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Abstract. Secret-sharing schemes are a tool used in many cryptographic
protocols. In these schemes, a dealer holding a secret string distributes
shares to the parties such that only authorized subsets of participants
can reconstruct the secret from their shares. The collection of authorized
sets is called an access structure. An access structure is ideal if there is
a secret-sharing scheme realizing it such that the shares are taken from
the same domain as the secrets. Brickell and Davenport (J. of Cryptol-
ogy, 1991) have shown that ideal access structures are closely related to
matroids. They give a necessary condition for an access structure to be
ideal — the access structure must be induced by a matroid. Seymour (J.
of Combinatorial Theory B, 1992) showed that the necessary condition
is not sufficient: There exists an access structure induced by a matroid
that does not have an ideal scheme.

In this work we continue the research on access structures induced by
matroids. Our main result in this paper is strengthening the result of
Seymour. We show that in any secret sharing scheme realizing the access
structure induced by the Vamos matroid with domain of the secrets of
size k, the size of the domain of the shares is at least k + £2(vVk). Our
second result considers non-ideal secret sharing schemes realizing access
structures induced by matroids. We prove that the fact that an access
structure is induced by a matroid implies lower and upper bounds on
the size of the domain of shares of subsets of participants even in non-
ideal schemes (this generalized results of Brickell and Davenport for ideal
schemes).

1 Introduction

Secret sharing schemes are a tool used in many cryptographic protocols. A secret
sharing scheme involves a dealer who has a secret, a finite set of n participants,
and a collection A of subsets of the set of participants called the access structure.
A secret-sharing scheme for A is a method by which the dealer distributes shares
to the parties such that: (1) any subset in A can reconstruct the secret from its
shares, and (2) any subset not in A cannot reveal any partial information about
the secret in the information theoretic sense. A secret sharing scheme can only
exist for monotone access structures, i.e. if a subset A can reconstruct the secret,
then every superset of A can also reconstruct the secret. Given any monotone
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access structure, Ito, Saito, and Nishizeki [22] show how to build a secret shar-
ing scheme that realizes the access structure. Even with more efficient schemes
presented since, e.g. in [5,41,10, 25,44, 21], most access structures require shares
of exponential size: if the domain of the secrets is binary, the shares are strings
of length 29(") | where n is the number of participants

Certain access structures give rise to very economical secret sharing schemes.
A secret sharing scheme is called ideal if the shares are taken from the same do-
main as the secrets. For example, Shamir’s threshold secret sharing scheme [40]
is ideal. An access structure is called ideal if there is an ideal secret sharing
scheme which realizes the access structure over some finite domain of secrets.
Ideal access structures are interesting for a few reasons: (1) they are the most
efficient secret sharing schemes as proved by [26], (2) they are most suitable for
composition of secret sharing schemes, and (3) they have interesting combinato-
rial structure, namely, they have a matroidial structure, as proved by [11] and
discussed in the next paragraph.

Brickell and Davenport [11] have shown that ideal access structures are
closely related to matroids over a set containing the participants and the dealer.
They give a necessary condition for an access structure to be ideal — the access
structure must be induced by a matroid — and a somewhat stronger sufficient con-
dition — the matroid should be representable over some finite field. The question
of an exact characterization of ideal access structures is still open. Seymour [39]
has shown that the necessary condition is not sufficient: there exists an access
structure induced by a matroid that does not have an ideal scheme. The fol-
lowing natural open question arises: How far from ideal can access structures
induced by matroids be? Is there an upper-bound on the shares’ size implied
by being an access structure induced by a matroid? There is no better known
upper bound on the share size than the 2°(") bound for general access struc-
tures. Most known secret sharing schemes are linear (see discussion in [2]). On
one hand, the number of linear schemes with n participants, binary domain of
secrets, and shares of size poly(n) is 2P°%¥(")_ On the other hand, the number of
matroids with n points is exp(2°(™) (see [47]) and every matroid induces at least
one access structure. Thus, for most access structures induced by matroids, the
size of the shares in linear secret-sharing schemes is super-polynomial. This gives
some evidence that access structures induced by matroids do not have efficient
secret sharing schemes for a reasonable size of domain of secrets.

Our Results. In this work we continue the research on access structures induced
by matroids. Seymour [39] showed that any access structure induced by the
Vamos matroid [46] is not ideal. Our main result is strengthening this result. We
consider an access structure induced by the Vamos matroid and show that in any
secret sharing scheme realizing this access structure with domain of the secret
of size k, the size of the domain of the shares is at least k + 2(v/k) (compared
to the lower bound of k + 1 implied by [39]). Towards proving this lower bound,
we needed to strengthen some results of [11] to non-ideal secret sharing schemes
realizing access structures induced by matroids. We then needed to generalize
Seymour’s ideas to obtain our lower bound. We note that the upper-bound on



the size of the domain of shares in a secret sharing scheme realizing the access
structure induced by the Vamos matroid is poly(k), thus our work still leaves
open the question of the minimal-size share domain for this access structure.

Brickell and Davenport [11] proved that the size of the domain of shares of
a subset of participants in an ideal scheme is exactly determined by the size of
the domain of secrets and the rank of the subset in the matroid inducing the
access structure. We consider non-ideal secret sharing schemes realizing access
structures induced by matroids. We prove that the fact that an access structure
is induced by a matroid implies lower and upper bounds on the size of the domain
of shares of subsets of participants even in non-ideal schemes. These lower and
upper bounds, beside being interesting for their own, are used to prove our
main result. We need both the lower bounds and the upper bounds to prove our
main result — the lower bound on the size of the domain of shares in the Vamos
matroid.

We prove two incomparable versions of such bounds. The first version, in
Section 3, contains somewhat weaker bounds; however, this is the version we can
use in the proof of our main result. The second version, in Section 5, contains
bounds on the entropy of shares of subsets of participants. Entropy arguments
have been used to give bounds on the size of shares in secret sharing schemes
starting with [26,12]. Specifically, entropy arguments have been used for ideal
secret sharing schemes in [27]. We were not able to use the bounds we proved
via entropy in the proof of our main result for technical reasons. We include
them in this paper since we believe that they are interesting for their own sake.
Furthermore, they might be useful in proving stronger bounds than the lower
bound proved here, either for the matroid induced by the Vamos matroid, or for
access structures induced by other matroids. See discussion in Example 4 at the
end of this paper.

