
Efficient Multi-Party Computation
with Dispute Control?

Zuzana Beerliová and Martin Hirt

ETH Zurich, Department of Computer Science, CH-8092 Zurich
{bzuzana,hirt}@inf.ethz.ch

Abstract. Secure multi-party computation (MPC) allows a set of n
players to securely compute an agreed function of their inputs, even when
up to t players are under the control of an (active or passive) adversary.
In the information-theoretic model MPC is possible if and only if t < n/2
(where active security with t ≥ n/3 requires a trusted key setup).
Known passive MPC protocols require a communication of O(n2) field
elements per multiplication. Recently, the same communication complex-
ity was achieved for active security with t < n/3. It remained an open
question whether O(n2) complexity is achievable for n/3 ≤ t < n/2.
We answer this question in the affirmative by presenting an active MPC
protocol that provides optimal (t < n/2) security and communicates
only O(n2) field elements per multiplication. Additionally the protocol
broadcasts O(n3) field elements overall, for the whole computation.
The communication complexity of the new protocol is to be compared
with the most efficient previously known protocol for the same model,
which requires broadcasting Ω(n5) field elements per multiplication. This
substantial reduction in communication is mainly achieved by applying
a new technique called dispute control : During the course of the proto-
col, the players keep track of disputes that arise among them, and the
ongoing computation is adjusted such that known disputes cannot arise
again. Dispute control is inspired by the player-elimination framework.
However, player elimination is not suited for models with t ≥ n/3.

1 Introduction

1.1 Background

Secure multi-party computation (MPC) enables a set of n players to securely
evaluate an agreed function of their inputs even when t of the players are cor-
rupted by a central adversary. A passive adversary can read the internal state
of the corrupted players, trying to obtain information about the honest play-
ers’ inputs. An active adversary can additionally make the corrupted players
deviate from the protocol, trying to falsify the outcome of the computation.
The MPC problem dates back to Yao [Yao82]. The first generic solutions pre-
sented in [GMW87,CDG87,GHY87] were based on cryptographic intractability
? This work was partially supported by the Zurich Information Security Center. It

represents the views of the authors.

assumptions. Later, MPC protocols with information-theoretic security were de-
veloped [BGW88,CCD88,RB89,Bea91b], which is the focus of this work.

Information-theoretic security against a passive or active adversary is possible
if and only if t < n/2. The protocols with active security require broadcast chan-
nels, which can be simulated from scratch for t < n/3 [PSL80,BGP92,CW92], and
can be simulated when a trusted key setup is available for t < n [DS82,PW92].1

The communication complexity of MPC is measured in bits sent by honest
parties. The function to be computed is represented as an arithmetic circuit over
a finite field (with additions and multiplications). The classical MPC protocol
with passive security (for t < n/2) requires a communication of O(n2) field
elements per multiplication [BGW88]. Recently, the same communication com-
plexity was achieved for active security, including the costs for simulating the
broadcast channels [HM01]; however, this protocol is only suitable for t < n/3.
The most efficient actively secure MPC protocol for t < n/2 requires broadcasting
Ω(n5) field elements per multiplication [CDD+99], and each of these broadcasts
must be simulated with an expensive broadcast protocol [PW92].

1.2 Contributions

In this work, we show that information-theoretic MPC with adaptive active
security for t < n/2 is achievable with sending O(n2) field elements per multi-
plication, and broadcasting O(n3) field elements overall, for the whole compu-
tation. This improves on previous protocols which require broadcasting Ω(n5)
field elements per multiplication [CDD+99].

This result is of particular theoretical interest, as it shows that for all t for
which information-theoretic MPC is possible, i.e., t < n/2, (adaptive) active se-
curity is achievable at essentially the same costs as passive security. This extends
the result of [HM01], where only the range t < n/3 could be solved. The achieved
communication complexity might well be optimal, as even in the passive model
it seems unavoidable that for each multiplication gate, every player sends a value
to every other player.

The following table summarizes the communication complexities of known
and new MPC protocols, where κ denotes the security parameter (i.e., the bit-
length of a field element), BC(·) the number of broadcasted bits, and cM the
number of multiplication gates in the circuit. For simplicity, we assume that the
function takes n inputs and gives n outputs.

Thresh. Adv. Communication References

t < n/2 passive O
(
cMn2 + n2

)
κ [BGW88]

t < n/3 active O
(
cMn2 + n4

)
κ +O

(
n3

)
BC(κ) [HM01]

t < n/2 active O
(
cMn5 + n4

)
κ +O

(
cMn5 + n4

)
BC(κ) [CDD+99]

t < n/2 active O
(
cMn2 + n5κ

)
κ +O

(
n3

)
BC(κ) this paper

1 Even cryptographically secure broadcast and MPC require a trusted key setup for
t ≥ n/3.

Technically, the new protocol improves the approach of [CDD+99], which
requires Ω(n5) broadcasts per multiplication. We introduce a new concept, so-
called dispute control, that allows to substantially reduce the communication
complexity. The goal of dispute control is to reduce the frequency of faults that
the adversary can provoke by identifying a pair of disputing players (at least one
of them corrupted) whenever a fault is observed and preventing this pair from
getting into dispute ever again. Hence, the number of faults that can occur during
the whole protocol is limited to t(t+1). This technique is inspired by the player-
elimination framework [HMP00], and shares many advantages with it. However,
player elimination is not to be suited for models with t ≥ n/3. Furthermore,
player elimination is not applicable in the input stage, which results in our
protocol being more efficient than the protocol in [HM01] when the number of
inputs is large (n2κ bits per input in our protocol versus n4κ bits in [HM01]).

