently, the side information
I does not help the distinguisher to break the special HVZK property. We notice
that, essentially all of the practical Σ-protocols known (including all the ones
we will actually consider) will satisfy the statistical HVZK property, in which
case they will be strongly-hiding w.r.t. any P. Also, the generic protocol from
Theorem 5 will also be strongly-hiding w.r.t. any efficient procedure P which
only depends on the public parameters of the commitments used inside the pro-
tocol. This, once again, includes essentially all interesting procedures (including
the specific one we will need later). In other words, for all practical purposes
this extra property is just a technicality we need for the proof to go through.

As a second, orthogonal generalization, we can also consider “auxiliary-input”
Σ-protocols, where in order to run the protocol, the prover P might need some
extra information aux satisfying some property (which, presumably can be gen-
erated together with (x,w)), in addition to w. Notice, w alone is enough to allow
for verification that (x,w) ∈ R, so aux is only needed by the prover to fulfill his
completeness requirement (in particular, the simulator does not need to know
aux and special soundness and HVZK stay the same as before).

Efficient Σ-protocols. We briefly survey the following efficient Σ-protocols
which we will use in the sequel. (The exact details will not be crucial for our
purposes, so we will not present them here.) We notice that most of them will
be unconditional: the security assumption behind the relation (such as discrete
log) will be used later in the application; for example, in claiming that the
hypothetical extraction of the witness contradicts the corresponding assumption.

The Schnorr Σ-protocol [34] allows one to unconditionally prove the knowl-
edge of the discrete log in cyclic groups of prime order. A less known fact [19,,
9] is that (a slightly modified)2 Schnorr protocol also works over the subgroup
of quadratic residues Qn over Z

∗

n, where n is the product of two safe primes.
Interestingly, unlike in prime order groups, where the special soundness holds

2 In particular, the prover works over the integers instead of over Z|Qn|, since he does
not know |Qn|. Because of that the special HVZK guarantee is statistical here rather
than perfect.

unconditionally, here it will hold computationally under the strong RSA assump-
tion. In both of these cases the challenge space is exponential.

Very similar to Schnorr protocol, Gilliou-Quisquater (GQ) [24] protocol proves
the knowledge of the e-th root over Z

∗

n (i.e., solution to RSA), where gcd(e, ϕ(n)) =
1 and n is the produce of two safe primes. Here, however, the challenge space
should be smaller than the exponent e, so this protocol is challenge-efficient only
if e is large (which is typically required when this protocol is used).

The Fiat-Shamir protocol is an unconditional binary-challenge Σ-protocol
proving the knowledge of the square root over Z

∗

n, where n is the product of two
primes. One way to make it challenge-efficient is to repeat it in parallel, but this
is computationally inefficient. A better way is to use the elegant technique of
Ong-Schnorr [30], at the expense of working over the set of quadratic residues
Qn, requiring n to be a Blum integer, and, more crucially, requiring an auxiliary
witness to the prover. Namely, in order to make the challenge space to be of size
2ℓ, the prover not only needs to know a square root of the input x ∈ Qn, but also
the 2ℓ-root root u ∈ Qn of x (which is well defined when n is a Blum integer):
see Lemma 3.1 in [1] explicitly stating the special soundness of this protocol.
Of course, to run this protocol in practice one would first pick u and then set

w = u2
ℓ−1

mod n (by repeated squaring) and x = w2 mod n.
All the above mentioned protocols have statistical special HVZK, so they

always satisfy strong-hiding. To summarize, natural relations arising from well
established cryptographic assumptions have very computationally and challenge-
efficient Σ-protocols.

2.2 Commitments and Trapdoor Commitments

Commitments. A (non-interactive) commitment scheme consists of four ef-
ficient algorithms: C = (Com-Gen,Com,Open,Ver). The generation algorithm
Com-Gen(1k), where k is the security parameter, outputs a public commitment
key pk (possibly empty, but usually consisting of public parameters for the
commitment scheme). Given a message m from the associated message space
M (e.g., {0, 1}k, although we will mainly concentrate on bit commitments),
Compk(m; r) (computed using the public key pk and additional randomness r)
produces a commitment string c for the message m. We will sometimes omit
r and write c ← Compk(m). Similarly, the opening algorithm Openpk(m; r)
(which is supposed to be run using the same value r as the commitment al-
gorithm) produces a decommitment value d for c. Finally, the verification al-
gorithm Verpk(m, c, d) accepts (i.e., outputs 1) if it thinks the pair (c, d) is a
valid commitment/decommitment pair for m. We require that for all m ∈ M,
Verpk(m,Compk(m; r),Openpk(m; r)) = 1 holds with all but negligible proba-
bility. We remark that without loss of generality we could have assumed that
the opening algorithm simply outputs its randomness r as the decommitment,
and the verification algorithm simply checks if c = Compk(m; r). However, we
will find our more general notation more convenient for our purposes. When
clear form the context, we will sometimes omit pk from our notation. Regular
commitment schemes have two security properties:

Hiding: No PPT adversary (who knows pk) can distinguish the commit-
ments to any two message of its choice: Compk(m1) ≈ Compk(m2). That
is, Compk(m) reveals “no information” about m.

Binding: Having the knowledge of pk, it is computationally hard for the PPT
adversary A to come up with c,m, d,m′, d′ such that (c, d) and (c, d′) are
valid commitment pairs for m and m′, but m 6= m′ (such a tuple is said to
cause a collision). That is, A cannot find a value c which it can open in two
different ways.

Commitments are known to be theoretically equivalent to one-way functions
[29],[26] (at least in the SRS model). However, efficient commitments can be built
from collision-resistant hash functions [12],[25], and many number-theoretic as-
sumptions (such as factoring, discrete log and RSA, and Paillier [32]; see below).
In fact, most of these number-theoretic construct give a stronger kind of com-
mitment — called trapdoor commitment — which we explain next.

Trapdoor Commitments. A (non-interactive) trapdoor commitment scheme
consists of six efficient algorithms: C = (TrCom-Gen,Com,Open,Ver,Fake,Equiv).
The generation algorithm TrCom-Gen(1k), where k is the security parameter,
outputs a public commitment key pk and and a secret trapdoor key sk. Once pk
is fixed, the meaning of Com, Open and Ver is exactly the same as for regular
commitments. In particular, we will require that these algorithms satisfy the
usual hiding and binding properties of the commitment schemes.

The trapdoor key sk is used in the algorithms Fake and Equiv to break the
binding property of commitments. Namely, Fakesk(; r) (which takes no input
except for randomness r) produces “fake” commitment c, initially not associated
to any message m. On other other hand, for any message m, Equivsk(m; r) (which
is supposed to be run using the same value r as the fake commitment algorithm)
produces a “fake decommitment” value d for c = Fakesk(; r). In particular, we
require that such fake (c, d) still satisfy the verification equation: for all m ∈M,
Verpk(m,Fakesk(; r),Equivsk(m; r)) = 1 holds with all but negligible probability.
Even stronger, we require that

Equivocation: for any m ∈ M (chosen by the adversary), a “true” com-
mitment tuple (m,Compk(m; r),Openpk(m; r)) should look computationally
indistinguishable (over r) from the fake tuple (m,Fakesk(; r), Equivsk(m; r)).
More importantly, we require that these distributions should look indistin-
guishable even if the distinguisher knows not only the commitment key pk,
but also the trapdoor key sk (we will explain the rational for this shortly)!