Historical Background. Secret sharing schemes were introduced by Blakley [6]
and Shamir [40] for the threshold case, that is, for the case where the subsets that
can reconstruct the secret are all the sets whose cardinality is at least a certain
threshold. Secret sharing schemes for general access structures were introduced
by Ito, Saito, and Nishizeki in [22]. More efficient schemes were presented in,
e.g., [5,41,10,25,44,21]. Originally motivated by the problem of secure infor-
mation storage, secret-sharing schemes have found numerous other applications
in cryptography and distributed computing, e.g., Byzantine agreement [38], se-
cure multiparty computations [4, 13,15], threshold cryptography [19], and access
control [33].

Several lower bounds on the share size of secret-sharing schemes were ob-
tained [5,12,7,20,18,17]. The strongest current bound is 2(n?/logn) [17] for
the total size of the shares of all the participants, where n is the number of
participants in the system. However, there is a huge gap between these lower
bounds and the best known upper bounds of 2°(") for general access structures.
The question of super-polynomial lower bounds on the size of shares for some
(explicit or random) access structures is still open.



Ideal secret sharing schemes and ideal access structures have been first con-
sidered in [10] and have been studied extensively thereafter, e.g. in [1,3,8,11,
23,24,27,29-32,34,35,37,42,43,45,16]. There are two common definitions for
ideal access structures in the secret sharing literature. The first, that will also be
used here, can be found implicitly in [11] and explicitly in [31,1, 34,35, 3]. The
second can be found in [29, 30, 32]. Livne [28] pointed that these definitions are
not necessarily equivalent. Furthermore, he proposed a candidate access struc-
ture that is ideal according to one definition but possibly is not ideal according
to the stronger definition.

Organization. In Section 2 we present basic definitions of secret sharing schemes
and matroids, and discuss the relation between them. In Section 3 we prove
some technical lemmas concerning weak secret sharing schemes; these lemmas
are used to prove our main result. In Section 4 we prove a lower bound on the
size of shares in any secret sharing realizing the access structure induced by the
Vamos matroid. Finally, in Section 5 we prove upper and lower bounds on the
entropy of shares of subsets of participants in secret sharing schemes realizing
matroid induced access structures. In Appendix A we supply some background
results on the entropy function.

2 Preliminaries

In this section we define weak secret sharing schemes, review some background
on matroids, and discuss the connection between secret sharing schemes and
matroids.

Definition 1 (Access Structure). Let P be a finite set of participants. A
collection A C 2F is monotone if B € A and B C C C P imply that C € A. An
access structure is a monotone collection A C 2F of non-empty subsets of P. Sets
in A are called authorized, and sets not in A are called unauthorized. A set B is
called o minterm of A if B € A and for every C C B, the set C is unauthorized.
A participant is called redundant if there is no minterm that contains it. An
access structure is called connected if it has no redundant participants.

In this section we only give a relaxed definition of secret sharing scheme,
which we call a weak secret sharing scheme. The formal definition of (strong)
secret sharing scheme appears in Section 5. While in the definition of secret
sharing schemes it is required that the uncertainty of the secret given the shares
of an unauthorized subset of participants is the same as the a-priory uncertainty
of the secret (in the information theoretic sense), here we require merely that
no value of the secret could be ruled out, i.e. that each value of the secret has
probability greater than zero. In particular, every secret sharing scheme is a
weak secret sharing scheme. Thus, in the proof of our main result we prove
lower bounds on the size of shares in weak secret sharing schemes.

Definition 2 (Weak Secret-Sharing Scheme and Weakly Ideal Access
Structure). Let P be a set of participants, and let K be a finite set of secrets.



A weak secret sharing scheme with domain of secrets K is a matriz M whose
columns are indexed by P U {po}, where py ¢ P, and with all entries in column
po from K. When the dealer wants to distribute a secret s € K, it chooses a
rowr € M such that M, ,, = s, and privately communicates to each participant
p € P the value M, ,. We refer to M, , as the share of participant p. Given a
vector of shares Ka, denote by K (po|Ka) the possible values of the secret given
that the participants in A receive the vector of shares Ka .

We say that M realizes a weak secret sharing scheme for the access structure
A C 2F if the following two requirements hold:

CORRECTNESS. The secret can be reconstructed by any authorized set of par-
ticipants: |K (po|Ka)| =1 for any A € A and every possible vector of shares
K for the set A.

WEAK PRIVACY. Given a vector of shares of an unauthorized set of partici-
pants, none of the values of the secret can be ruled out: K (po|Ka) = K for
any A ¢ A and every possible vector of shares Ka for the set A.

If an access structure has a weak secret sharing scheme with shares’ domain of
every participant equal to the domain of the secret for some finite domain of
secrets, we say that the access structure is weakly ideal.

Ezample 1. As an example, consider Shamir’s threshold scheme [40]. Denote
P = {1,...,n}, let t < n, and define the threshold access structure A; =
{AC P :|A| >t}. We choose some prime number ¢ > n, and define a secret
sharing scheme with domain of secrets of size ¢q as follows. In order to distribute
a secret s € {0,...,q — 1}, the dealer randomly chooses, with uniform distribu-
tion, a polynomial p of degree t — 1 over GF(q) such that p(0) = s. The dealer
then distributes to each participant p; € P the share p(7). When an authorized
subset of participants (of size at least t) wants to reconstruct the secret, it has
at least t distinct points of the polynomial p, therefore it can determine p, and
it can calculate p(0). An unauthorized subset cannot eliminate any value of the
secret. In this scheme, the matrix M contains ¢ rows; a row (p(0), p(1),...,p(n))
for every polynomial p of degree t — 1 over GF(q).

