
Communication Efficient Secure Linear Algebra

Kobbi Nissim? and Enav Weinreb??

Ben Gurion University, Beer-Sheva 84105, Israel.
{kobbi, weinrebe}@cs.bgu.ac.il

Abstract. We present communication efficient secure protocols for a
variety of linear algebra problems. Our main building block is a protocol
for computing Gaussian Elimination on encrypted data. As input for this
protocol, Bob holds a k×k matrix M , encrypted with Alice’s key. At the
end of the protocol run, Bob holds an encryption of an upper-triangular
matrix M ′ such that the number of nonzero elements on the diagonal
equals the rank of M . The communication complexity of our protocol is
roughly O(k2).
Building on Oblivious Gaussian elimination, we present secure protocols
for several problems: deciding the intersection of linear and affine sub-
spaces, picking a random vector from the intersection, and obliviously
solving a set of linear equations. Our protocols match known (insecure)
communication complexity lower bounds, and improve the communica-
tion complexity of both Yao’s garbled circuits and that of specific previ-
ously published protocols.

1 Introduction

Linear algebra plays a central role in computer science in general and in cryp-
tography in particular. Numerous cryptographic applications such as private
information retrieval, secret sharing schemes, multi party secure computation,
and many more make use of linear algebra. In particular, the ability to efficiently
solve a set of linear equations constitutes an important algorithmic and crypto-
graphic tool. In this work we design communication efficient secure protocols for
various linear algebraic problems.

The basic linear algebraic problem we focus on is linear subspace intersec-
tion. Alice and Bob hold subspaces of F k for some finite field F , each subspace
representing a set of linear equations held by the players. They wish to study
different properties of the intersection of their input subspaces, without leaking
any information not revealed by the result of the computation. The first variant
is a search problem where Alice and Bob wish to compute the intersection, while
in the second variant they only wish to decide whether the intersection is the
trivial zero subspace. We also consider the problems of picking a random vector
from the intersection, and of affine subspaces intersection.
? Research partially Supported by the Frankel Center for Computer Science.

?? Partially supported by a Kreitman Foundation Fellowship and by the Frankel Center
for Computer Science.

Cramer and Damg̊ard introduced secure protocols for solving various linear
algebraic problems [5]. Their work was done in the information theoretical setup,
with the main goal of reducing the round complexity to a constant. The com-
munication complexity of their protocols is Ω(k3) while the size of the inputs
is merely O(k2). Another approach for designing secure protocols for these lin-
ear algebraic problems is to apply the garbled circuit method of Yao [18]. The
communication complexity of such protocols is related to the Boolean circuit
complexity of the underlying problems. However, as these problems are strongly
related to the problem of matrix multiplication, the communication complexity
of the resulting protocol is essentially the circuit complexity of the latter. The
best known upper bound for this problem is O(kω) [6] for ω ∼= 2.38, which is
still larger than the input size.

We introduce a protocol for the subspace intersection problem1 with com-
munication complexity of roughly O(k2). Even for insecure computation, it is
shown in [3] that the deterministic communication complexity of the problem
is Ω(k2). This result agrees with ours up to a polylogarithmic factor. Although
determining the randomized communication complexity of subspace intersection
is an open problem, it serves as an evidence that our upper bound may be tight.
Our protocol gives rise to communication efficient secure protocols for problems
reducible to linear algebra, e.g., perfect matching, and functions with low span
program complexity [11]. Unlike the protocol of [5] and [18], our protocols are not
constant round. However, using a combination of our techniques and the general
techniques of [18], we achieve a round complexity of O(k1− 1

ω−1) ≈ O(k0.275).

Techniques We use public key homomorphic encryption to put the players in
the following situation: Alice holds a private key of a public key homomorphic
encryption scheme, while Bob holds an encrypted matrix. Bob wants to perform
computations on his matrix, such as checking if it has full rank, without leaking
any information on it. Specifically, we show how Bob can use Alice’s help to
securely perform the Gaussian Elimination procedure on the matrix. As the
current state of art in homomorphic encryption does not allow an encryption
scheme with both homomorphic addition and multiplication, we use standard
techniques to make Alice multiply encrypted elements for Bob.

The Gaussian Elimination procedure requires Bob to find a row with a non-
zero element in its leftmost coordinate for the elimination of the leftmost column.
As the matrix is encrypted, Bob cannot find such a row on his own. We use
Alice’s help and randomness to overcome this problem. Alice’s help in this case
may be interpreted as performing an ‘if’ statement in Bob’s code, although
the computation is oblivious. To save communication, we use the paradigm of
lazy evaluation, in which Bob uses Alice as a storage device as well. Instead of
instantly sending Bob the results of the computations, Alice keeps an image of
Bob’s memory, and sends him only the information he needs for the next round
of computation. To conclude, Bob uses Alice for calculations, for flow control,
and as a storage device, without enclosing any of his data to her.

1 All the bounds mentioned in the introduction are for the case where Alice and Bob
hold subspaces of dimension k/2. Exact bounds are presented later in the text.

The round complexity of our basic protocol is O(k). We use a combination
of the garbled circuit method of Yao, and the techniques described above, to
reduce the number of rounds to O(k0.275). We use randomness to ensure both
correctness and security for our protocols. In the context of finding a random
vector in the intersection of the input subspaces, we use a technique of adding
random constraints to reduce the solution set into only one solution. This is
inspired by the “hashing paradigm” [17] that was employed, e.g., by Bellare
et al. [2] for uniformly picking an NP witness. Another use of randomness is
achieved via the next basic linear algebraic claim. Take a rank r matrix and
multiply it from the left and from the right by random full rank matrices. Then,
with constant probability, the top-left r × r sub-matrix of the resulting matrix
is of rank r. This fact enables us to reduce problems on non-square matrices to
problems on their square counterparts.

Organization. We start in Section 2 with preliminaries and notation. In Sec-
tion 3 we present secure protocols for computing subspaces intersection and for
deciding if the intersection is trivial. Later, in Section 4, we design our main
building block, the Oblivious Gaussian Elimination protocol. In Section 5
we show how to securely pick a random vector from the intersection, and fi-
nally, in Section 6, we design secure protocols for analogous problems on affine
subspaces.

2 preliminaries

Notation. Let F be a finite field. We denote by v a row vector in the vector
space F k where k > 0 and 0 denotes the row vector whose entries are all zero.
For a matrix M with entries from F , we denote by Mi the ith row of M . For
an encryption scheme, we let λ be its security parameter. W.l.o.g, we assume
that the result of encrypting a field element is of length O(λ). We use neg(k) to
denote a function that is negligible in k, i.e. neg(k) = k−ω(1).