2 Protocol Overview

2.1 Model

We consider a set P of n players, P = {P1, . . . , Pn}, which are connected with a
complete network of secure synchronous channels. Furthermore, we assume the
availability of broadcast channels. These can be simulated when a trusted setup
is available [PW92]. The adversary corrupts up to t players for any fixed t with
t < n/2, and makes them deviate from the protocol in any desired manner. The
adversary is computationally unbounded, active, adaptive and rushing. The se-
curity of our protocols is information-theoretic with a negligible error probability
of 2−O(κ) for some security parameter κ.

For the ease of presentation, we always assume that the messages sent through
the channels are from the right domain — if a player receives a message which is
not in the right domain (e.g., no message at all), he replaces it with an arbitrary
message from the specified domain.

The function to be computed is specified as an arithmetic circuit over a finite
field F = GF (2κ), with input, addition, multiplication, random, and output
gates. We denote the number of gates of each type by cI , cA, cM , cR, and cO.

2.2 Dispute Control

In the active model, the adversary can provoke inconsistencies among the honest
players, who therefore regularly have to check their views and, in case of incon-
sistencies, invoke some fault-recovery procedure. These checks tend to be very
expensive (they require invocations to a Byzantine agreement primitive), and
must be performed even when no player deviates from the protocol.

The goal of dispute control is to reduce the frequency of faults by publicly
identifying (localizing) a pair of disputing players (at least one of them cor-
rupted) whenever a fault is observed and preventing this pair from getting into
dispute ever again. Hence, the number of faults that can occur during the whole
protocol is limited to t(t + 1).

The localized disputes are filed in a publicly known dispute set ∆ ⊆ P × P,
a set of unordered pairs of players that are in dispute with each other. A pair
{Pi, Pj} ∈ ∆ means that there is a dispute between Pi and Pj , hence either Pi

or Pj (or both) are corrupted. Note that from the point of view of Pi, the players
{Pj | {Pi, Pj} ∈ ∆} are corrupted, and Pi doesn’t care for them; in particular, he
won’t send or receive any private messages from them. As no honest player can be
in dispute with more than t players, we automatically include the pairs {Pi, Pj}
for every Pj ∈ P once Pi is involved in more than t disputes. Furthermore, we
define the set X to be the set of players who are undoubtedly detected to be
corrupted, i.e., those players who are in dispute with more than t other players.

Once dispute control is in place, we can take advantage of the fact that
the number of faults during the protocol is limited and reduce the number of
expensive consistency checks: We divide the protocol into n2 segments, run each
segment without any consistency checks and only at the end of the segment check
all operations of the segment in a single verification step. If the verification fails,
a new dispute is localized, and the segment is repeated. At most t(t+1) segments
can fail, and the total number of segment evaluations (including repetitions) is
at most n2 + t(t + 1), hence the overhead for repeating failed segments is only a
factor of 2. Formally the evaluation of each segment proceeds as follows:

1. Private (dispute-aware) computation. The effective protocol is com-
puted very efficiently but non-robustly. This computation is adjusted to pre-
vent faults due to disputes that are already registered in the dispute set ∆. In
particular, players in dispute do not communicate with each other privately.

2. Fault detection. The players jointly find out whether or not a fault has oc-
curred. This step typically requires each player to broadcast one bit indicat-
ing whether or not he observed an inconsistency within the current segment.
If no fault is reported, then the computation of the segment is completed,
and the next segment is evaluated. If at least one fault is reported, we say
that the segment has failed, and the following step is performed.

3. Fault localization and dispute control. The players publicly identify a
pair {Pi, Pj} of players, where at least one of them is corrupted and has
deviated from the protocol, and who are not yet registered in ∆. Then we
set ∆← ∆ ∪ {Pi, Pj} and restart the current segment.

2.3 Three-Level Secret-Sharing

We use three different levels of secret-shadings, all based on Shamir’s shar-
ing [Sha79], ameliorated with dispute control. The weakest level, called 1D-
sharing, is a polynomial sharing scheme, where the shares of players who are in
dispute with the dealer (implicitly) receive a fixed-0 share, called Kudzu-share. In
order to 1D-share a value s, the dealer PD selects a random degree-t polynomial
f(x) with f(0) = s and f(i) = 0 for every {PD, Pi} ∈ ∆, and sends the shares
si = f(i) to every Pi ∈ P (the Kudzu-shares are not really sent; instead, the
receiver sets his share to 0). A protocol VSS1D for verifiably 1D-share a bunch of
values will be given in Section 3.2. Note that 1D-sharings are not robust; recon-
struction requires that all players (except those with Kudzu-shares) cooperate.