We next give some notations concerning weak secret sharing schemes. Given
A,B C PU{po} and Kg € K(B), denote by K(A|Kg) the set of combinations
of shares the participants in A can receive given that the participants in B
received the vector of shares Kg. That is, if M’ is the restriction of M to
the rows such that the values in the columns in B are Kg, then K(A|Kg)
is the set of the distinct rows in the restriction of M’ to the columns in A.
Given Ka € K(A|Kg), we say that Ka coincides with Kg (that is, there is
a row in M that gives to the participants in A the shares in K and to the
participants in B the shares in Kg). Of course, this relation is symmetric. We
denote K ({vi,,vig,.--,vi,}) by K(vi,0iy,...,v;,). Given sets of participants
A,By,...,By C V, and vectors of shares K, € K(B;) for 1 < i < £, we
also denote K(A|Kn,,...,Kp,) as the set of vectors of shares the (ordered)
set of participants A can receive given that the participants of B; received the



shares Kg, for 1 < i < £. Given two sets of participants A,B C V, and a set
Xp C K(B) we denote K (A|Xp) = Uknex, K(AKB).

2.1 Matroids

A matroid is an axiomatic abstraction of linear independence. There are sev-
eral equivalent axiomatic systems to describe matroids: by independent sets, by
bases, by the rank function, or, as done here, by circuits. For more background
on matroid theory the reader is referred to [47,36].

Definition 3 (Matroid). A matroid M = (V,C) is a finite set V and a collec-
tion C of subsets of V that satisfy the following three azioms: (C0) 0 ¢ C. (C1)
IfX#Y and X,Y €C, then X €Y. (C2) If C1,C; are distinct members of C
and x € C1 N Cy, then there exists Cs € C such that C5 C (Cy U Cs) \ {z}. The
elements of V are called points, or simply elements, and the subsets in C are
called circuits.

For example, let G = (V, E) be an undirected graph and C be the collection
of simple cycles in G. Then, (E,C) is a matroid.

Definition 4. A subset of V is dependent in a matroid M if it contains a
circwit. If a subset is not dependent, it is independent. The rank of a subset
A CV, denoted rank(A), is the size of a mazimal independent subset of A. A
matroid is connected if for every pair of elements x,y there is a circuit containing
T andy.

The following lemma shows that a stronger statement than (C2) can be made
about the circuits of a matroid. Its proof can be found, e.g., in [47,36].

Lemma 1. If C1,Cy are distinct members of C and x € Cy N Cs, then for
any element y € C; A Cy there exists C3 € C such that y € C3 and C3 C
(C1UC2) \ {z}.

The following lemma, whose proof can be found in [47,36], states that if
a matroid is connected then the set of circuits through a fixed point uniquely
determines the matroid.

Lemma 2. Let e be an element of a connected matroid M and let C, be the set
of circuits of M that contain e. For Cy,Cy € C, define:

I.(Cy,Ca) Z(){Cs: C5 € C.,C5 € C1 U Ca}

and
D.(Cy1,Cs) Z (C1UCy) \ L(Cy, Cy).

Then, all of the circuits of M that do not contain e are the minimal sets of the
form D (C4y,Cs) where Cy and C2 are distinct circuits in Ce.



2.2 Matroids and Secret Sharing

We next define the access structures induced by matroids. This definition is used
to give a necessary condition for ideal access structures.

Definition 5. Let M = (V,C) be a matroid and po € V. The induced access
structure of M with respect to po is the access structure A on P =V \ {po},
where

AY {A: there exists Co € C such that po € Co and Co \ {po} C A}.

That is, a set is a minterm of A if by adding pg to it, it becomes a circuit of M.
We think of po as the dealer. We say that an access structure is induced from
M, if it is obtained by setting some arbitrary element of M as the dealer. In
this case, we say that M is the appropriate matroid of A.

If a connected access structure has an appropriate matroid, then this matroid
is also connected. Thus, by Lemma 2, if a connected access structure has an
appropriate matroid, then this matroid is unique. Of course, not every access
structure has an appropriate matroid.

We now quote some results concerning weak secret sharing schemes. Since
every secret sharing scheme is, in particular, a weak secret sharing scheme, these
results hold for the regular case as well. The following fundamental result, which
is proved in [11], connects matroids and secret sharing schemes.

Theorem 1 ([11]). If an access structure is weakly ideal, then it has an appro-
priate matroid.

The following result, which is implicit in [11], shows the connection between
the rank function of the appropriate matroid and the size of the domain of shares
of sets of participants.

Lemma 3 ([11]). Assume that the access structure A C 2F is weakly ideal, and
let (PU {po},C) be its appropriate matroid where pg ¢ P. Let M be an ideal
weak secret sharing scheme realizing A with domain of secrets (and shares) K.
Then |K (X)| = |K|"2*X) for any X C P U {po}, where rank(X) is the rank of
X in the matroid.

Remark 1. A corollary of Lemma 3 is that M can realize a secret sharing scheme
for any access structure induced from M (i.e., with every element set as the
dealer).

Ezample 2. Consider the threshold access structure A; and Shamir’s scheme [40]
realizing it (see Example 1). The appropriate matroid of A; is the matroid with
n+1 points, whose circuits are the sets of size ¢+ 1 and rank(X) = min {|X|,t}.
Since every t points determine a unique polynomial of degree t — 1, in Shamir’s
scheme |K (X)| = |K|™{IXI:t} as implied by Lemma 3.



3 Secret Sharing Schemes Realizing Matroid-Induced
Access Structures

We now prove some lemmas concerning weak secret sharing schemes and matroid-
induced access structures with arbitrary size of shares domain. The next lemma,
gives a lower bound on the size of the shares of certain subsets of participants.
This lemma holds for every access structure.

Lemma 4. Let A C 2P be an access structure, A, B C P, and b € B\ A
such that AUB € A and AU B\ {b} ¢ A. Denote the dealer py and define
K = K(po) (that is, K is the domain of secrets). Then, |K(b|Ka)| > |K| for
any Ka € K(A).