We notice that equivocation easily implies that trapdoor commitments satisfy
the usual hiding property of commitments (since all commitments Compk(m) are
indistinguishable from a single distribution Fakesk()): in fact, this indistinguisha-
bility holds even if the distinguisher knows sk! Thus, binding and equivocation
are enough to argue the security of trapdoor commitment schemes.

We briefly give the rational of why we need such a strong equivocation prop-
erty. This is done for the purposes of composition. Indeed, we would like to

argue that given several “real” pairs (c, d), we can replace all of them by the
corresponding “fake” pairs (c′, d′), without anybody “noticing”. However, the
standard left-to-right hybrid argument requires us to be able to generate not
only the “real left-pairs” (c, d), which we can do using pk, but also “fake right-
pairs” (c′, d′), and this we cannot do without the knowledge of sk. Requiring the
indistinguishability to hold even with the knowledge of sk resolves this problem,
and gives us all the natural composition properties.

Constructions. There are many constructions of trapdoor commitments
(and each of them also gives a regular commitment, of course). For example,
efficient trapdoor commitments exist based on a variety of number-theoretic
assumptions: factoring [27],[33], discrete log [3],[4]), RSA (combining [16],[24]),
Paillier [5],[11]. In fact, some of these schemes (e.g., those based on discrete
log and RSA) are special cases of a beautiful general construction by Feige
and Shamir [16]. This construction efficiently transforms any Σ-protocol corre-
sponding to a “hard” language in NP into a trapdoor commitment scheme. In
particular, since we mentioned that all of NP has such Σ-protocols if one-way
functions exists (see Theorem 5), and the latter also imply that some languages
in NP are “hard” (at least, the the TP model), one can in principle construct a
trapdoor commitment scheme from any one-way function in the TP model (see
sec. 4.9.2.3 of [20]). We note that the message space for the resulting trapdoor
commitment will be exactly the challenge space of the corresponding Σ-protocol,
which, once again, demonstrates why we want to construct challenge-efficient Σ-
protocols.3 Quite interestingly, this construction of trapdoor commitments will
be somewhat reminiscent to our main construction from trapdoor commitments
(possessing a certain Σ-protocols; see Section 5), although this seems to be more
of a coincidence.4

We also mention another, less general construction [27] of trapdoor commit-
ments from claw-free permutation pairs [22]. This construction is only efficient
for bit trapdoor commitments (which, once again, are sufficient for us). Looking
at various known claw-free permutation constructions (e.g., see [14] for such a
list), we immediately get efficient bit trapdoor commitment constructions from
various assumptions, such as the already mentioned constructions from factoring
[27], Paillier [11] and the bit-version of the discrete log construction of [3],[4]. In
regards to discrete log, we finally mention the following “ad-hoc” construction of
trapdoor bit commitments. The public key consists of two random generators g
and h = gx of some prime order q cyclic group G, where the discrete log is hard
(here x is a random non-zero element of Zq), while the trapdoor key is x. To
commit to 0, one computes gr0 (for random non-zero r0 ∈ Zq), while to commit

3 Of course, since both of our generic mercurial commitment constructions only use bit
commitments, even binary Σ-protocols for hard languages suffice for our purpose.

4 Perhaps partially explained by the fact that mercurial commitment are trapdoor
commitments with several very special properties (see Section 2.3). Correspondingly,
in our main construction we will need “hard” languages also satisfying some special
properties. Somehow remarkably, though, these extra properties have more or less
led us to trapdoor commitments themselves! See Section 5.

to 1 one similarly computes hr1 . The openings are r0 and r1, respectively. To
break binding one needs to satisfy gr0 = hr1 , which means that one can com-
pute x = r0r

−1
1 mod q (and this contradicts discrete log). On the other hand, if

x is known, it is trivial to open a “fake” commitment hr1 both to 1 (by simply
presenting r1) and to 0 (by presenting r1x mod q).

Hybrid trapdoor commitments. In [6] Catalano and Visconti presented the
notion of hybrid trapdoor commitment schemes (in the context of constructing
concurrent zero-knowledge proofs). Informally an hybrid trapdoor commitment
scheme is a general commitment primitive that allows for two commitment pa-
rameters generation algorithms HGen and HTGen. If the commitment parameters
are obtained as the output of HGen, then the resulting scheme is an uncondi-
tionally binding commitment scheme, while if the parameters are generated by
HTGen, the produced scheme is actually a trapdoor commitment scheme. More-
over, no polynomially bounded adversary, taking as input only the (public) com-
mitment parameters, should be able to tell the difference between parameters
generated from HGen and parameters produced by HTGen. In [6], the authors show
that 1) non-interactive hybrid trapdoor commitments can be constructed from
any one-way function in the SRS model; and 2) efficient non-interactive hybrid
trapdoor commitments can be constructed under standard number-theoretic as-
sumptions in both the SRS and the TP models.

2.3 Mercurial Commitments

We now define mercurial commitments introduced by Chase et al. [8]. Our def-
inition will be similar, but stronger than the definition from [8]. There are two
reasons for making the change. First, all the efficient constructions in [8] and
here will anyway satisfy the stronger definition. More importantly, by making
our definition stronger we will also make it noticeably simpler (and shorter!)
than the definition of [8]. More detailed comparison will be presented later.

Plain Mercurial Commitments. Such commitment schemes consist of
seven efficient algorithms: C = (MCom-Gen, HCom, HOpen, HVer, SCom, SOpen,
SVer). The first four algorithms (MCom-Gen, HCom, HOpen, HVer) follow the
syntax (and the functionality!) of regular commitment schemes (see Section 2.2).
Namely, generation algorithm MCom-Gen(1k), where k is the security parameter,
outputs a public mercurial commitment key mpk. Given a message M ∈M, the
hard-commit algorithm HCommpk(M ;R) produces a hard-commitment string C
for M . We will sometimes write C ← HCommpk(M). Similarly, the hard-opening
algorithm HOpenmpk(M ;R) (which is supposed to be run using the same value
R as the hard-commit algorithm) produces a hard-decommitment value π for C.
Finally, the hard-verification algorithm HVermpk(M,C, π) accepts (i.e., outputs
1) if it thinks π proves that C is indeed a valid hard-commitment to M . We
require that for all M ∈M, HVermpk(m, HCommpk(M ;R), HOpenmpk(M ;R)) =
1 holds with all but negligible probability.

We now turn to the novel “soft algorithms”. The soft-commit algorithm
SCommpk(;R) produces a soft-commitment string C (to no message in partic-

ular). We will sometimes write C ← SCommpk(). The soft-opening algorithm
SOpenmpk(M, flag;R), where M ∈ M and flag ∈ {H, S} now produces a soft-
decommitment τ to M , which should say that “if the commitment produced
using R can be hard-opened at all, then it would open to M”. A bit more pre-
cisely, if flag = H, then τ is supposed to “correspond” to the hard-commitment
C = HCommpk(M ;R), and if flag = S, then τ is a fake soft-decommitment “cor-
responding” to the soft-commitment C = SCommpk(;R). Either one of these
cases is verified using the soft-verification algorithm SVermpk(M,C, τ), which
outputs 1 if it thinks that C could potentially be hard-opened to M in the fu-
ture (which, intuitively, should be the case only when τ was produced from a
hard-commitment). Specifically, we require that for all M ∈ M, SVermpk(M,
HCommpk(M ;R), SOpenmpk(M, H;R)) = 1 holds with all but negligible prob-
ability, and similarly SVermpk(M, SCommpk(;R), SOpenmpk(M, S;R)) = 1 holds
with all but negligible probability.