Homomorphic encryption schemes. Our constructions use semantically-secure
public-key encryption schemes that allow for simple computations on encrypted
data. In particular, we use encryption schemes where the following operations can
be performed without knowledge of the private key: (i) Given two encryptions
Enc(m1) and Enc(m2), we can efficiently compute Enc(m1 + m2); and (ii) Given
an encryption Enc(m) and c ∈ F , we can efficiently compute Enc(cm).

Several constructions of homomorphic encryption schemes are known, each
with its particular properties (see e.g. [15, 10, 8, 14, 16, 13, 7, 1]). These have been
in use in a variety of cryptographic protocols. Over F = GF (2), the encryption
scheme of Goldwasser and Micali [10], based on quadratic residuosity, is sufficient
for our constructions.

For a vector v ∈ Fn, we denote by Enc(v) the coordinate-wise encryp-
tion of v. That is, if v = 〈a1, . . . , an〉 where a1, . . . , an ∈ F , then Enc(v) =
〈Enc(a1), . . . ,Enc(an)〉. Similarly, for a matrix M ∈ Fm×n, we denote by Enc(M)
the m × n matrix such that Enc(M)[i, j] = Enc(M [i, j]). An immediate conse-

quence of the above properties of homomorphic encryption schemes is the abil-
ity to perform the following operations without knowledge of the secret key: (i)
Given encryptions of two vectors Enc(v1) and Enc(v2), we can efficiently com-
pute Enc(v1 + v2), and similarly with matrices. (ii) Given an encryption of a
vector Enc(v) and a constant c ∈ F , we can efficiently compute Enc(cv). (iii)
Given an encryption of a matrix Enc(M) and a matrix M ′ of the appropriate
dimensions, we can efficiently compute Enc(MM ′) and Enc(M ′M).
Adversary model. Our protocols are constructed for the two-party semi-honest
adversary model. Roughly speaking, both parties are assumed to act in accor-
dance with their prescribed actions in the protocol. Each party may, however,
collect any information he/she encounters during the protocol run, and try to
gain some information about the other party’s input.

Remark 1. Our protocols achieve information theoretic security for Bob while
Alice’s security relies on that of the underlying encryption scheme.

Basic Building Blocks. In our protocols Bob holds data encrypted by a public
key homomorphic encryption scheme, while Alice holds the private decryption
key. Bob uses Alice’s help to perform different calculations, without enclosing his
data to her. As a simple example of a protocol where Bob uses Alice’s help, as-
sume Bob holds Enc(a) and Enc(b) and needs to compute Enc(ab). Let Multiply
be the following (folklore) solution: (i) Bob chooses random masks ra, rb ∈R F
and sends Enc(a+ra) and Enc(b+rb) to Alice; (ii) Alice deciphers these messages
and returns Enc((a+ra)(b+rb)); (iii) Given Enc((a+ra)(b+rb)), Bob computes
Enc(ab) = Enc((a + ra)(b + rb)− rba− rab− rarb). It is easy to see that neither
Alice nor Bob gain any information about a and b (and ab). The communication
complexity of this protocol is O(λ). This protocol is easily generalized to vec-
tors of length k, the resulting protocol Vector Multiply is of communication
complexity O(λk).
Linear Algebra. We need the following simple linear algebraic claim.

Claim 1 ([4]) Let ka < kb be positive integers, F be a finite field, and M be
a ka × kb matrix over F . Suppose r ≤ rank(M) and let TA and TB be ka × ka

and kb × kb randomly chosen full rank matrices over F . Let M ′ = TAMTB, and
denote the top-left r× r sub-matrix of M ′ by N ′. Then with constant probability
rank(N ′) = r.

3 Linear Subspace Intersection

Let F be a finite field and k be a positive integer. Alice holds a subspace VA ⊆ F k

of dimension ka ≤ k. The subspace VA is represented by a ka×k matrix A, where
the rows of A span VA. Similarly, Bob’s input is a subspace VB⊆F k of dimension
kb, represented by a kb×k matrix B. Letting VI = VA ∩VB , Alice and Bob wish
to securely study different properties of VI .

The first variant of the problem is of computing the subspace VI itself. The
second is of deciding whether VI is the trivial zero subspace. Ignoring security

issues, computing the intersection of the input subspaces is at least as hard as
deciding whether they have a non trivial intersection. However, constructing a
secure protocol for the latter turns to be somewhat easier as the players gain
less information from its output.

A common step in solving both variants is the following reduction of comput-
ing VI into solving a homogeneous linear system. Let V ⊥

B be the perpendicular
subspace2 of VB . Define k′b = k−kb and let B⊥ be a k×k′b matrix whose columns
span exactly the subspace V ⊥

B . Finally define the ka × k′b matrix M = AB⊥.

Claim 2 Let v ∈ F ka . Then vA ∈ VI if and only if vM = 0.

Proof. If vA ∈ VI then vA ∈ VB , and thus vM = (vA)B⊥ = 0. For the other
direction, if vM = 0, then (vA)B⊥ = 0, and thus vA ∈ VB . As vA is a linear
combination of the rows of A, we get that vA ∈ VA, hence vA ∈ VA ∩ VB = VI .

3.1 Computing the Intersection

Protocol Intersection Computation securely computes VI in one round of
communication. The communication complexity of the protocol is O(λkak). The
protocol uses homomorphic encryption to enable a multiplication of an encrypted
matrix by an open matrix without the knowledge of the private decryption key.

Protocol Intersection Computation

Input: Alice (resp. Bob) holds a ka × k (resp. kb × k) matrix A (resp. B) over a
finite field F representing a subspace VA⊆F k (resp. VB⊆F k).
Output: Alice holds a matrix representing VI = VA ∩ VB .

1. Bob locally computes a k × k′b matrix B⊥ that represents the subspace V ⊥
B .

2. Alice generates keys for a homomorphic public key encryption system, and
sends Bob Enc(A) and the public key.

3. Bob randomly chooses a k′b×k′b full rank matrix TB , locally computes Enc(M),

where M
def
= AB⊥TB , and sends Enc(M) to Alice.

4. Alice decrypts M and computes the subspace K = ker(MT), that is, K =
{v : vM = 0} .

5. Alice computes the subspace VI = {vA : v ∈ K}.

Correctness and Security. The correctness of the Intersection Computation
protocol derives3 from Claim 2. Alice’s security immediately follows from the
fact she only sends information encrypted in a semantically-secure encryption
scheme. To prove Bob’s security, we show a simulator for Alice’s view. The
simulator and its related security proof appear in Appendix A.

2 Recall that V ⊥
B

def
= {u : 〈u, v〉 = 0 for all v ∈ VB}, and is of dimension k′b

def
= k − kb.

3 Note that although in the protocol M = AB⊥TB , Claim 2 still applies, as the
columns of B⊥ and the columns of B⊥TB both span the subspace V ⊥

B .