Proof. Since AU B\ {b} ¢ A, by the privacy requirement, for any Kaug\(b} €
K(AU B\ {b}),
K(p0|KAUB\{b}) = K (1)

Since A U B is authorized, by the correctness requirement, for any Kaus €
K(AuB),
|K(po|Kaus)| =1. (2)

Furthermore, K (po|KauB\{b}) = UKbEK(b\KAUB\{b}) K (po|KauB\{b}> Kp) for
any Kaus\(b} € K(AU B\ {b}). Since, by (2), every set in this union is of size
one, and since, by (1), the size of the union is |K|, there are at least |K| sets in
the union. Hence |K (b|Kaug\{b})| > |K|. Define Ka as the restrictions of the
vector Kaup\ by to the set A. Since K (b|Kaus\{b}) € K(b|Ka), the lemma
follows. O

Lemma 5. Let M = (P U {po},C) be the appropriate matroid of an access
structure A C 2F, and let C € C such that po € C. Let A C P U {po} and
D C P such that AND =0. If AUD C C, then |K(A|Kp)| > |K|Al for every
Kp € K(D).

Proof. We will prove the lemma by induction on |A|. If |A| = 0, the claim is
trivial. For the induction step, let a € A. Since AUD C C, we have AUD\{a} C
C. By the induction hypothesis, |K (A \ {a} |Kp)| > |K|4!~!. Therefore, it is
sufficient to prove that |K(A|Kp)| > |K||K(A\ {a}|Kp)| for some a € A. If
po € A, then we choose a = pg. Note that AU D \ {po} is unauthorized. If this
is not the case, then A U D contains a circuit Cy which contains py. But since
A U D is properly contained in C, it follows that Cy is properly contained in
C, a contradiction to Axiom (C1) of the matroids. Now since AU D \ {po} is
unauthorized, by the privacy requirement, |K (po|Ka\{po}, Kp)| = |K]| for any
Ka\{po} € K(A\ {po}). Therefore, |K(A|Kp)| = |K||K(A\ {a}|Kp)|, which
concludes this case.

If po ¢ A, then we choose an arbitrary a € A. Now AUD\ {a} is unauthorized.
Otherwise (AUD\ {a})U{po} contains a circuit Cp which contains pg. But since
AUD is properly contained in C, it follows that Cy is properly contained in C, a
contradiction. Moreover, AUD C C'\{po}, and C'\{po} is authorized. Therefore,



by Lemma 4, |K (a|K\{a}, Kp)| > |K| for any Ka\(a} € K(A\ {a}). It follows
that |[K(A4)| > |K||K(A\ {a}|Kbp)|, which concludes the proof. O

In the ideal case, by Lemma 3 we have an upper bound on the share domain
of every subset of participants that form a circuit in the appropriate matroid. In
the non-ideal case we cannot apply Lemma 3. Lemma 6 will be used to overcome
this difficulty. To prove Lemma, 6, we need the following claim.

Claim. Let N and K be 2 finite sets, where |N| = m,|K| = k, and m > k. Let
f1, f2 be functions from a subset of N onto K. Then

| {{z1,22) 1 21,22 € N, fi(z1) = fo(z2)}| <k — 14 (m —k+1)°.

Proof. Without loss of generality, assume K = {1,2,...,k}. For 1 < i < k define
a; = |f7(6)] and b; = |f57(i)|- Then Y0, ;e ai < mand 3o, o5y bi < m, since
both these sums are the size of the domains of the functions. Moreover, since
both these functions are onto K, we have a; > 1 and b; > 1 for all 1 <4 < k.
Thus, 1 <ag;<m-—-k+1land1<b; <m-—k+1for every 1 <i < k. From
the definitions | {{z1,22) : ©1,22 € N, fi(z1) = fa(22)} | = D1 <i<) @ibi- Assume
without loss of generality that a; is maximal in aq,as,...,a;. Then

k k
Zaibi < Z(ai+a1(b,~—1)) <aim—-k)+m<k-1+m-k+12 O
i=1 i=1
We note that this claim is tight as shown in the following simple example:
1) = fo(i)=ifor1<i<kand fi({) = fo(i) =1for k+1<i<m.

Lemma 6. Let A be an access structure, and denote the dealer by py. Let A C P
and bi,ba € P such that A¢ A, AU{b1} € A, and AU {b2} € A. Consider a
weak secret sharing scheme realizing A in which the size of the domain of the
secret is k, and the size of the domain of the shares of each participant is bounded
by m. Then |K (b1,b2|Ka)| <k =1+ (m—k+1)? for any Ka € K(A).

Proof. Fix some Ka € K(A). Since AU {b1} € A, given K, any Ky, €
K (b1|Ka) determines the secret. Moreover, since A ¢ A, given Ka any value
of the secret is possible. Therefore, Ka induces a function from K (b;|Ka) onto
K (po). Formally, the set of 2-vectors K (by,po|Ka) viewed as a set of ordered
pairs form a function with K(b1|Ka) as its domain and K(pg) as its image.
Denote this function by f;. Similarly K a also induces a function from K (b2|Ka)
onto K (pg). Denote this function by fo.

Given Ka, consider any (z1,z2) € K (by,b2|Ka). There is a row 7 in M that
gives to the participants in A the values in Ka, and to by, bs the values z1,z
respectively. However, My o = fi(z1) = fa(z2). Informally, given Ka, the shares
z1 and x2 must “agree” on the secret. Thus, fi(z1) = fa(z2) for every (z1,2z2) €
K (b1,b2)]Ka). Since both f; and fs are onto K(po), and since the domain of
both functions is bounded by m, Claim 3 implies that |K (b1,b2|Ka)| < k—1+
(m—k+1)% O



4 Secret Sharing and the Vamos Matroid

In this section we prove lower bounds on the size of shares in secret sharing
schemes realizing an access structure induced by the Vamos matroid. The Vamos
matroid [46] is the smallest known matroid that is non-representable over any
field, and is also non-algebraic (for more details on these notions see [47,36]).