We notice that in many cases (including all our constructions) the soft-
decommitment τ to a hard-commitment C will consist of some proper part of
the hard-decommitment π, and, correspondingly, the soft-verification algorithm
will perform a proper subset of the tests performed by the hard-verification al-
gorithm. For a lack of better name, we call such natural mercurial commitments
proper.

Security. The binding property of plain mercurial commitments consists of
two requirements, stating that a valid hard- or soft-opening of C to some M
implies that C can not be then hard-opened to any other message M ′ 6= M :

– Mercurial Binding: Having the knowledge of mpk, it is computation-
ally hard for the PPT adversary A to come up with C,M, π,M ′, π′ (resp.
C,M, τ,M ′, π′) such that π (respectively, τ) is a valid hard- (respectively
soft-) decommitment of C to M and π′ is a valid hard-decommitment of C
to M ′, but M 6= M ′ (such a tuple is said to cause a hard (respectively soft)
collision). That is, A cannot find a value C which it can hard- or soft-open
in one way and then hard-open in a different way.

We remark that for proper mercurial commitments it suffices to prove that no
soft collisions can be found.

As for the analog of the hiding property, we require that not only hard-
commitments to some M look indistinguishable from soft-commitments (to “noth-
ing”), but this continues to hold even if they are both soft-opened to M (notice
that by the mercurial binding property, the hard-commitment to M cannot be
soft-opened to anything other than M).

– Mercurial Hiding: No PPT adversary (who knows mpk) can find M ∈
M for which it can distinguish a random “real” hard-commitment/soft-
decommitment tuple (M, HCommpk(M ;R), SOpenmpk(M, H;R)) from a ran-
dom “fake” soft-commitment/soft-decommitment tuple (M, SCommpk(;R),
SOpenpk(M, S;R)).

(Trapdoor) Mercurial Commitments. Such commitment schemes con-
sist of ten efficient algorithms: C = (TrMCom-Gen, HCom, HOpen, HVer, SCom,
SOpen, SVer,MFake, HEquiv, SEquiv). The generation algorithm TrMCom-Gen(1k),
where k is the security parameter, outputs a public mercurial commitment key
mpk and and a secret mercurial trapdoor key msk. Once mpk is fixed, the mean-
ing of HCom, HOpen, HVer, SCom, SOpen and SVer is exactly the same as for
plain mercurial commitments. In particular, we will require that these algorithms
satisfy the usual mercurial hiding and binding properties of the plain mercurial
commitment schemes.

The trapdoor key msk is used in the algorithms MFake, HEquiv and SEquiv

to break the binding property of commitments. The algorithm MFakemsk(;R)
is somewhat similar in spirit to the soft-commitment algorithm SCommpk and
produces “fake” commitment C, initially not associated to any message M . The
meaning of the other two algorithms HEquivmsk(M ;R) and SEquivmsk(m;R)
is also similar to that of the corresponding algorithms HOpenmpk, SOpenmpk,
except they always operate on the fake commitments C not really associated
to any message. Specifically, HEquiv(M ;R) produces a supposedly valid hard-
opening π (called hard-fake) of the fake commitment C = MFake(;R) to M ,
while SEquiv(M ;R) produces a supposedly valid soft-opening τ (called soft-
fake) of the fake commitment C = MFake(;R) to M . In particular, we require
that for all M ∈ M, HVermpk(M,MFakempk(;R), HEquivmpk(M ;R)) = 1 holds
with all but negligible probability, and similarly SVermpk(M,MFakempk(;R),
SEquivmpk(M ;R)) = 1 holds with all but negligible probability. While the abil-
ity to soft-fake such bogus commitments is consistent with the previous ability
of soft-opening, the ability to hard-fake them certainly contradicts the binding
property that we had, and this is exactly the function of the trapdoor key msk!

Somewhat similar to the equivocation property of trapdoor commitments, we
require that trapdoor mercurial commitments satisfy three related equivocation
conditions. In each of them we say that no efficient distinguisher A can non-
negligibly tell apart the corresponding “real” from the corresponding “ideal”
game, even if it is given the trapdoor key msk at the beginning of each real or
ideal game. In the following, the value R is always random.

– HH Equivocation: The real game consists of A choosing M ∈ M and
getting back (M, HCommpk(M ;R), HOpenmpk(M ;R)); while the ideal game
consists of A choosing M ∈M and getting back (M, MFakemsk(;R),
HEquivmsk(M ;R)).

– HS Equivocation: The real game consists of A choosing M ∈M and get-
ting back (M, HCommpk(M ;R), SOpenmpk(M, S;R)); while the ideal game
consists of A choosing M ∈M and getting back (M,
MFakemsk(;R), SEquivmsk(M ;R)).

– SS Equivocation: The real game consists of A getting the value C =
SCommpk(;R), then choosing M ∈ M, and finally getting SOpenmpk(M,
S;R); while ideal game consists of A getting the value C = MFakempk(;R),
then choosing M ∈M, and finally getting SEquivmpk(M ;R).

Notice that similar-looking SH condition does not make sense in the real
life (due to mercurial binding). Next, HS and SS Equivocations easily imply
the Mercurial Hiding property, so it does not need to be checked. Also, for
proper mercurial commitments it is easy to see that HH Equivocation implies
HS Equivocation, so it is enough to check only HH and SS Equivocations.

Relation to the Original Definition in [8]. The main difference from [8]
is in the equivocation property, which is considerably simpler to state and verify
in our case. Moreover, it is also stronger than the definition of [8]. Essentially,
the latter definition consists of playing an arbitrary composition of HH, HS and
SS Equivocation games either in the real, or in the ideal world,5 but where the
distinguisher A is not given the trapdoor key msk. In this scenario the usual
hybrid argument does not work (since A cannot simulate stuff in the ideal world
by himself), so one cannot reduce the composed game to the one of the three
atomic HH, SE or SS games. As a result, one has to build a full-fledged simulator,
and formally argue that it fools the distinguisher. In contrast, in our scenario
the hybrid argument easily works, so the security of our 3 atomic games easily
implies the security of the composed game even if the distinguisher knows msk.

Known Constructions. Chase et al. [8] gave several elegant constructions
of (trapdoor) mercurial commitments from the following assumptions:

– One-way functions. This construction works in the plain model but unfortu-
nately is interactive. All next constructions are non-interactive.