3.2 Deciding Whether the Intersection is Trivial

Let VA, VB be as above and VI their intersection4. By Claim 2, there is a non
trivial intersection between VA and VB if and only if there exist a non-zero vector
v ∈ F ka such that vAB⊥ = 0. This happens only if rank(AB⊥) < ka, that is,
if AB⊥ is not a full rank matrix. Hence, computing AB⊥ seems useful also in
deciding whether VI = {0}. However, unlike in the Intersection Computation
protocol ,we cannot have Bob sending AB⊥ nor any information regarding its
dimension to Alice. Such information would compromise the protocol privacy.

As in the Intersection Computation protocol, Alice sends an encryption of
her input and a public key to Bob, who computes an encryption of AB⊥. Here,
we are only interested in whether AB⊥ is of full rank. Our main building block
is a private protocol that transforms the encryption of AB⊥ into an encryption
of an upper triangular matrix5. In particular, there is a 0 on the main diagonal
of the resulting matrix if and only if AB⊥ is of full rank.

Definition 1 (Oblivious Gaussian Elimination Problem). Input: Alice
holds a private key of a public key homomorphic encryption scheme over a finite
field F . Bob holds a ka × kb matrix M encrypted by Alice’s public key, where
ka ≤ kb.
Output: Suppose rank(M) = r. In the end of the protocol Bob holds an encryp-
tion of a ka×kb matrix M ′. With probability 1−neg(k), the matrix M ′ is upper
triangular and: (i) There are at most r non-zero elements on the main diagonal
of M ′. (ii) With constant probability there are exactly r non-zero elements on
the main diagonal of M ′.

The following theorem summarizes the properties of our protocol for solv-
ing the Oblivious Gaussian Elimination Problem. The protocol is described in
Section 4.

Theorem 3. There is a secure protocol with communication complexity Õ(λkakb)
and round complexity k0.275

a , that solves the Oblivious Gaussian Elimination
Problem.

Having a secure protocol for solving the problem above, deciding the inter-
section of the input subspaces is done in two steps. A procedure for deciding
the intersection with one sided constant error probability is depicted in Protocol
Intersection Decision below. To get a protocol with negligible error proba-
bility, Alice and Bob run protocol Intersection Decision for m = ω(log k)
times. Alice and Bob then obliviously compute the logical OR of all the execu-
tions. The correctness of the protocol is straight forward assuming the correctness
of Oblivious Gaussian Elimination.

Theorem 4. Protocol Intersection Decision is a secure protocol for the sub-
space intersection decision problem. The communication complexity of the pro-
tocol is Õ(λkak) and the round complexity is Õ(k0.275

a).
4 W.l.o.g., we assume that ka + kb ≤ k, as otherwise VA and VB always have a non-

trivial intersection.
5 For non-square matrices upper triangular means i > j ⇒ M [i, j] = 0.

Protocol Intersection Decision

Input: Alice (resp. Bob) holds a ka × k (resp. kb × k) matrix A (resp. B) over a
finite field F representing a subspace VA⊆F k (resp. VB⊆F k). Let B⊥ be a k × k′b
matrix that represents the subspace V ⊥

B .
Output: If VI is not the trivial zero subspace, Bob outputs Enc(0) with probability
1. Else, with constant probability, Bob outputs Enc(r) for some non-zero r ∈ F .

1. Alice generates keys for a homomorphic public key encryption system, and
sends Bob Enc(A) and the public key.

2. Bob locally computes Enc(M), where M
def
= AB⊥. Note that M is a ka × k′b

matrix.
3. Alice and Bob run protocol Oblivious Gaussian Elimination on Enc(M).

Denote by M ′ the resulting ka × k′b matrix that Bob holds at the end of the
protocol execution.

4. Bob and Alice use the Multiply protocol such that Bob eventually locally

outputs Enc(r) where r
def
=

∏ka

i=1
M ′[i, i].

4 Oblivious Gaussian Elimination

In this section we introduce a protocol for the Oblivious Gaussian Elimination
problem (See Definition 1), with parameters matching Theorem 3. We first define
the Oblivious Gaussian Elimination problem for square matrices. Then we design
a protocol for this special case, and finally we reduce the problem on general
matrices to the problem on their square counterparts.

Definition 2 (Oblivious Gaussian Elimination Problem for Square Ma-
trices). Input: Alice holds a private key of a public key homomorphic encryption
scheme over a finite field F . Bob holds a k × k matrix M encrypted by Alice’s
public key.
Output: In the end of the protocol Bob holds an encryption of a k × k matrix
M ′. With probability 1 − neg(k), the matrix M ′ is upper triangular and: (i) If
M is full rank then with probability 1 − neg(k) all the diagonal entries of M ′

are non-zero. (ii) If M is not full rank then there is a 0 entry on the diagonal
of M ′.

There are two differences between this definition and Definition 1. Here, the
diagonal of the resulting matrix M ′ does not reflect the exact rank of M , but
rather only whether M is full rank or not. On the other hand, here we require
very high success probability, while in Definition 1, the success probability is
constant.

4.1 Gaussian Elimination

The Gaussian Elimination algorithm is a well known method for transforming
a matrix into a triangular form, while keeping its rank. Consider the following

‘textbook’ Gaussian Elimination procedure. To simplify the presentation, we
assume the underlying field is the unique finite field with two elements, that is,
F = GF(2). The generalization of all our protocols to other finite fields of fixed
size is straight forward6.

Input: A k × k matrix M over F = GF(2):
(1) Find a row Mj , such that the leftmost coordinate in Mj is 1, that is,
M [j, 1] = 1.
(2) For every i 6= j, if M [i, 1] = 1, add Mj to Mi, so that the result is 0 in the
leftmost coordinate.
(3) Swap the first and the jth rows of M .
(4) If k > 1, perform steps (1) – (4) on the lower-right (k−1)×(k−1) sub-matrix
of M .

Consider obliviously running Gaussian Elimination on an encrypted k × k
matrix M over GF(2) held by Bob. In step (1) Bob faces the problem of choosing
the row Mj as he cannot distinguish a 0 entry from a 1 entry, and letting Bob
(or Alice) learn j may compromise privacy. To go around this problem, we let
Alice and Bob eliminate the leftmost column using several rows. For each of the
rows they use, if the leftmost entry is 1 then we get the desired elimination. On
the other hand, if the leftmost entry is 0, the matrix is not changed at all. We
use randomization to guarantee that with high probability, the leftmost entry in
at least one of the rows used is 1.

4.2 Column Elimination

Protocol Basic Column Elimination securely eliminates the leftmost column
of a matrix using its jth row.

In the second step of the protocol Bob uses Alice’s assistance in computing
Enc(M [i, 1] ·M [j, 1] ·Mj). Note that if M [j, 1] = 0 then the result of step 2 is
an encryption of 0. Therefore, if M [j, 1] = 0, Bob adds encryptions of 0 to every
row, and thus M ′ = M . If M [j, 1] = 1, then Bob adds Mj exactly to the rows
Mi with M [i, 1] = 1, as in the Gaussian Elimination procedure.