Definition 6 (The Vamos Matroid). The Vamos matroid V is defined on
the set V. = {v1,v2,...,vs}, and its independent sets are all the sets of cardi-
nality < 4 except for five, namely {vi,vs,v3,v4}, {v1,v2,05,6}, {v3,v1,05,06},
{vs,v4,v7,08}, and {vs,vs,v7,v8}.

Note that these 5 sets are all the unions of two pairs from {vq,v2}, {vs,v4},
{vs,v6}, and {v7,vs}, excluding {v1,vs,v7,vs}. The five sets listed in Defini-
tion 6 are circuits, a fact that will be used later. Seymour [39] proved that any
access structure induced by the Vamos matroid is non-ideal. In this section we
strengthen this result.

Definition 7 (The Access Structure Vg). The access structure Vg is the
access structure induced by the Vamos matroid with respect to vg.! That is, in
this access structure, a set of participants is a minterm, if this set together with
vg 18 a circuit in V.

Example 3. We next give examples of authorized and non-authorized sets in V.
The set {vs,vs,v7} is authorized, since {vs,vs,v7,vs} is a circuit. The circuit
{v1,v2,v3,v4} is unauthorized, since the set {v,vs,vs,v4,vs} does not contain
a circuit that contains vg. To check this, we first note that this 5-set itself cannot
be a circuit, since it contains the circuit {vy,va, v3,v4}. Second, the only circuit
it contains is {v1,v2, v3,v4}, which does not contain vs. The set {v1,v2,v3,v4,v5}
is authorized, since {v1,vs,vs,vs5,vs} is a circuit (as well as {vy,vs,v4,vs5,vs8},
{UI;U3;U4;U5;U8}; and {UQ,U3,'U4,'U5,'U8}).

For a given secret sharing scheme realizing Vg, assume |K(vg)| = k, and
|K(v;)] < mfor 1 <i <7, ie., the size of the domain of the secrets is k and
the size of the domain of the shares of each participant is upper bounded by m.
By [26], for every secret sharing scheme, the size of the domain of shares of each
non-redundant participant is at least the size of the domain of secrets, that is,
m > k. Seymour [39] proved that the Vamos access structure is not ideal, that
is, m > k + 1. We next strengthen this result. To achieve the lower bound on
m here, we fix an arbitrary (z1,z2) € K(v1,v2) and calculate an upper bound
on the size of K (v7,vs|z1,22) as a function of m and k. By Lemma 5 the size of
this set is at least k2, and thus, we achieve a lower bound on m.

! There are two non-isomorphic access structures induced by the Vamos matroid. The
access structure Vg is isomorphic to the access structure obtained by setting v, v2,
or vy as the dealer. The other access structure is obtained by setting vs, v4, vs, or ve
as the dealer.



Fix some arbitrary (z1,z2) € K (v1,v2), and define A = K (vs, vg|21,T2) (see
Fig. 1). Our goal is to count the possible shares {v7,vs} can receive given (z1, z2).
We upper bound this value by considering all the possible shares {vs,v6} can
receive given (x1,z2) (namely, the set A), and considering the union of all the
sets K (vr,vs|ys,ye) for all the vectors (ys,ys) in A. We first bound the size of
A.

Fig. 1. Sets in the proof of Theorem 2. Circles denote sets, and points denote elements
in the sets. Two elements are connected if they coincide. A line connects an element
and a subset, if the subset is the set of all elements that coincide with the element. For
example, (z1,z2) and A are connected with lines because A is the set of elements in
K (vs, vs) that can coincide with (z1,z2).

Lemma 7. [A4| < mw.

Proof. Fix an arbitrary x3 € K(vs|z1,22). The set {vi,v2,v3} is unautho-
rized (since {v1,va,v3,vs} is independent). Since {v1,v2,vs,v5,v8} is a circuit,
{v1,v2,v3,v5} is authorized. Similarly, the set {v1,v2,v3,v6} is authorized too.
Since |K (vs)| < m, and |K (vg)| < m, by Lemma 6,

|K (vs,v6|21,29,23)| < kb — 14 (m — &+ 1)2 (3)

We now bound the size of K (vs,vs,vs|%1,22). Notice that

K (vs,vs,v6|T1,22) = U {{y3, 5, 6) : {y5,96) € K (vs,v6|T1,22,3)} -
ys€K (vs|z1,22)

That is, we count all the y3’s that coincide with (z1,z2), and for each such ys
we count all the (y5,y6)’s that coincide with (1,2, ys). Since (3) is true for any



y3 € K (v3|x1,2), the size of each set in the union is at most k—1+ (m—k+1)2,
and since |K (v3|z1,22)| < |K(v3)| < m, there are at most m sets in the union.
Therefore,

|K (v3,v5,v6]T1,22)| <m (k—1+ (m—k+1)%). (4)

On the other hand,

K (vs, v5,v6|71,22) = U {(ys, ys,y6) : (ys) € K (vs|w1,22,¥5,96)} -
(y5,y6)EA

Since {v1,v2,vs5,v6} is unauthorized, but {vy,ve,vs,vs,v6} is authorized, by
Lemma 4 each set in this union is of size at least k. Since all these sets are
disjoint, and by (4), there are at most 2 (k — 1+ (m —k+1)?) sets in this union.
We conclude that [A] < m(k — 1+ (m — k + 1)?)/k. 0

In addition to %1, z2, fix an arbitrary vector (x3,z4) € K(v3,v4|21,22). We
define, in addition to A, a set of vectors B = K (vs,vg|T1, Lo, 23, 24). That is,
the set A is the shares {vs,vg} can receive given (z1,z>), and B is the shares
{vs,vg} can receive given (1,2, s, z4). Clearly B C A.

To count the vectors in K (v7,vg|A), we define two sets C = K (vy,vg|B) =
def

Uys .oy K (vr,vslys, ye), and D = K (vr,vs|A \ B).
Lemma 8. |C|+ |D| <m —k? + (%) m2.