– Non-interactive zero-knowledge (NIZK) proofs for all of NP [2], [15] and
unconditionally-binding commitment schemes. However, this construction is
mainly of theoretical interest, since all known NIZK constructions (especially
for all of NP) are extremely inefficient. Interestingly, it also does not satisfy
our stronger definition. However, in the sequel we will provide more general
constructions (from one-way functions) which satisfy our stronger definition
in the trusted parameters model and are still more efficient than this con-
struction.6

5 There is one other, more syntactic strengthening that we had to make in order
to simplify the definition. Namely, in the more general definition of [8] one could
have syntactically unrelated real and ideal experiments for generating mpk, so it did
not make sense to give msk to A in the real game. In contrast, we insist that the
public key generation even in the real world can be carried by generating both the
public and the trapdoor key. While slightly more restrictive, since (1) all our efficient
constructions in the trusted parameters model satisfy this restricted notion of key
generation and (2) it considerably simplifies (and also strengthens) the definition, we
feel it is very justified.

6 We remark, however, that the NIZK is in the SRS model, while our OWF-based
construction satisfying the stronger definition will be in the TP model. We can
make SRS-based constructions by either building trapdoor commitments in the SRS
model (which is known how to do from one-way permutations or specific number-
theoretic assumptions), or by using our technique from Section 4 (while reverting to
the weaker definition of [8]).

– Claw-free permutations [22]. This construction give only bit mercurial com-
mitment, and will be a special case of our first general construction from bit
trapdoor commitments.

– Discrete log. This is a “distillation” of the original construction implicitly
used in [28]; it supports long messages and is pretty efficient. It will be a
special case of our second construction when used with the corresponding
discrete-log based bit trapdoor commitment.

– Factoring. This is a new construction which supports long messages and is
relatively efficient. It will be a special case of our second construction when
used with the corresponding factoring-based bit trapdoor commitment.

Implications to (Trapdoor) Commitments. It is simple to see that by “ig-
noring” all the “soft” algorithms of a secure plain/trapdoor commitment scheme,
we immediately get a plain/trapdoor regular commitment scheme. (Concentrat-
ing, for example, on a slightly more complicated “trapdoor case”, HCom plays
the role of Com, HOpen — of Open, HVer — of Ver, MFake — of Fake, and
HEquiv — of Equiv.) In the following, we show two simple constructions proving
that the converse of this statement is true as well.

3 General Construction from (Trapdoor) Bit
Commitments

As advocated in the introduction, we will first consider the construction of plain
mercurial bit commitments from regular bit commitments, and then argue that
the same construction extends to the trapdoor case as well.

Building Plain Mercurial Commitments. Assume C = (Com-Gen,Com,
Open,Ver) is a regular bit commitment scheme. Define plain mercurial com-
mitment C′ = (MCom-Gen, HCom, HOpen, HVer, SCom, SOpen, SVer) for a bit
b ∈ {0, 1} as follows (we set MCom-Gen = Com-Gen and let pk be the corre-
sponding public key):

– HCompk(b; (r0, r1)): output (c0, c1) = (Compk(b; r0),Compk(1 − b; r1)). No-
tice, commitment to 0 changes its place from left to right depending on b.

– HOpenpk(b; (r0, r1)): output (d0, d1) = (Open(b; r0),Open(1− b; r1)).
– HVerpk(b, (c0, c1), (d0, d1)): accept if and only if Verpk(b, c0, d0) = Verpk(1−

b, c1, d1) = 1.
– SCompk(; (r0, r1)): output (c0, c1) = (Compk(0; r0),Compk(0; r1)).
– SOpenpk(b, flag; (r0, r1)): irrespective of flag ∈ {H, S}, output d = Open(0; rb).
– SVerpk(b, (c0, c1), d): accept if and only if Verpk(0, cb, d) = 1.

The correctness of the scheme is obvious. Intuitively, mercurial commitment
to b = 0 looks (0, 1), to 1 — (1, 0), and the fake — (0, 0). Since the soft-opening
of the hard commitment only opens the corresponding left or right 0, the fake
commitment can indeed be soft-opened in both way, by honestly opening the
appropriate left of right 0. On the other hand, seeing a hard-opening of some

commitment C = (c0, c1) (to some bit b) opens to 1 one of the two regular
commitments, while the subsequent soft-opening of C to (1−b) would then open
this regular commitment to 0, which contradicts binding. Below, we formalize
this is a straightforward manner.

Mercurial Binding. Since the mercurial commitment is proper, we only need
to rule out soft collisions. For that, assume the attacker can find a soft collision.
By symmetry, let us assume that 1 is the softly-opened message, and 0 is the
hardly-opened one). So we denote this collision by C = ((c0, c1), d0, d1, d

′

1) where
Ver(0, c0, d0) = Ver(1, c1, d1) = Ver(0, c1, d

′

1) = 1. But then c1 can be opened to
both 0 and 1, a contradiction to the binding property of C.

Mercurial Hiding. Assume first b = 0. Then, the “real” hard-commitment/soft-
decommitment tuple (HCom(0; (r0, r1)), SOpen(0, H; (r0, r1)) looks like (Com(0; r0),
Com(1; r1),Open(0; r0)), while the corresponding “fake” tuple (Fake(; (r0, r1)),
SOpen(0, S; (r0, r1)) looks like (Com(0; r0),Com(0; r1),Open(0; r0)). Clearly, such
distribution are indistinguishable if Com(0) cannot be distinguished from Com(1),
which follows from the hiding property of C. A similar argument holds for b = 1
as well.

Trapdoor Case. The extension to the trapdoor case is simple as well. We now
have additional algorithms Fake and Equiv for trapdoor commitments, and need
to build the corresponding algorithms MFake, HEquiv and SEquiv for mercurial
commitments.

– MFakesk(; (r0, r1)): output (Fakesk(; r0),Fakesk(; r1)).
– HEquivsk(b; (r0, r1)): output (Equivsk(b; r0),Equivsk(1− b; r1)).
– SEquivsk(b; (r0, r1)): output Equivsk(0; rb).

Correctness is obvious from definition. As for hiding, we only need to ar-
gue HH and SS Equivocations (since this is a proper mercurial commitment).
Both are simple corollaries of the regular Equivocation properties of trapdoor
commitments.

HH Equivocation. Let us assume b = 0, since b = 1 is symmetric. Then
(HCom(0; (r0, r1)), HOpen(0; (r0, r1))) is equal to Dreal = (Com(0; r0),Com(1; r1),
Open(0; r0),Open(1; r1)), while (MFake(; (r0, r1)), HEquiv(0; (r0, r1))) is equal to
Dideal = (Fake(; r0),Fake(; r1),Equiv(0; r0),Equiv(1; r1)). Since r0 and r1 are in-
dependent, this amount to two independent applications of the regular Equivoca-
tion property to bits 0 and 1, respectively. Notice, though, already for this simple
hybrid argument we are using the fact that the attacker knows the trapdoor key
sk! To be precise, we must first consider a hybrid distribution Dhyb = (Fake(; r0),
Com(1; r1),Equiv(0; r0),Open(1; r1)), and then show Dreal ≈ Dhyb (here we only
need pk to sample (Com(1; r1),Open(1; r1))) and Dhyb ≈ Dideal (here we need
sk to sample (Fake(; r0),Equiv(0; r0))).