The communication complexity of the protocol is O(λk2), as we run the
Vector Multiply protocol for O(k) times. However, in all iterations Bob mul-
tiplies an encryption of Mj . Hence, it is enough for Bob to randomly choose
rMj

and send Alice Enc(Mj + rMj
) only once. We get that the communication

complexity from Bob to Alice is reduced to O(λk) while the communication from
Alice to Bob remains O(λk2). The communication from Alice to Bob will later
be reduced as well.

6 To generalize our protocols to a field F , use the a sub-protocol for the following
problem: Bob holds Enc(a) for a ∈ F , and Alice holds the private decryption key. In
the end of the protocol Bob should hold Enc(a−1) if a 6= 0 and Enc(0) if a = 0. If |F |
is large, this can be done using the garbled circuit method of Yao, without affecting
the asymptotic complexity of the protocol.

Protocol Basic Column Elimination

Input: As in Definition 2
Output: At the end of the protocol Bob holds an encryption of a matrix M ′ with
the following properties: If M [j, 1] = 0 then M ′ = M . Otherwise, M ′

i = Mi for
every i ≤ j, and for i > j (i) if M [i, 1] = 0 then M ′

i = Mi, and (ii) if M [i, 1] = 1
then M ′

i = Mi + Mj .

For every j < i ≤ k do the following:

1. Alice and Bob run protocol Multiply, with Bob’s inputs being Enc(M [j, 1])
and Enc(M [i, 1]). As a result, Bob holds Enc(M [i, 1] ·M [j, 1]).

2. Alice and Bob run protocol Vector Multiply, with Bob’s inputs being
Enc(M [i, 1]M [j, 1]) and Enc(Mj). As a result, Bob holds Enc(M [i, 1] ·M [j, 1] ·
Mj).

3. Bob locally computes Enc(M ′
i) = Enc(Mi + M [i, 1] ·M [j, 1] ·Mj).

Oblivious Column Elimination. As we noted above, if the leftmost coordinate
of the eliminating row Mj is 0, running Basic Column Elimination does not
advance the elimination process. Protocol Oblivious Column Elimination be-
low uses the upper m rows of M to eliminate the leftmost column. The process
is successful if any of these m rows contains 1 in the leftmost coordinate, and
the parameter m is chosen such that this happens with high probability. Let
i ∈ {1, . . . ,m} be the minimal row index such that M [i, 1] is non-zero. Note that
(i) the column elimination process using any of the i − 1 upper rows does not
change the matrix; (ii) the ith row Mi eliminates the leftmost column of M ;
(iii) the column elimination process using rows i + 1 to m does not effect M
anymore. Denote by M ′ the resulting matrix.

Next, Alice and Bob swap the ith and first rows of M ′. However, as the
process is run obliviously, Bob does not know what i is. For that, we slightly
modify Gaussian Elimination. Note that if the elimination was successful, the
ith row in M ′ is the only row that does not have 0 in the leftmost coordinate.
Bob adds the top m rows in M ′ into the top row of the matrix: M ′

1 =
∑m

j=1 M ′
j .

The result is a leftmost 1 entry in at most two rows of M ′: the first and ith.
To eliminate the non-zero entry in M ′ we run Basic Column Elimination

once more using the top row. If M is a full-rank matrix, and there is a 1 entry in
the leftmost column of at least one of the top m rows of M , then in the resulting
M ′ satisfies: (i) M ′[1, 1] = 1 and (ii) M ′[j, 1] = 0 for 2 ≤ j ≤ k.

We note that Alice and Bob may agree on T by choosing a seed to a pseu-
dorandom generator. Hence, the communication complexity of this protocol
is m times that of protocol Basic Column Elimination. It is simple to ver-
ify that neither Alice nor Bob gain any information about M . Furthermore,
rank(M ′) = rank(M) as M is transformed into M ′ via a sequence of elemen-
tary matrix operations. Finally, the following claim shows that the elimination
is successful with high probability.

Protocol Oblivious Column Elimination

Input: As In Definition 2
Output: At the end of the execution Bob holds an encryption Enc(M ′) of a k× k
matrix such that rank(M ′) = rank(M). Furthermore, if the leftmost column of M
is non-zero then with high probability M ′[1, 1] = 1 and M ′[i, 1] = 0 for 2 ≤ i ≤ k.

1. Alice and Bob agree on a random non-singular matrix T ∈R GF(2)k×k.
Bob uses the homomorphic properties of the encryption scheme to compute
Enc(M ′) where M ′ = TM .

2. For every 1 ≤ i ≤ m(k), Alice and Bob run protocol Basic Column

Elimination with Bob’s inputs being Enc(M ′) and i.
3. Bob locally assigns M ′

1 =
∑m

j=1
M ′

j by adding the m upper encrypted rows

of M ′.
4. Alice and Bob run protocol Basic Column Elimination protocol with Bob’s

inputs being Enc(M ′)and 1.

Claim 5 Let M be a k× k matrix and T be a random k× k matrix of full rank,
both over GF(2) and let m = ω(log k). If the leftmost column of M is non-zero,
then with probability 1−neg(k), at least one entry in the leftmost column of the
top m rows of the matrix TM is non-zero.

Proof. Denote the leftmost non-zero column of M by c, the m top rows of T
by T1, . . . , Tm, and note that TM [i, 1] = Tic. If T was a random matrix, that is
T1, . . . , Tm were independently randomly chosen vectors, then for every i ∈ [m]
the probability that TM [i, 1] = 0 would be exactly 1/2. Hence the probability
that TM [i, 1] 6= 0 for at least one value of i would be 1− neg(k). As a random
matrix has full rank with constant probability [4], it follows that for a random
non-singular matrix the probability that such an event occurs is also negligible.

4.3 Oblivious Gaussian Elimination

We now have the ingredients to present our Oblivious Gaussian Elimination
protocol. On a matrix M ∈ GF(2)k×k, the protocol first applies Oblivious
Column Elimination, to eliminate the leftmost column, and then recurses on
the lower-right (k− 1)× (k− 1) sub-matrix. For clarity of presentation, we first
construct a ‘naive’ protocol, of communication complexity Õ(λk3) and round
complexity Õ(k), and then discuss how to reduce the communication complexity
to Õ(λk2) and the round complexity to Õ(k0.275).

As before, it is easy to verify that the parties gain no information about the
matrix M . The following claim asserts the correctness of the protocol.

Claim 6 At the end of the execution of the Oblivious Gaussian Elimination
Protocol, Bob holds an encryption of an upper triangular matrix M ′ as required
by Definition 2.

Protocol Oblivious Gaussian Elimination (for Square matrices)

Input and Output: As in Definition 2.