Proof. First we show that |C| < |B|(m — k) + m. Define E = K (vr,vs|z3,x4).
Informally, we will show that E is small and for any (ys,ys) € B the set E
contains a large portion of K (v7, vs|ys,ye)-

Since {v3,v4,v7} is authorized and by the correctness requirement, given
(x3,%4) any y7 € K (v7|z3,24) determines the secret, therefore

|E| = |K (v7,vs|z3,24)| = | K (vr|x3,24)| < |K(v7)] < m. (5)

Since {vs,v4,vs,v6} is unauthorized, for any (ys,ys) € K (vs,vs|z3,24), and in
particular for any (ys,ye) € B, we have |K (vg|zs, 24, ys,y6)| = k. Therefore,

|K (vr,vs|®3, 24, y5,y6)| > k

for any (ys,ys) € B. Clearly, K(v7,vs|w3,%4,ys5,96) C E for any (ys,ys) €
B. Since K(v7,vs|®s,z4,y5,¥6) C K(vr,vs|ys,ys) we conclude that for any
<y57y6> € BJ

| K (v7,vs]ys,y6) N E| > k. (6)

That is, given any (ys,ys) € B, at least k elements from K (vr,vs|ys,ye) are
in E. We now upper bound the number of elements of K (v7,vs|ys,ys) not in
E. To do this, we bound the total number of elements in K (v7,vs|ys,ys) for
any (ys,ys). Since {vs,vg,v7} is authorized, by the correctness requirement,



given (ys,ys) any yr € K(vr|ys,ys) determines the secret, therefore for any
<y5ay6) € K(U57U6|$17m2)7

| K (v7,vslys, y6)| = | K (vr|ys, ye)| < K (v7)| < m. (7)
With (6), we conclude that for any (ys,ye) € B,
| K (v7,vs|ys,y6) \ E| <m — k. (8)

That is, given any {(ys,ys) € B, at most m — k elements from K (v7,vs|ys,Ys)
are not in E. Thus, by (5),

IC| < |E|+|B|(m — k) < m+|B|(m — k). (9)

Furthermore, by (7), given any element in A \ B, the number of possible shares
for {v7,vs} is at most m. Therefore,

D < |A\ B|m. (10)

Finally, since {v1,va,v3,v4} is unauthorized, but {vy, vs, vs, v4,vs} is authorized,
by Lemma 4 we have |K (vs|z1, 22, 23,24)| > k, and therefore

|B| = | K (vs, ve|21, 72,23, 74)| > | K (v5|T1, 22, T3, 24)| > k. (11)
We now complete the proof of the lemma:

|C|+|D| <m+ |B|(m—k)+|A\ Blm = m — k|B|+ |A/m
k—l+(n;—k+1)2)m2.

§m—k2+<

The first inequality follows (9) and (10). The equality is implied by the fact that
B C A. The last inequality follows (11) and Lemma 7. |

Lemma 9. For every (z1,z2) € K(v1,v2)
ok+(m—k+1)?
7 .

Proof. We first show that K (v7,vg|z1,22) C K(vr,vg|A). Take any (y7,ys) €
K (v7,vs|z1, z2). The vector (z1,z2,y7,ys) can be extended to a vector

K (v7,vg|T1,29) < m—k>+m

<$17x27y57y67y77y8) € K(’l)l,’l)g,’l)5,1}6,1}7,1)8).

Thus7 <y57y67y77y8) € K(“S;”G;ULUS) and <y57y6) [= K(U5,U6|$1,.Z’2) — A) and
so (y7,ys) € K(vr,vs|A). Consequently,

|K (7, vs|w1, 22)| < |K (v7,08|4)| < |C] +|D|
ok—1+(m—k+1)>2
k
ok + (m—k+1)2
- )

=m—-k+m

<m-k+m



Theorem 2. For any 0 < A < 1 there exists kg € N, such that for any secret
sharing scheme realizing Vg, with the domain of the secret of size k > ko, the
size of at least one share domain is larger then k + A\Wk.

Proof. Let 0 < A < 1, and assume m < k+M\k. Since {v1, vs,vs,v7,v5} is a cir-
cuit in the Vamos matroid and {v1, va,v7,vs} C {v1,v2,v3,v7,vs}, by Lemma 5,
|K (v7,vs|z1,72)| > k? for every (x1,72) € K (v1,v2) in any secret sharing scheme
realizing V. Combining this with Lemma 9, we have that if m is an upper bound
on the size of the domain of the shares, then the following inequality must hold:

_ 2
(m—k2+m2k+(mkk+l)>zk2. (12)

Since the left side of Inequality (12) increases as m increases, and since m <
k + Mk, we can substitute m with k + Av/k. After rearranging we have:

E+ Wk +1)?

k2 < k+ MWk =k + (B + X2k + 2)\kVE) -

= Nk + pa(k),
where py (k) is a polynomial of degree 1.5 in k. Thus, 1 — A2 < p*k#. Since

1 — A% > 0 and since limj_,o0 2 *kgk) = 0, we conclude that there exists some

ko € N, such that for any k > ko, Inequality (12) does not hold. We conclude
that for any k > kg, at least one participant must have domain of shares larger
than k + \Wk. O

5 Upper and Lower Bounds for Matroid Induced Access
Structures

In this section we define secret sharing schemes using the entropy function,
as done in [26,12], and then use some tools from information theory to prove
lower and upper bounds on sizes of shares’ domains of subsets of participants in
matroid induced access structures. The purpose of these lemmas is to generalize
Lemma 3 of [11] to non-ideal secret sharing schemes for matroid induced access
structures. These lemmas were not used in the proof of Theorem 2, but they
might be used to prove a stronger bound than the lower bound proved here. For
a review on the notions from information theory, see Appendix A. We start by
defining (strong) secret sharing schemes using the entropy function.