SS Equivocation. In the real experiment, the attacker is first getting (Com(0; r0),
Com(0; r1)), then he has to choose a bit b, after which he gets Open(0; rb). In the
ideal game, the attacker is getting (Fake(; r0),Fake(; r1)), then he has to choose a
bit b, after which he gets Equiv(0; rb). By symmetry, the choice of b does not mat-
ter here, so we can assume b = 0, so it suffices to argue (Com(0; r0),Com(0; r1),

Open(0; r0)) ≈ (Fake(; r0),Fake(; r1),Equiv(0; r0)). Once again, this follow by
the hybrid argument, by considering an intermediate distribution (Fake(; r0),
Com(; r1),Equiv(0; r0)) and using the fact that in the second hybrid the attacker
can compute (Fake(; r0), Open(0; r0)).

Comparison to [8]. The above construction is a very simple generalization
of the one in [8], who used the following family of trapdoor bit commitments
[27] obtained from any family of claw-free permutations [22] (f0, f1). Informally,
recall that these are pairs of permutations where one cannot find a “claw” (r0, r1)
satisfying f0(r0) = f1(r1); also it is assumed that there exists a trapdoor f−1

0

allowing one to invert f0 (in our application, we will not need a similar trapdoor
for f1). Now, to trapdoor commit to a bit b we can sample fb(rb) (decommitment
is rb), while the knowledge of the trapdoor f−1

0 provides easy fake pairs: the
fake commitment c = f1(r1) (for random r1) can be opened to 0 by giving
r0 = f−1

0 (c)), and to 1 — by giving r1.
We remark, though, that the equivocality proof of our extension is indeed

considerably shorter, — which is what it should be for such a simple construction!
— than the corresponding proof [8]. Also, our construction implies mercurial
commitments from other bit commitments which are not necessarily induced
by claw-free permutations, such as the general construction of [16] from any
Σ-protocol for a hard language, the factoring construction of [33], the Paillier
construction of [5] or the ad hoc (gr0 , hr1)-construction mentioned in Section 2.2
(and, of course, the one-way function construction from Theorem 5).

4 Mercurial Commitments from One-Way Functions in
the SRS model

We now discuss a construction of a non-interactive bit trapdoor mercurial com-
mitment scheme in the SRS model which requires only a non-interactive bit
hybrid trapdoor commitment scheme as underlying building block. Since the
latter can be constructed from one-way functions [6], we have that the same
holds for the former. We stress that for this construction we use the original def-
inition of mercurial commitments given in [8] where the shared random string
used in the simulated game is computationally indistinguishable from the real
random string. For lack of space we omit the original definitions of mercurial
commitments given in [8] and of hybrid trapdoor commitments given in [6] (in
particular the reader is referred to [6] for details about the constructions of
hybrid trapdoor commitments).

Overview of the technique. In Section 3 we have shown a construction of
mercurial commitments that can be based on the trapdoor commitment scheme
proposed by Feige and Shamir [16]. This scheme needs, as common parameter,
an Hamiltonian graph for which it is hard to compute an Hamiltonian cycle, but
such that knowledge of a cycle allows one to equivocate. This can be realized in
the trusted parameters model by generating the required instance of the Hamil-
tonian cycle language from the hardness of inverting a one-way function. In the

SRS model, this construction is known to work assuming that one-way permuta-
tions exist. In a nutshell, this is because a piece of the random string infers the
computationally infeasible problem of inverting a one-way permutation (that, in
turn, can be reduced to an instance of finding a cycle in an Hamiltonian graph),
and in order for this to work one needs to make sure that a corresponding inverse
actually exists.

In order to build a solution based on any one-way function in the SRS model,
we start from the following observation. Since the possibility of computing com-
mitments that can be equivocated is required by the simulator only (we stress
that we are now using the original definition of mercurial commitments given
in [8]), we could construct mercurial commitments by using regular (i.e., we do
not require the equivocal property) commitments in the SRS model for the real
game and trapdoor commitments in the trusted parameters model for the simu-
lated game. In order for this idea to work, however, we need a scheme that can
be used either as a trapdoor commitment in the trusted parameters model or as
a regular one in the SRS model, but it is infeasible for the adversarial receiver to
distinguish the two cases. In particular the trusted parameters of the simulated
game must be computationally indistinguishable from a random string.

Commitment schemes realizing this requirement have been recently studied,
defined and constructed by Catalano and Visconti [6] under the sole assumption
that one-way functions exist.

A construction of non-interactive bit trapdoor mercurial commitments on
top of a non-interactive bit hybrid trapdoor commitment scheme can be very
easily obtained from the construction shown in Section 3. Indeed, it suffices to
replace the algorithms of the regular non-interactive bit trapdoor commitment
scheme with the corresponding ones of the hybrid one. The only additional step
is that since the hybrid trapdoor commitment scheme has two algorithms for
the generation of the commitment parameters, one is used in the real game
and the other is used in the simulated game. In the SRS model, the former
simply outputs a random string (i.e., the parties can deterministically extract
the commitment parameters from a random string) while the latter outputs a
random/pseudorandom string along with a trapdoor.

5 Efficient Construction from (Trapdoor) Bit
Commitments with Σ-Protocols

The problem with the previous generic constructions is the fact that they only
allows one to commit to one bit. Of course, we can always commit to many bits
by following the “bit-by-bit” approach, but this is inefficient. Alternatively, we
can try to utilize a multi-bit plain/trapdoor commitment scheme in the previous
construction, but it is easy to see that the resulting length of the commitment
will be linearly proportional to the number of messages that we want to commit
to. This essentially means that setting this number to 2 — as we did in Section 3
— and doing the bit-by-bit composition is the best we can do if we try to extend
the previous approach.

Instead, in this section we present our main construction which will directly
transforms a plain/trapdoor bit commitment C into an efficient and (potentially)
multi-bit plain/mercurial commitment C′. However, we will need to assume an
extra property from C: there exists an efficient Σ-protocol Π proving that one
knows a witness d that a given commitment c can be opened to 0. In this case,
the message space of C′ will be the challenge space of the corresponding Σ-
protocol. Thus, if Π will be challenge-efficient, we would get a direct, large-
message mercurial commitment C′.
Construction. Let C = (Com-Gen,Com,Open,Ver) be a regular bit commit-
ment scheme which has a Σ-protocol Π = (Start,Finish,Extract,Simul) for the
relation (family) Rpk = {(c, d) | Verpk(0, c, d) = 1}. Recall, this means that the
verifier only gets a commitment c, and the prover also gets, as a witness, a valid
opening d of c to 0. Also, assume M is the challenge space for Π.

We then define plain mercurial commitment C′ = (MCom-Gen, HCom, HOpen,
HVer, SCom, SOpen, SVer) for message spaceM as follows (we set MCom-Gen =
Com-Gen and let pk be the corresponding public key):

– HCompk(m; (rs, r1)): let c1 = Compk(1; r1) be a commitment to 1, and
(a1, z1) = Simulpk(c1,m; rs) be a fake first and last messages of Π which
(here incorrectly) claim that c1 is a commitment to 0 on challenge m. Out-
put (c1, a1).

– HOpenpk(m; (rs, r1)): let c1 = Compk(1; r1) and (a1, z1) = Simulpk(c1,m; rs)
be as before. Set d1 = Openpk(1; r1) and output (d1, z1).