1. Alice and Bob run protocol Oblivious Column Elimination on M . Let Bob’s
output be Enc(M ′).

2. Alice and Bob recursively run Oblivious Gaussian Elimination, on the
lower-right (k − 1)× (k − 1) submatrix of M ′. Let Bob’s output be Enc(M ′′).

3. Bob locally outputs


Enc(M ′[1, 1]), Enc(M ′[1, 2]), . . . , Enc(M ′[1, k])

0
... Enc(M ′′)
0

.

4.4 Reducing Communication Complexity via Lazy Evaluation

Informally, in the above protocol, Bob uses Alice as a ‘calculator’ for performing
multiplications of encrypted field elements. The communication complexity of
protocol Oblivious Gaussian Elimination is O(λmk3) = Õ(λk3), by picking
m = polylog(k). We now show that Bob can also use Alice as a storage device,
and by this to reduce the communication complexity by a factor of k. Note that
in each round of the protocol, Bob sends to Alice one row and one column of
Enc(M), (masked with random vectors). In return, Alice sends O(k) vectors that
Bob adds to the matrix M . Each of these vectors is of size k, resulting in Õ(λk2)
communication per round.

However, as Bob is not using all the matrix entries in the following round,
we can have Alice send him only the single row and column that are needed for
completing the next round. We make a simple modification to the protocol, and
let Alice maintain a matrix L, where L[i, j] equals the sum of elements Bob needs
to add to the entry M [i, j]. Alice would then send Enc(L[i, j]) just before the ith
row, or the jth column is needed for Bob. Moreover, whenever Bob multiplies
his matrix by a full-rank matrix, Alice needs to multiply L by the same matrix,
and this is the reason why Alice and Bob choose the random matrices together.
This reduces the communication complexity of each round to Õ(λk), and hence
the communication of the entire protocol to Õ(λk2).

4.5 Reducing the Round Complexity

The round complexity of our protocol is linear in the matrix dimension, that is
Ω(k). In this section we show how to reduce the round complexity to sub-linear
while preserving the low communication complexity. The idea is to combine
our communication efficient protocol with the general purpose round efficient
protocol of Yao [18]. This idea was used before, in, e.g., [12].

The protocol is still based on Gaussian Elimination, only that here we elimi-
nate a number of columns together in the same round. Let ` = kε where 0 < ε < 1
is a parameter to be specified later. The first modification we make to Oblivious

Gaussian Elimination is that Bob multiplies the matrix M by full rank ma-
trices from both sides and not only from the left. By Claim 1, if M is a full
rank matrix then with constant probability, the top-left `× ` sub-matrix of M ,
denoted by N , is of full rank as well.

In this stage Alice and Bob execute a secure sub-protocol base on [18], such
that at the end of the protocol Bob holds an encryption of N−1 if N is invertible,
and an encryption of the 0 matrix if N is not full rank. Following this stage,
the protocol is very similar to the original Oblivious Gaussian Elimination
protocol. We divide the k rows of M into k/` blocks of ` rows each. Denote the
block of the top ` rows of M by K. The notations are depicted in Figure 1. For
every other `-rows block L, Alice and Bob perform the following:

N K

X L

.

.

.

.

.

.

`

`

k

k

Fig. 1. Notations for the round efficient protocol.

Denote the ` × ` left sub-matrix of L by X. Bob uses the help of Alice to
compute L← L−XN−1K. If N is not invertible, then Bob has an encryption
of the 0 matrix as N−1, and thus the matrix is left unchanged. Otherwise,
this procedure zeros the ` leftmost columns of L. As this process succeeds with
constant probability, we repeat it a polylogarithmic number of times. Using basic
techniques Alice and Bob can make sure that after finding a non-invertible N ,
no changes are done to the matrix till working on the next block of columns.

We first analyze the communication complexity of the protocol excluding the
sub-protocol for computing N−1. The communication complexity from Bob to
Alice in each round is Õ(λ`k) as Bob sends a masking of the top ` rows and
the leftmost ` columns to Alice. Therefore, as there are k/` rounds, the overall
communication from Bob to Alice is Õ(λk2). The communication complexity
from Alice to Bob in each round is large as she needs to send O(λ`k) bits for
every `-rows block. However, as before, we use lazy evaluation. Alice only sends
Bob the O(λ`k) bits he needs for the next block of columns, and keeps a matrix
with the changes needed to be made to all the other entries in the matrix of Bob.
This makes the overall communication complexity from Alice to Bob O(λk2),
excluding the protocol for computing N−1.

We now analyze the communication complexity of the secure sub-protocol for
computing N−1. The communication complexity of securely inverting a matrix

using Yao’s garbled circuit method is related to the circuit complexity of matrix
inversion. As matrix inversion is reducible to matrix multiplication, this can be
done using a circuit of size O(`ω), where the best known upper bound [6] for ω
is approximately 2.38.

Therefore, the communication complexity of the sub-protocol is O(λ`ω). As it
is executed Õ(k/`) times through the protocol we get that the overall complexity
of executing the sub-protocol is:

(λk/`)`ω = λk`ω−1 = kkε(ω−1) = λk1+εω−ε.

To get a communication complexity of Õ(λk2), we set the value of ε such that
1 + εω − ε = 2, i.e., ε = 1/(ω − 1) = 1/1.38 ∼= 0.725. The round complexity of
the protocol is Õ(k1−ε) = Õ(k0.275). Choosing different values for `, one gets a
tradeoff between the communication complexity and the round complexity.

Theorem 7. There is a protocol for the Oblivious Gaussian Elimination Prob-
lem for Square Matrices (See Definition 2) over GF(2) with communication com-
plexity Õ(λk2) and round complexity Õ(k0.275).

4.6 Handling Non-Square Matrices

Protocol Oblivious Gaussian Elimination as described above works with very
high probability for square matrices. We now show how to generalize the pro-
tocol to non-square matrices using a reduction. On a non-square matrix M of
dimensions ka×kb, Bob first randomly chooses a ka×ka full-rank matrix TA and
a kb × kb full-rank matrix TB and computes M∗ = TAMTB . Suppose w.l.o.g.,
that ka < kb (otherwise perform the elimination on MT). Alice and Bob execute
the Oblivious Gaussian Elimination protocol on the top left ka × ka of M∗,
denoted by N∗. The kb − ka right columns of M are updated during the pro-
tocol, but are not eliminated. By Claim 2, if rank(M) ≥ r then with constant
probability, rank(N∗) = r, and thus after executing the Oblivious Gaussian
Elimination protocol on N∗, Bob holds an encrypted matrix Enc(M ′) such
that M ′ is upper triangular, and with constant probability M ′ has exactly r
non-zero entries on its diagonal. The communication complexity of the protocol
is Õ(λkakb) and the round complexity remains Õ(k0.275

a). This completes the
proof of Theorem 3.