Definition 8 (Distribution Scheme). Let P be a set of participants, and
po ¢ P be a special participant called the dealer. Furthermore, let K be a fi-
nite set of secrets. A distribution scheme X with domain of secrets K is a pair
({M®} x> s} e i) where {M?®}, i is a family of matrices whose columns
are indexed by P, and II; is a probability distribution on the rows of M? for
each s € K. When the dealer wants to distribute a secret s € K, it chooses
according to the probability distribution I1; on M?®, a row r € M?®, and privately
communicates to each participant p € P the value M ,. We refer to M, as the
share of participant p.



Let A be an access structure whose set of participants is P, and denote the
dealer by pg. Assume that X is a distribution scheme for A. Any probability
distribution on the domain of secrets, together with the scheme X', induces a
probability distribution on K (A), for any subset A C P. We denote the random
variable taking values in K (A) according to this probability distribution by S4,
and denote the random variable taking values in K according to the probability
distribution on the secrets by S. Note that the random variable taking values in
K (AU B) can be written either as Saup or as S4SB.

Definition 9 (Secret Sharing Scheme). A distribution scheme is a secret
sharing scheme realizing an access structure A if the following two requirements
hold:

CORRECTNESS. The secret can be reconstructed by any authorized set.
Ae A= H(S|Sa)=0. (13)

PRrIVACY. Every unauthorized set can learn nothing about the secret (in the
information theoretic sense) from its shares. Formally,

A¢ A=> H(S|S4) = H(S). (14)

5.1 Lower Bounds on the Entropy of Shares of Subsets

Let po € V and let (V,C) be the appropriate matroid of an access structure
A C 2V\Mpo} In Theorem 3 we prove a lower bound on the entropy of the shares
of any subset of V. To prove Theorem 3 we prove two lemmas. The first lemma,
which generalizes Lemma 4, makes no use of the fact that .4 has an appropriate
matroid; it is proven for any access structure.

Lemma 10. Let A,B C V \ {po} and b € B\ A such that AUB € A and
AUB\ {b} ¢ A. Then, H(Sy|S4) > H(S).

Proof.

H(Sy|Sa) > H(Sp|SaSp\{py)  (from (21))

S|SauB) + H(Sy|Saus\qpy)  (since H(S|Saus) = 0 by (13))
SpS|SauB\{b}) (from (22))
SplSaup\{5}S) + H(S|SauB\{s}) (from (22))
> H(S) (from (19) and (14), and because AUB\ {b} ¢ A) U

A consequence of Lemma 10 is that if I C A for a minterm A and ¢ € I,
then H(S;|Sp\qi3) > H(S). Combining this with (20), we get by induction that
H(Sr) > |I|H(S). We now generalize this claim for every independent set. We
next prove a lemma on matroids that will be used to prove this generalization.
The next lemma, intuitively, states that in every independent set of participants
there is a participant that is needed in order to reveal the secret. That is, there
is a minterm (minimal authorized set) such that omitting this participant from
the union of the independent set and the minterm results in an unauthorized
set. Define Co = {C € C : py € C}.

H(
H(
H(
H(



Lemma 11. For every independent set I C V' \ {po}, there exists i € I and
C € Cp such that i € C and there is no Cy € Cy such that C; C CUT \ {i}.

Proof. For every i € I there exists a circuit C' € Cq such that i € C' (since M is
connected). Choose an i € I and C' € Cqy such that i € C and for every C' € Cq

INC' #0 = C"\ I is not properly contained in C'\ I. (15)

(Note that not necessarily every ¢ can be chosen.) We claim that such ¢ and
C satisfy the conditions of the lemma, namely, there is no C; € Co such that
Ci1 C CUTI\ {i}. Assume towards contradiction that this is not the case, and
choose C € Cy such that

C; CCUTIN\{i}. (16)

We have C1 NI # 0, otherwise C; C C' in a contradiction to Axiom (C1) of the
matroids. Therefore, by (15) and (16), C\I = C1\I. Let c € C\I = C;\I. Such
¢ exists, otherwise we have C; C I and so I is not independent. Since ¢ € CNCY,
by Axiom (C2) there exists a circuit Co C C' U Cq \ {c}. We have CoN1I # 0
(otherwise C» C C'), and so pg ¢ C> (otherwise we have a contradiction to (15)),
and so pg € C'\ Ca. Moreover, Cy \ I # 0, otherwise C2 C I contradicting the
independence of I. So there exists ¢’ € Cy \ I, where ¢’ # ¢. Since Co \I C C\ T
we have that ¢ € C'\ I, so ¢' € C, N C, and therefore there is a circuit C3 € Cy
such that C3 C Co UC \ {¢'} (from Lemma 1). Since ¢’ € C \ C3, we have
C3\ I C C\I. Moreover C3 NI # (0 (otherwise C3 C C), and therefore Cs is a
contradiction to the minimality of C'\ I (defined in (15)), so C and ¢ satisfy the
conditions of the lemma. O

Theorem 3. For every A CV,H(S4) > rank(A)H(S).

Proof. From the definition of the rank function and (20), it is sufficient to show
that the statement holds for any independent set I C V. Since every subset of
an independent set in a matroid is independent, by induction, it is sufficient to
show that for every independent set I there exists ¢ € I such that H(S;) >
H(S) + H(Sp\{i})- If po € I then since I is independent it contains no circuit,
and particularly no circuit which contains pg. Therefore, I \ {po} contains no
minterm, and we have I'\ {po} ¢ A. Now by (14) H(S|Sp\ (p,}) = H(S), and we
have H(S) = H(S|SI\{pO}) + H(SI\{po}) = H(S) + H(SI\{po})- Otherwise, by
Lemma 11 for every independent set I C V' \ {po}, there exists i € I and C € C
such that i € C and there is no C; € Cg such that C; C CUI\ {i}. Therefore, we
have TUC\{i,po} ¢ A, but ITUC\{po} € A, and so, by Lemma 10, H(S;|Sp (s}) >
H(S) and we have H(S[) = H(S,|SI\{1}) + H(SI\{z}) > H(S) + H(SI\{I}) O

5.2 Upper Bounds on the Entropy of Shares of Subsets

In Lemma 15 we prove an upper bound on the entropy of “the last element
of a circuit,” that is, we prove an upper bound on the entropy of an element
in a circuit, given the rest of the elements, and assuming an upper bound on



the entropy of the participants. This enables us to prove, in Theorem 4, upper
bounds on the entropy of shares of subsets. Let M and X be as above, and
assume that, for every v € V '\ {po}, H(Sy) < (1 + A\)H(S) for some A > 0.
Define Gy & {C € C:py € C} as above. For lack of space, some proofs in this
section are omitted.