– HVerpk(m, (c1, a1), (d1, z1)): accept if and only if Verpk(1, c1, d1) = 1 (d1 is
correct decommitment to 1) and Checkpk(c1, a1,m, z1) = 1 (the fake tran-
script on challenge m that c1 is a commitment to 0 looks good).

– SCompk(; (rp, r0)): let c0 = Compk(0; r0) be a commitment to 0, and d0 =
Openpk(0; r0) be the corresponding opening, and a0 = Startpk(c0, d0; rp) be
a real first messages of Π which (correctly!) claims that c0 is a commitment
to 0.7 Output (c0, a0).

– SOpenpk(m, H; (rs, r1)): let c1 = Compk(1; r1) and (a1, z1) = Simulpk(c1,m; rs)
be the fake transcript on challenge m that c1 is a commitment to 0. Output
z1.

– SOpenpk(m, S; (rp, r0)): let c0 = Compk(0; r0), d0 = Openpk(0; r0), a0 =
Startpk(c0, d0; rp), and z0 = Finishpk(c0, d0,m; rp) be the correct last flow
to challenge m. Output z0.

– SVerpk(m, (c, a), z): accept if and only Checkpk(cb, a,m, z) = 1 (the transcript
(a,m, z) stating that c is a commitment to 0 is correct).

Intuitively, the honest hard-committer is supposed to send a commitment
c to 1, but fake the transcript that he in fact committed to 0. On the other
hand, a lying soft-committer can simply send a commitment c to 0, and now can

7 Notice, here the prover actually knows the value r0, and not just d0. So for efficiency
reasons we might consider auxiliary-input Σ-protocols where P ’s witness is actually
r0 itself. We will return to this point later.

(honestly!) respond to any challenge/message m that he gets subsequently, which
allows him to soft-open the first flow to any message m.8 The binding security
of this scheme comes from the fact that a hard-opening of c to 1, coupled with
two soft-opening of the first flow a, must enable one to extract a legal witness,
which is the hard-opening of c to 0, contradicting the binding of C. Similarly, the
hiding property of C coupled with the zero-knowledge property of Σ-protocols
imply that, without the hard-opening of c (which will tell if c is a commitment
to 0 or 1), the real and fake behavior cannot be told apart. More formally,

Mercurial Binding. Since our commitment is proper, we only need to rule
our soft collisions. This means that the attacker cannot find a commitment value
(c, a), a decommitment d1 proving that c is a commitment to 1, two messages
m 6= m′, and two valid responses z and z′ claiming that c is a commitment to
0. By the special soundness of the Σ-protocol, Extract(c, a,m, z,m′, z′) must be
equal to a valid decommitment d0 of c to 0. But then we found a way to open c
to both 0 and 1 (via d0 and d1), contradicting the binding property of C.

Mercurial Hiding. Take any message/challenge m. Then, the “real” hard-
commitment/soft-decommitment tuple for m looks like is given by three values
(c = Com(1; r1), (a, z) = Simul(c,m; rs)). Since our commitment is hiding, and
Simul(c,m) is publicly computable, we get that the above distribution is indis-
tinguishable from (c = Com(0; r0), (a, z) = Simul(c,m; rs)). Now, since c has a
proper witness d0 = Open(0; r0), the special HVZK property of Π states that the
distribution on (a, z) looks indistinguishable than the one obtained by a running
a real protocol on input c, witness d0 and challenge m. But this means that the
above distribution is indistinguishable from (c = Com(0; r0), a = Start(c, d0; rp),
z = Finish(c, d0,m; rp)), which is exactly the triple corresponding to the “fake”
soft-commitment/soft-decommitment procedures.

Trapdoor Case. Recall, we now have additional algorithms Fake and Equiv

for trapdoor commitments, and need to build the corresponding algorithms
MFake, HEquiv and SEquiv for mercurial commitments. As a new technical prop-
erty about the Σ-protocol, however, we will have to assume that Π = Πpk

is strongly hiding w.r.t. a particular parameter generation procedure P (see
Section 2.1). The parameter generation procedure we will need generates ran-
dom keys (pk, sk)← Com-Gen(1k), picks a random r, computes c = Fakesk(; r),
d0 = Equivsk(0; r), d1 = Equivsk(1; r), and sets the side information to (sk, d1),
the input to be c , and the witness to be d0. As explained in Section 2.1, this is
more of a technicality which seems to be always satisfied in any non-pathological
scenario arising in practice. We call this property (*), and can now describe the
claimed extension.

8 Is might appear peculiar that we require an honest party to cook-up a fake proof in
order to succeed, while having a dishonest party perform such a proof correctly! Here,
however, the primitive we build legally allows a dishonest party to look “slightly like
an honest party”. So the we force the honest party to do something slightly bad
which might be “matched” by a good action of a dishonest party.

– MFakesk(; (rp, r)): let c = Fakesk(; r) be a fake commitment, d0 = Equivsk(0; r)
be its fake opening to 0, and a0 = Startpk(c, d0; rp) be a correct first flow of
the Σ-protocol. Output (c, a0).

– HEquivsk(m; (rp, r)): let c = Fakesk(; r), d0 = Equivsk(0; r), and a0 = Startpk(c,
d0; rp) be as before. Compute the fake opening d1 = Equivsk(1; r) of c to 1,
and the correct last message z0 = Finishpk(c, d0,m; rp). Output (d1, z0).

– SEquivsk(m; (rp, r)): let c = Fakesk(; r), d0 = Equivsk(0; r), and a0 = Startpk(c,
d0; rp) be as before. Compute the correct last message z0 = Finishpk(c, d0,m; rp)
and output z0.

Correctness is obvious from definition. As for hiding, we only need to argue
HH and SS Equivocations (since this is a proper mercurial commitment).

HH Equivocation. Take any message m. Then (HCom(m; (rs, r1)), HOpen(m;
(rs, r1))) is equal to Dreal = (c1, d1, a1, z1), where c1 = Com(1; r1), d1 = Open(1; r1),
and (a1, z1) = Simul(c1,m; rs)). Since Simul(c1,m) is a public transformation,
the Equivocality of C implies that the above distribution is indistinguishable
from (c = Fake(; r), d1 = Equiv(1; r), a1, z1), where (a1, z1) = Simul(c,m; rs).
We are almost done, except we need to replace the above (a1, z1) by (a0, z0)
obtained by running an honest execution of Π with witness d0 = Equiv(0; r).
This is almost exactly the HVZK property, except we formally need to use the
strong hiding property (*) described above. Indeed, in addition to the input c
and the public parameter pk, which are allowed in the usual HVZK property,
here the distinguisher also knows two extra pieces of information: the trapdoor
key sk (given to him at the beginning of the game) and the fake decommitment
d1 = Equiv(1; r). This is why we needed to to assume that this extra information
does not violate the HVZK property.

SS Equivocation. In the real soft-commit/soft-open experiment, the distin-
guisher (who knows sk) is first getting c0 = Com(0; r0) and the correct first
flow of the Σ-protocol showing that c0 is indeed a commitment to 0 (using wit-
ness d0 = Open(0; r0)). He then chooses a message m, and gets a correct third
flow to message m. To put differently, he simply plays the role of (malicious)
verifier in the honest run of the Σ-protocol on pair (c0, d0). Notice that the
distinguisher’s view can be perfectly simulated using some public probabilistic
procedure Ask(c0, d0). Using the equivocation property of C, the resulting dis-
tribution should be indistinguishable from Ask(c, d0), where c = Fake(; r) and
d0 = Equiv(0; r). But, once again, it is easy to see that this view is exactly what
the attacker gets in the ideal soft-commit/soft-open experiment.