5 Finding a Random Element in The Intersection

As in the previous sections, Alice holds a ka-dimensional subspace VA⊆F k rep-
resented by a ka×k matrix A, while Bob holds holds a kb-dimensional subspace
VB⊆F k represented by B. Alice and Bob wish to securely compute a uniformly
distributed random vector in the subspace VA∩VB . The main step in the design
of our protocol is the addition of random linear constraints to the linear system
created by the input subspaces, to reduce the number of solutions into only one
random uniformly distributed solution.

We start with a definition of the Oblivious Linear Solve Problem.

Definition 3 (Oblivious Linear Solve Problem). Input: Alice holds a pri-
vate key of a public key homomorphic encryption scheme over a finite field F .
Bob holds a ka × kb matrix M and a vector v ∈ F kb , encrypted by Alice’s public
key.
Output: (i) If there exists a vector x such that xM = v, then with constant prob-
ability, Bob holds an encryption of an arbitrary such vector, and with constant
probability Bob holds an encryption of 0. (ii) Otherwise Bob holds an encryption
of 0.

In Appendix B we modify protocol Oblivious Gaussian Elimination to
get protocol Oblivious Linear Solve whose properties are summarizes in the
following claim.

Claim 8 Protocol Oblivious Linear Solve is a secure protocol for the Obliv-
ious Linear Solve Problem. The communication complexity of the protocol is
Õ(λkak) and the round complexity is Õ(k0.275

a).

As in our previous protocols, Alice sends Bob Enc(A), and Bob computes
Enc(M) for M = AB⊥. By Claim 2, it is enough for Alice and Bob to find a ran-
dom solution vector x to the linear system xM = 0. However, this linear system
may have many solutions and picking an arbitrary solution is not satisfactory for
our purpose. Therefore, we add random linear constrains to the linear system.
That is, we concatenate a matrix R to M from the left, and a vector u to 0 and
solve the linear system x(R|M) = (u|0). We want to choose R and u so that
with high probability, the system has a unique uniformly distributed solution.

The number of constraints needed to be added to the linear system depends
on the dimension of the solution space of xM = 0. To this end, Alice and Bob first
execute the Oblivious Gaussian Elimination protocol on M . By Theorem 3,
with constant probability, the number of non-zero elements on the main diagonal
of the result matrix M ′ equals the rank of M . Thus, Alice and Bob add a random
linear constraint to R and u for every 0 on the main diagonal of M ′ and a trivial
x0 = 0 constraint for every non-zero element on the diagonal of M ′. Alice and
Bob pick each random constraint by Alice sending the encryption of a random
vector to Bob, who adds to it a second random vector. This way neither Alice
nor Bob have information regarding the random constraints used. The technical
method to add the constraints is depicted in Protocol Random Intersection
Vector.

After adding the random constraints, Alice and Bob run the Oblivious
Linear Solve protocol to get an encryption of a solution to the system x(R|M) =
(u|0). There are three possible cases: (i) The vector (u|0) is not in the row span
of the matrix (R|M). In this case we get x = 0. (ii) There exists a non-zero vec-
tor x such that x(R|M) = (u|0), but x is not unique. In this case it holds that
xM = 0 but we do not argue that x is a random vector satisfying this require-
ment. (iii) There exist a unique non-zero vector x such that x(R|M) = (u|0). In
this case, by a symmetry argument, the vector x is a random vector satisfying
xM = 0.

Protocol Random Intersection Vector

Input: Alice (resp. Bob) holds a ka × k (resp. kb × k) matrix A (resp. B) over
GF (2) representing a subspace VA⊆GF(2)k (resp. VB⊆GF(2)k).
Output: Alice locally outputs a random vector v satisfying v ∈ VA ∩ VB .

1. Alice generates keys for a homomorphic public key encryption system, and
sends Bob Enc(A) and the public key.

2. Bob locally computes Enc(M), where M
def
= AB⊥.

3. For every j ∈ {1, . . . , `}:
(a) Alice and Bob execute Protocol Oblivious Gaussian Elimination on M .

Let Bob’s output be Enc(M ′).
(b) For every 1 ≤ i ≤ ka, Alice and Bob choose a random vector wi and set

the ith column of the matrix R to be ci = (1 − M ′[i, i])wi. That is, For
every 0 on the diagonal of M ′, the vector ci is a random vector, and for
every 1 on the diagonal it is an encryption of 0.

(c) Bob generates the vector u ∈ GF(2)ka in the following way. For 1 ≤ i ≤ ka,
if M ′[i, i] = 1 Bob assigns u[i] = 0, while if M ′[i, i] = 0 Bob randomly
assigns u[i] ∈R {0, 1}. That is, Bob adds a random constraint for every 0
on the diagonal of M ′.

(d) Alice and Bob execute protocol Linear Equations Solve on (R|M) and
(u|0) to get an encryption of a vector xj such that xj(R|M) = (u|0), or
Enc(0) if no such vector exists.

4. Bob’s computes Enc(x) =
∑`

j=1
Enc(xj) and sends Enc(x) to Alice.

5. Alice outputs v = xA.

Alice and bob run Linear Equations Solve ` times and finally use the
sum of the vectors xj computed in these ` executions. The vectors x satisfy-
ing xM = 0 form a subspace, and hence are closed for addition. Thus, it is
enough for one execution of Linear Equations Solve to yield a random solu-
tion, as in case (iii) above. To get to case (iii) we need the Oblivious Gaussian
Elimination protocol to succeed and we need the linear system x(R|M) = (u|0)
to have a unique solution. The first event succeeds with constant probability. The
success probability of the second event equals the probability that the sum of
two random subspaces V1, V2⊆Fn of dimensions s and n−s satisfy V1⊕V2 = Fn.
The probability for this event is a constant as well. As both events occur with
constant probability, case (iii) occurs with constant probability, and thus it is
enough to run Linear Equations Solve ω(log k) times, to get a negligible error
probability.

Theorem 9. Protocol Random Intersection Vector is a secure protocol for
computing a random intersection vector. The communication complexity of the
protocol is Õ(λkak) and the round complexity is Õ(k0.275

a).

6 Intersection of Affine Subspaces

In the affine subspace intersection problem Alice’s input is an affine subspace
va + VA where va ∈ F k and VA⊆F k is a ka dimensional linear subspace. Simi-
larly, Bob’s input is vb + VB , where kb = dim(VB). We design secure protocols
for several problems concerning (va +VA)∩(vb +VB). Our protocols are based on
reductions to problems on linear subspaces. For example, to compute the inter-
section of two affine subspaces, we need both the Intersection Computation
and the Random Intersection Vector protocols on linear subspaces. The fol-
lowing simple claims reduces the problem into computing whether a vector is
contained in a subspace.