Lemma 12. For every C € Co and c € C, H(S:|Sc\fc}) < AH(S).

Lemma 13. For every C € C\Cy and c € C, there exists C1,Cs € Cy such that
C =D,y (C1,C5), and ¢ € Cy \ Cy (where Dy, (C1,C3) is defined in Lemma 2).

Proof. From Lemma 2 there are Cy,Cy € Cp such that C' = D, (Cy,C2). If
¢ € C; A Cy we are done. Otherwise, ¢ € C; N Cz. By the definition of
D,,(C4,C>), there must be some C3 € Co such that C3 C C1UC: \{c} (otherwise
¢ € I, (C1,Cy)), and so we have ¢ € C1\C3. We now prove that C = D, (C1,C3)
and this completes the proof. Notice that C; U C3 C C7 U Cs, from which
we get Ipo(Cl,Cg) g Ipo(cl,C;;). Therefore, Dpo(Cl,C3) g Dpo(Cl,Cg). By
Lemma 2, the circuits which do not contain pg are the minimal sets of the
form D, (Cy,C5) for all C1,Cy € Cy. Thus, since Dy, (C1,Cs) is a circuit,
D,,(C1,C3) = Dp,(C4,C2), and therefore C' = D, (C1,C3) as desired. O

Lemma 14. Let C = D, (C1,Cs), and I = I, (C1,C2) \ {po}. Then,
H(S1|Sc) > |T/H(S).

Lemma 15. For every C € C\ Cy such that C = D,,(C1,Cs), and ¢ € C such
that ¢ € Cy \ Ca, H(Sc[Scn\ie}) < [po(C1, C2)|AH(S). In particular, for every
CeC\Co and c € C, H(Sc|Sc\{c}) < nAH(S).

Theorem 4. Let M = (V,C) be a connected matroid where |V|=n+1,py € V
and let A be the induced access structure of M with respect to py. Furthermore,
let X be a secret sharing scheme realizing A, and let A > 0 be such that H(S,) <
(L+NH(S) for everyv € V\ {po}. Then, for every ACV

H(S4) <rank(A)(1+ AN)H(S) + (4| — rank(A))A\nH(S).

The previous theorem is useful only when A < 1/(n—1) (otherwise the bound
H(S4) < |A|(1 4+ N)H(S) is better). We next show how to apply these results
to the Vamos matroid, considered in Section 4. We then compare this bound to
the bound we achieve in Section 4.

Ezxample 4. Consider a secret sharing scheme realizing the Vamos access struc-
ture Vg. Recall that the set {v1,vs,vs,v6} is a circuit of the Vamos matroid.
By Theorem 4, H(S{y, v5,v5,06}) < (3 +10A)H(S) (by using Lemma 15 we can
get a better dependence of A). Since {vi,v2} is independent, by Theorem 3,
H(S{vhvz}) > 2H(S). Thus, by (20), H(S{v5,v6}|5{v1,v2}) = H(S{vl,vz,v5,v6}) -
H(S{y,,v51) < (14+10X)H(S). Thus, there is a vector of shares (z1,z2) such that

H (S{U5,v6}|5{v1,v2} = <£L‘1,.Z‘2)) < (1 + IOA)H(S).



Now, we consider a specific setting of the parameters. Let us assume that
there are k possible secrets distributed uniformly, and the size of the domain
of shares of each participant is at most 2k. Thus, H(S) = logk and, by (18),
H(S,,) <log(2k) = H(S)+1 = (14 1/logk)H(S). Thus, there is a vector of
shares (z1,72) such that H(S{y; v51|S(v1,001 = (#1,22)) < (1 +10/logk)H(S).
This should be compared to the bound of approximately 2H (S) we can achieve
by Lemma 7 and (18). Notice that in the proof of our main result we prove in
Lemma 7 an upper bound on the number of possible shares of {vs,vs} given a
vector of shares (x1,z2) of {v1,v2}. Here we give a better upper-bound on the
entropy of the shares of {vs,vs} given a vector of shares (x1,z2) of {vi,v2}. We
do not know how to use this better bound on the entropy in the proof of the
lower bound for the Vamos access structure.
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A Basic Definitions from Information Theory

We review here the basic concepts of Information Theory used in this paper.
For a complete treatment of this subject, see [14]. All the logarithms here are of
base 2.

Given a probability distribution {p(z)} .y on a finite set X, we define the
entropy of X, denoted H(X), as

HX)= - > p(z)logp().
z€X,p(z)>0

Given two sets X and Y and a joint probability distribution {p(z,y)}
on X x Y, we define the conditioned entropy of X given Y as

HX|Y)E - ) > p(y)p(aly) logp(zly).
y€Y,p(y)>0z€X,p(z|y)>0

We also define the conditioned mutual information I(X;Y|Z) between X and Y
given Z as

rzeX,ycY

I(X;Y|Z) = H(X|Z) - HX|Y Z). (17)

For convenience, in the following text, when dealing with the entropy function

XY will denote X UY. We will use the following properties of the entropy

function. Let X, Y, and Z be random variables, and |X| be the size of the
support of X (the number of values with probability greater than zero).

0 < H(X) < log|X]| (18)

0 <H(X|Y) < H(X) (19)

HY)<XHXY)=HX|Y)+HY)<H(X)+ H(Y) (20)

H(X|Y) > H(X|YZ) (21)

H(XY|Z)=H(X|YZ)+ H(Y|Z) (22)

I(X;Y|2)=H(X|Z)- HX|YZ)= HY|Z) - HY|XZ) = I(V;X|Z) (23)