Generalization. We already noticed in Footnote 7 that in the above defi-
nition of soft-commitment, the Prover actually knows the entire randomness r0

and not just a witness d0 = Open(0; r0). This, of course, is of any value only in a
very few schemes where r0 6= d0. However, it will come up in one of our examples
(see Section 5.1). To accommodate this extension, we can consider Σ-protocol’s
where the prover needs all of r0 for the completeness of the protocol (special
soundness is still only for d0). For plain mercurial commitments, this is all we
need to change. For the trapdoor variant, however, we will need an extra prop-
erty from our trapdoor commitment scheme in regards to equivocation. Namely,

in the fake commitment algorithm we need to be able to equivocate c = Fake(; r)
to 0 by obtaining not only a good looking value d0, but the entire randomness
r0. Once this is ensured, we can easily support auxiliary input Σ-protocols.

5.1 Examples

Below we briefly give several efficient instantiations of our construction, by apply-
ing it to several efficient trapdoor commitment schemes with challenge-efficient
Σ-protocols. Our examples will cover all the previous efficient schemes, and sev-
eral more, all as part of one general framework. For each scheme we will just
briefly mention which trapdoor commitment and Σ-protocol to use, since the
remaining details are obvious and not very illuminating.

Discrete Log Construction from [8],[28]. We will consider the ad-hoc
scheme from Section 2.2, where Com(0; r0) = gr0 , Com(1; r1) = hr1 , and the
trapdoor sk = logg h (here r0, r1 6= 0). We need a Σ-protocol to prove the
knowledge of r0 = logg(c), where c is the claimed commitment to 0. Of course, a
natural thing to do is to take Schnorr protocol, but this will result in a slightly
different (but equally efficient) scheme than what we are after. Instead, we will
use a bit less esthetic but equally effective Σ-protocol. In the first flow the prover
sends a value T = gt (for random t), he gets challenge m, and responds with
z = (t − m)/r0 mod q (which is defined since r0 6= 0). The verifier checks if
gmcz = T (indeed, m+ r0z = t, as needed). It is simple to see that this is indeed
a Σ-protocol for the knowledge of the discrete log, and that by plugging it into
our construction we get exactly the discrete log construction from [8,, 28].

We also remark what we could use a better known discrete-log commitment
Com(0) = gr0 , Com(1) = hgr1 , coupled with either Schnorr Σ-protocol, or the
one presented above. We will get yet another (equally efficient) solution.

Factoring Construction from [8]. This scheme will use the generalization
of our constriction to use auxiliary inputs, as explained earlier. Let us start with
a well-known factoring-based trapdoor bit commitment from a corresponding
claw-free permutation pair: the public parameter is a random square U , and
Com(0; r0) = r2

0 mod n, Com(1; r1) = Ur2
1 mod n (the trapdoor is the square

root of U). Here we need a Σ-protocol for the knowledge of the square root. As we
mentioned in Section 2.1, using Fiat-Shamir protocol [18] is not communication-
or challenge-efficient. Instead, we use the auxiliary input Ong-Schnorr protocol
[30]. For that one need to know 2ℓ-th square root of Com(0), so we modify

Com(0; r0) = r2
ℓ

0 mod n (but leave Com(1; r1) = Ur2
1 mod n). We notice, that

although the decommitment to 0 is “only” the square root d0 = r2
ℓ−1

0 , and not
r0 itself, the fake commitment should enable us to extract (using sk) the 2ℓ-th
root from c0, and not just a mere square root. Of course, this is easy to achieve

by defining Fake(; r) = r2
ℓ

, and “fully opening” it to 0 by giving r, and to 1 — by

giving r2
ℓ−1

/
√

U . With these changes we get precisely the factoring construction
from [8]. We also notice that by using a different claw-free permutation (r2

0, 4r2
1)

[22] defined over the so called Williams integers, we can slightly simplify the
scheme and set U = 4.

New RSA-based Construction. Here we could use the RSA-based trap-
door commitment Com(0; r0) = re

0 mod n, Com(1; r1) = yre
1 mod n, where y is a

public parameter, whose e-th root is the trapdoor key. Here we simply need the
Σ-protocol proof of knowledge of the e-th root, which is just the GQ protocol
[24]. To have the protocol to be challenge-efficient, though, we will need to use
a relatively large e.

Alternative Factoring Construction. We can use the following factoring-
based commitment of [33] (slightly modified for easier Σ-protocols and special-
ized to bits). The public key is n = p, q, where p = 2p′ + 1, q = 2q′ + 1 are safe
primes, and all the operations are performed in the subgroup Qn of quadratic
residues whose generator g is also part of parameters. Notice, |Qn| = p′q′. Let C
be a large enough constant (anything larger than n will do). Then Com(0; r0) =
gC+r0 mod n, Com(1; r1) = gr1 mod n (here r0, r1 are random from 0 to n (which
is statistically close to ϕ(n), which is the “true range” we are aiming for). The
trapdoor is the value |Qn| = p′q′. In this case the Σ-protocol we need to again
the one of knowledge of discrete-log, but in the groups of unknown order. As
mentioned before, such (computationally sound) protocol is given by [19,, 9].

Paillier-based Scheme. Finally, we mention another trapdoor commitment
based on the hardness of finding n-th roots over Zn2 (where n is the the product
of two safe primes, for simplicity), which is implicit in [11]. Here the public
parameters will include a generator g in the subgroup S of n-th powers in Z

∗

n2 ,
and the n-th root u of g will be the trapdoor. Next, Com(0; r0) = rn

0 mod n2,
Com(1; r1) = grn

1 mod n2 (here r0, r1 ∈ Z
∗

n). This scheme is perfectly hiding and
computationally binding assuming it is hard to take n-th root over Zn2 , and
could be viewed as yet another claw-free based construction. The Σ-protocol
for commitment to 0 is simply the Σ-protocol for knowing the n-th root. This
protocol is very similar to the GQ protocol and is formally analyzed by [10].

6 Concluding Remarks

We believe that our results eludicate the notion of mercurial commitments, put
them in their place on the map of cryptographic assumptions, and better ex-
plain the rational following the previous constructions of [28],[8]. We hope that
mercurial commitments will find more interesting applications in the future.

This paper joins two independent papers that can be found at [7],[13].

Acknowledgments. The second author would like to thank Leonid Reyzin for
several insightful conversations about mercurial commitments, and Tal Malkin
for giving a talk inspiring this research. The work of the first and third authors
has been supported in part by the European Commission through the IST Pro-
gramme under Contract IST-2002-507932 ECRYPT. The work of the second
author was supported in part through NSF Career Award CCR-0133806 and
NSF grant CCR-0311095. The work of the third author is also supported in part
through the FP6 program under contract FP6-1596 AEOLUS.