Claim 10 There exists a vector v ∈ (va +VA)∩(vb +VB) if and only if va−vb ∈
VA + VB.

Proof. Assume v ∈ (va + VA) ∩ (vb + VB). Then v = va + wa for some wa ∈ VA

and v = vb + wb for some wb ∈ VB . Hence va + wa = vb + wb, and therefore,
va − vb = wb −wa, which means that va − vb ∈ VA + VB . Now assume va − vb ∈
VA + VB . Then there exist wa ∈ VA and wb ∈ VB such that va − vb = wa + wb.
Then z

def= va − wa = vb + wb is in the intersection (va + VA) ∩ (vb + VB).

Claim 11 Suppose va + wa = vb + wb for some wa ∈ VA and wb ∈ VB. Then
(va + VA) ∩ (vb + VB) = (va + wa) + (VA ∩ VB).

Proof. Let v ∈ (va + VA) ∩ (vb + VB). Then there exist za ∈ VA and zb ∈ VB

such that v = va + za = vb + zb. As va + wa = vb + wb, by subtracting equations
we get wa − za = wb − zb. Since wa − za ∈ VA and wb − zb ∈ VB , we get that
wa − za ∈ VA ∩ VB . Thus v = (va + wa)− (wa − za) ∈ (va + wa) + (VA ∩ VB).

For the other direction, let v ∈ (va+wa)+(VA∩VB). Thus, v = va+wa+z =
vb + wb + z where z ∈ (VA ∩ VB). As wa + z ∈ VA and wb + z ∈ VB we get
v ∈ (va + VA) ∩ (vb + VB).

Deciding if (va + VA) ∩ (vb + VB) is empty. Protocol Affine Intersection
Decision below is based on Claim 10. I.e., it checks whether v = va − vb ∈
span(VA +VB). The privacy of the protocol follows from that of protocol Linear
Equations Feasibility, and the communication complexity is Õ(λk(ka +kb)).
Computing (va + VA) ∩ (vb + VB). We describe a protocol for computing (va +
VA)∩(vb+VB), assuming the intersection is not empty. By Claim 11, it is enough
for Alice and Bob to compute VA ∩ VB , and find wa ∈ VA and wb ∈ VB such
that va +wa = vb +wb. We use Protocol Linear Equation Solve on the matrix(

Enc(A)
Enc(B)

)
and the vector Enc(va+vb). In the end of Protocol Linear Equation

Solve Bob holds an encryption of a vector c ∈ GF(2)ka+kb . Bob denotes the ka

leftmost coordinates of c by wa. Alice and Bob now execute Protocol Random
Intersection Element on VA and VB , such that Bob holds an encryption of a
vector r ∈R VA ∩VB . Bob sends Enc(vi)

def= Enc(va + wa + r) to Alice. Now Alice

Protocol Affine Intersection Decision

Input: Alice holds a ka dimensional affine subspace va +VA of GF(2)k. Bob holds
a kb dimensional affine subspace vb + VB of GF(2)k.
Output: The output is 1 if and only if va + VA ∩ vb + VB 6= ∅.

1. Alice sends Bob Enc(A) and Enc(va), where A is a ka × k matrix representing
VA.

2. Bob computes Enc(B) and Enc(vb), where B is a kb × k matrix representing
VB .

3. Alice and Bob execute Protocol Linear Equations Feasibility on the ma-

trix

(
Enc(A)
Enc(B)

)
and the vector Enc(va+vb). Bob sends the outcome of Protocol

Linear Equations Feasibility to Alice, that decrypts it as the output.

and Bob execute Protocol Intersection Computation such that Alice learns
VI

def= VA ∩ VB . Alice outputs vi + VI .
Random Intersection Vector. Note that if instead of computing VI in the pro-
tocol above, Alice simply outputs vi, we get a protocol for computing a random
intersection element.
Acknowledgments. We thank Amos Beimel, Yinnon Haviv, Benny Pinkas
and Lior Zolf for helpful conversations.

References

1. D. Boneh, E. Goh, and K. Nissim. Evaluating 2-DNF Formulas on Ciphertexts.
TCC 2005 pages 325–341.

2. M. Bellare, O. Goldreich, and E. Petrank. Uniform Generation of NP-Witnesses
Using an NP-Oracle. In Inf. Comput. 163(2): 510-526 (2000).

3. A. Beimel, and E. Weinreb. Separating the Power of Monotone Span Programs
over Different Fields. In FOCS 2003: 428-437.

4. A. Borodin, J. von zur Gathen, and J. Hopcroft. Fast parallel matrix and gcd
computations. In Information and Control, 52(3):241-256, March 1982.

5. R. Cramer, and I. Damg̊ard. Secure Distributed Linear Algebra in a Constant
Number of Rounds. In CRYPTO 2001: 119-136.

6. D. Coppersmith, and S. Winograd. Matrix Multiplication via Arithmetic Progres-
sions. In Proc. 19th ACN Symp. on Theory of Computing, pp. 1–6, 1987.

7. I. Damg̊ard and M. Jurik. A generalization, a simplification and some applications
of Paillier’s probabilistic public-key system. In K. Kim, editor, Proceedings of
Public Key Cryptography 2001, volume 1992 of LNCS, pages 119–136. Springer,
2001.

8. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, 31(4):469–472, Jul 1985.

9. O. Goldreich. The Foundations of Cryptography - Volume 2. Cambridge University
Press, 2004.

10. S. Goldwasser and S. Micali. Probabilistic encryption & how to play mental poker
keeping secret all partial information. In Proceedings of the fourteenth annual ACM
symposium on Theory of computing, pages 365–377. ACM Press, 1982.

11. M. Karchmer and A. Wigderson. On Span Programs In Proc. of the 8th IEEE
Structure in Complexity Theory, pages 102–111, 1993.

12. Y. Lindell and B. Pinkas. Privacy Preserving Data Mining In J. Cryptology
15(3):177–206, 2002.

13. P. Pallier. Public-key cryptosystems based on composite degree residuosity classes.
In J. Stern, editor, Proceedings of Eurocrypt 1999, volume 1592 of LNCS, pages
223–238. Springer-Verlag, May 1999.

14. T. P. Pedersen. A threshold cryptosystem without a trusted party. In D. Davies, ed-
itor, Proceedings of Eurocrypt 1991, volume 547 of LNCS, pages 522–526. Springer,
1991.

15. R. L. Rivest, A. Shamir, and L. M. Adleman. A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems. Commun. ACM 21(2): 120–126 (1978).

16. T. Sander, A. Young, and M. Yung. Non-interactive CryptoComputing for NC1. In
Proceedings of the 40th Symposium on Foundations of Computer Science (FOCS),
pages 554–567, New York, NY, USA, Oct. 1999. IEEE Computer Society Press.