References

1. M. Abdalla and L. Reyzin. A new forward-secure digital signature scheme. In
T. Okamoto, editor, Advances in Cryptology—ASIACRYPT 2000, volume 1976 of
Lecture Notes in Computer Science, pages 116–129, Kyoto, Japan, 3–7 Dec. 2000.
Springer-Verlag. Full version available from the Cryptology ePrint Archive, record
2000/002, http://eprint.iacr.org/.

2. Manuel Blum, Alfredo De Santis, Silvio Micali, and Guiseppe Persiano. Non-
interactive zero-knowledge. SIAM Journal of Computing, 20(6), 1991.

3. Joan Boyar, S. A. Kurtz, Mark W. Krentel. A Discrete Logarithm Implementation
of Perfect Zero-Knowledge Blobs. In J. of Cryptology, 2(2):63–76, 1990.

4. G. Brassard, D. Chaum, and C. Crépeau. Minimum disclosure proofs of knowledge.
Journal of Computer and System Sciences, 37(2):156–189, Oct. 1988.

5. Dario Catalano, Rosario Gennaro, Nick Howgrave-Graham, Phong Q. Nguyen.
Paillier’s cryptosystem revisited. In ACM Conference on Computer and Commu-
nications Security 2001, pp. 206–214.

6. D. Catalano and I. Visconti. Hybrid Trapdoor Commitments and Their Appli-
cations. In 32nd International Colloquium on Automata, Languages, and Pro-
gramming (ICALP 05), volume 3580 of Lecture Notes in Computer Science, pages
298–310. Springer-Verlag, 2005.

7. D. Catalano and I. Visconti. Non-Interactive Mercurial Commitments from One-
Way Functions. Cryptology ePrint Archive, 2005.

8. Melissa Chase, Alexander Healy, Anna Lysysanskaya, Tal Malkin and Leonid
Reyzin. Mercurial Commitments with Applications to Zero-Knowledge Sets. In
Proc. of EUROCRYPT, pp. 422–439, 2005.

9. Ivan Damg̊ard, Eiichiro Fujisaki. A Statistically-Hiding Integer Commitment
Scheme Based on Groups with Hidden Order. In ASIACRYPT 2002, pp. 125–
142.

10. Ivan Damg̊ard, Mats Jurik. A Generalisation, a Simplification and Some Applica-
tions of Paillier’s Probabilistic Public-Key System. Public Key Cryptography 2001,
pp. 119–136.

11. I. Damg̊ard and J. B. Nielsen. Perfect hiding and perfect binding universally
composable commitment schemes with constant expansion factor. In M. Yung, ed-
itor, Advances in Cryptology—CRYPTO 2002, Lecture Notes in Computer Science.
Springer-Verlag, 18–22 Aug. 2002.

12. I. B. Damg̊ard, T. P. Pedersen, and B. Pfitzmann. On the existence of statistically
hiding bit commitment schemes and fail-stop signatures. Journal of Cryptology,
10(3):163–194, Summer 1997.

13. Y. Dodis. Minimal Assumptions for Efficient Mercurial Commitments. Cryptology
ePrint Archive, Report 2005/438.

14. Y. Dodis and L. Reyzin. On the power of claw-free permutations. In Conference
on Security in Communication Networks, 2002.

15. U. Feige, D. Lapidot, and A. Shamir. Multiple noninteractive zero knowledge
proofs under general assumptions. SIAM J. Computing, 29(1), 1999.

16. U. Feige and A. Shamir. Zero knowledge proofs of knowledge in two rounds. In
G. Brassard, editor, Advances in Cryptology—CRYPTO ’89, volume 435 of Lecture
Notes in Computer Science, pages 526–545. Springer-Verlag, 1990, 20–24 Aug.
1989.

17. U. Feige and A. Shamir. Witness indistinguishability and witness hiding proto-
cols. In Proceedings of the Twenty Second Annual ACM Symposium on Theory of
Computing, pages 416–426, Baltimore, Maryland, 14–16 May 1990.

18. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identifica-
tion and signature problems. In A. M. Odlyzko, editor, Advances in Cryptology—
CRYPTO ’86, volume 263 of Lecture Notes in Computer Science, pages 186–194.
Springer-Verlag, 1987, 11–15 Aug. 1986.

19. E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove mod-
ular polynomial relations. In B. S. Kaliski Jr., editor, Advances in Cryptology—
CRYPTO ’97, volume 1294 of Lecture Notes in Computer Science, pages 16–30.
Springer-Verlag, 17–21 Aug. 1997.

20. O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University
Press, 2001.

21. S. Goldwasser, S. Micali, and C. Rackoff. Knowledge complexity of interactive
proofs. In Proceedings of the Seventeenth Annual ACM Symposium on Theory of
Computing, pages 291–304, Providence, Rhode Island, 6–8 May 1985.

22. S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Computing, 17(2), 1988.

23. O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their
validity or all languages in NP have zero-knowledge proof systems. Journal of the
ACM, 38(1):691–729, 1991.

24. L. C. Guillou and J.-J. Quisquater. A “paradoxical” identity-based signature
scheme resulting from zero-knowledge. In S. Goldwasser, editor, Advances in
Cryptology—CRYPTO ’88, volume 403 of Lecture Notes in Computer Science,
pages 216–231. Springer-Verlag, 1990, 21–25 Aug. 1988.

25. S. Halevi and S. Micali. Practical and provably-secure commitment schemes
from collision-free hashing. In N. Koblitz, editor, Advances in Cryptology—
CRYPTO ’96, volume 1109 of Lecture Notes in Computer Science, pages 201–215.
Springer-Verlag, 18–22 Aug. 1996.

26. J. H̊astad, R. Impagliazzo, L. Levin, and M. Luby. A pseudorandom generator
from any one-way function. SIAM J. Computing, 28(4), 1999.

27. H. Krawczyk and T. Rabin. Chameleon signatures. In Network and Distributed
System Security Symposium, pages 143–154. The Internet Society, 2000.

28. Silvio Micali, Michael Rabin, and Joe Kilian. Zero-knowledge sets. In Proc. 44th
IEEE Symposium on Foundations of Computer Science (FOCS), 2003.

29. Moni Naor. Bit commitment using pseudorandomness. Journal of Cryptology,
4(2):51–158, 1991.

30. H. Ong and C. P. Schnorr. Fast signature generation with a Fiat Shamir-like
scheme. In I. B. Damg̊ard, editor, Advances in Cryptology—EUROCRYPT 90,
volume 473 of Lecture Notes in Computer Science, pages 432–440. Springer-Verlag,
1991, 21–24 May 1990.

31. R. Ostrovsky, C. Rackoff, and A. Smith. Efficient consistency proofs for generalized
queries on a committed database. In 31st International Colloquium on Automata,
Languages, and Programming (ICALP 04), volume 3142 of Lecture Notes in Com-
puter Science, pages 1041–1053. Springer-Verlag, 2004.

32. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In J. Stern, editor, Advances in Cryptology—EUROCRYPT ’99, volume 1592 of
Lecture Notes in Computer Science. Springer-Verlag, 2–6 May 1999.

33. A. Shamir and Y. Tauman. Improved online/offline signature schemes. In J. Kilian,
editor, Advances in Cryptology—CRYPTO 2001, volume 2139 of Lecture Notes in
Computer Science, pages 355–367. Springer-Verlag, 19–23 Aug. 2001.

34. C.-P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, 1991.