17. M. Sipser. A Complexity Theoretic Approach to Randomness. In Proc. of the 15th
Annual Symp. on the Theory of Computing, 1983.

18. A. C. Yao. Protocols for secure computations. In Proceedings of the 23rd Sym-
posium on Foundations of Computer Science (FOCS), pages 160–164. IEEE Com-
puter Society Press, 1982.

A Security proof for the Intersection Computation
Protocol

In this section we prove Bob’s security in Protocol Intersection Computation.
Note that the only information Bob sends to Alice is Enc(M), from which she
learns M .

Simulator Alice

Input: A ki × k matrix C representing VI , a ka × k matrix A representing VA and
an integer kb ≤ k.
Output: A matrix M in the same distribution of M in protocol Intersection
Computation.

1. Compute a ki × ka matrix D, satisfying DA = C. As VI⊆VA such a matrix
exists and is easy to compute.

2. Compute a kb × ka matrix E by adding kb − ki zero rows to D.
3. Compute the ka × kb′ matrix E⊥ whose columns represent the kernel of the

matrix E.
4. Randomly choose a k′b × k′b full rank matrix TE and output M = E⊥TE .

Claim 12 MS is distributed identically to M in Intersection Computation.

Proof. Define the subspace W = {v : vA ∈ A ∩B}. The rows of the matrices D
and E in the simulator span W . Therefore the columns of the matrix E⊥ span
the subspace W⊥. Moreover, according to Claim 2, the columns of the matrix
AB⊥ from protocol Intersection Computation also span W⊥.

Thus, there exists a full rank matrix T0 of dimensions k′b × k′b such that
E⊥T0 = AB⊥. The probability that a matrix MS is the simulator output is
PrTE

[MS = E⊥TE]. For every such choice of TE take TB = T−1
0 TE to be the

choice of the protocol, to get M = AB⊥TB = AB⊥T−1
0 TE = E⊥TE . Conversely,

for every random choice TB of the protocol, set TE = T0TB to get MS = E⊥TE =
E⊥T0TB = AB⊥TB . Therefore, the distributions are identical.

B Obliviously Solving Sets of Linear Equations

Let Bob hold an encrypted matrix Enc(M) and an encrypted vector Enc(v).
We consider the decisional and functional versions of solving the linear system
cM = v (i.e., deciding whether exists a vector c satisfying cM = v, and finding
such c).

Protocol Linear Equations Feasibility

Input: Alice holds a private key for a public-key homomorphic encryption scheme
over GF(2). Bob holds an encryption Enc(M) of a ka × kb matrix over GF (2) (we
assume ka ≤ kb; the general case is analogous), and an encryption Enc(v) of a
vector v ∈ GF(2)kb .
Output: If a vector c ∈ GF(2)ka exists such that cM = v then Bob locally outputs
Enc(1); Otherwise, he outputs Enc(0).

1. Bob randomly chooses a non-singular ka × ka matrix TR, and a non-singular
kb × kb matrix TC , and computes M ′ = TRMTC , and v′ = vTC .

2. Alice and Bob run protocol Oblivious Gaussian Elimination, on the (ka +

1) × kb matrix

(
M ′

v′

)
, with the following exception: when multiplying the

matrix M ′ by random matrices from the left, Alice and Bob pick a matrix
that does not change the lower row of M ′. Let Bob’s output be Enc(M ′′).

3. Alice and Bob use the Multiply protocol to compute an encryption of∏kb

i=1
(1−M ′′[ka + 1, i]). This product is 1 if and only if the ka + 1 row of M ′′

is 0.

In the first step of the protocol Bob multiplies M by random operators from
the left and from the right to get M ′ = TRMTC . The following simple claim
shows that it is enough to check if there exists a vector c′ such that c′M ′ = v′

to solve the original cM = v system.

Claim 13 There exists a vector c ∈ GF(2)ka such that cM = v if and only if
there exists a vector c′GF(2)ka such that c′M ′ = v′.

Proof. If there exists a vector c ∈ GF(2)ka such that cM = v, then the rows of
M span v. Multiplying M by TR from the left does not change the row space
of M . Thus, there exists a vector c∗ such that c∗TRM = v. Multiplying both
sides by TC from the right results in c∗M ′ = c∗TRMTC = vTC = v′. The other
direction follows similarly.

By Claim 1, if M is a rank r matrix, then with constant probability the r×r
top left sub-matrix of M ′ is of full rank. In the second step, Alice and Bob jointly

perform Gaussian Elimination on the matrix
(

M ′

v′

)
. We run the protocol on

the ka× ka top left sub-matrix, letting Basic Column Elimination update the
entire matrix. If the rows of the matrix M ′ span the row v′, then by the end
of the Gaussian Elimination protocol, the bottom row will be 0. Otherwise, the
bottom row will not be 0. In step 3. we translate a zero vector in the last column
to Enc(1), and a non-zero vector to Enc(0).

The protocol has a one-sided error. If the answer is NO then Bob will always
hold an encryption of 0. If the answer is YES, then if in step (1) the rank of
the top-left ka × ka sub-matrix of M ′ is that of M , Bob will hold an encryption
of 1. As this happens with constant probability, Alice and Bob can execute the
protocol a polylogarithmic number of times, and OR the results in order to make
the error probability negligible.
Solving the Linear System. Note that the computation done in the Gaussian
Elimination protocol may be viewed as multiplying M by non-singular matrices
from the right and from the left (for column elimination, and for randomizing).
That is, at the end of the protocol we get an encryption of M ′ where M ′ =
T1MT2 for some non-singular matrices T1 and T2.

To have Bob hold an encryption of a vector c such that cM = v, we need Bob
to hold an encryption of T1. We modify the Gaussian Elimination protocol such
that any operation done on the rows of the input matrix M is simultaneously
performed on the rows of a unit matrix Ika+1. At the end of this process Bob
holds an encryption T1Ika+1 = T1.

We now describe protocol Linear Equations Solve. We assume that cM =
v is feasible, and compute such a solution c. Alice and Bob execute proto-
col Linear Equations Feasibility, using the modified Oblivious Gaussian

elimination protocol. As a result, Bob holds a matrix T1 such that T1

(
M ′

v′

)
=(

M ′′

0

)
. Denote the lower row of T1 by t1. The vector t1 gives a linear combina-

tion of M ′ and v′ that gives the vector 0. Moreover, as we modified the Gaussian
Elimination protocol not to use the bottom row in the elimination process, the
rightmost entry of t1 must be 1. Thus, denoting the ka left entries of t1 by c1, we
get that c1M

′+v′ = 0, that is, over GF (2), c1M
′ = v′. Recall that M ′ = TRMTC

and v′ = vTC , and thus c1TRMTC = vTC . Therefore, c1TRM = v, and having
an encryption of c1, Bob can output Enc(c1TR) as the output of the protocol.