However, they are detectable in the sense that it can be decided whether or not
the reconstruction was successful.

The middle level of secret sharing, called 2D-sharing, is a two-level polyno-
mial sharings scheme: The share si of each player Pi ∈ P is 1D-shared among
the players (for dealer Pi). More precisely, a value s is 2D-shared when there
exists degree-t polynomials f, f1, . . . , fn with f(0) = s and, for i = 1, . . . , n,
fi(0) = f(i) and ∀Pj ∈ P : {Pi, Pj} ∈ ∆ → fi(j) = 0. Every player Pi ∈ P
holds a share si = f(i) of s, the polynomial fi(x) for sharing si, and a share-
share sji = fj(i) of the share sj of every player Pj ∈ P. We say that Pi owns
the 1D-sharing of si, which means in particular that players who are in dispute
with Pi hold 0 as share-share of si. We will never have a dealer 2D-share a
value; instead, we will upgrade 1D-sharings (or rather sums of 1D-sharings) to
2D-sharings, using protocol Upgrade1Dto2D. Note that also 2D-sharings are not
robust.

The strongest level of secret sharing, called 2D∗-sharing, is a 2D-sharing,
where in addition, the share-shares are secured with information checking (see
Section 3.5). More precisely, for each share-share sij (which is not a Kudzu-share,
i.e., {Pi, Pj} /∈ ∆), the owner Pi of the sharing has provided authentication tags
for every verifier PV ∈ P who is neither in dispute with the owner Pi nor the
recipient Pj , i.e., {PV , Pi} /∈ ∆ and {PV , Pj} /∈ ∆. These authentication tags
allow PV in the reconstruction to verify the correctness of the received share-
shares; hence, 2D∗-sharings are robust. Actually, Pi does not distribute authen-
tication tags for every single share-share sij , but rather for huge collections of
many share-shares s

(1)
ij , . . . , s

(`)
ij , and PV can only verify the correctness of all

share-shares at once. Also 2D∗-sharings are never distributed by a dealer; in-
stead, we will upgrade collections of 2D-sharings to 2D∗-sharings, using protocol
Upgrade2Dto2D∗.

2.4 Main Protocol

The main protocol proceeds in three phases (each making use of segmentation
and dispute control):

Preparation phase: The preparation phase uses the circuit-randomization
technique of Beaver [Bea91a]: A number of so-called multiplication triples
(a, b, c) with c = ab are generated and shared among the players. These
triples will then be used in the computation phase for efficiently multiplying
shared values. Furthermore, a number of random values are generated and
shared, which will be used as outputs of random gates.

Input phase: In the input phase, every player with input shares his input
among the players.

Computation phase: In the computation phase, the circuit is evaluated gate
by gate (level by level), with help of the prepared multiplication triples
and the random values. Given the sharings of the multiplication triples, the
random values, and the inputs, the computation phase is fully deterministic.
Indeed, the computation phase can be seen as a sequence of reconstructions
of known linear combinations of shared values.

Each phase uses dispute control. We initialize the dispute set ∆ = {} and
enter the first segment of the preparation phase. Then we evaluate segment by
segment, and with each segment that fails and is to be repeated, the dispute set
∆ grows. Once all segments of the preparation phase have succeeded, the players
move on to the first segment of the input phase. Also in this phase, segments
can fail and have to be repeated. This allows corrupted players to change their
inputs. However, as the adversary obtains no information about whatsoever in
the input phase, this does not affect the independence of the inputs. Once all
input segments have succeeded, the players move on to the first segment of the
computation phase. In this phase, the players (and hence also the adversary) do
obtain information about their outputs; however, the computation stage is fully
deterministic. Even when a segment fails (and is repeated) after the adversary
has learned some output, he cannot influence the outputs of the honest players
anymore.

In the preparation phase and in the input phase, the private computation
is highly parallelized. All proposed sub-protocols process many inputs at once,
producing many outputs. This helps reducing the costs for the fault detection and
localization, as for all parallel instances, only one single fault-handling procedure
is executed. Often, instead of verifying single instances of some test data, we will
verify a random linear combination of many instances. Note that the protocols
themselves do not use broadcast, but fault handling does.

3 Sub-Protocols

All sub-protocols have a private (dispute aware) computation, a fault detection
and a fault localization. They can succeed or fail and the players always agree
(using broadcast) on what is the case. In case of a failure the public output of
the sub-protocol is a (new) pair of players E = {Pi, Pj}/∈ ∆ such as either Pi or
Pj (or both) are corrupted. If some invoked sub-protocol fails with E = {Pi, Pj}
then the invoking sub-protocol fails with E = {Pi, Pj} and is aborted (this abort
will be handled in the main protocol).

3.1 Dispute-Control Broadcast

The protocol DC-Broadcast allows every sender PS ∈ P \X to distribute a vector
of ` values s(1,S), . . . , s(`,S) among the players in P\X , such that it is guaranteed
that all honest recipients receive the same vectors (or the protocol fails).

This protocol is rather simple: Every sender directly transmits his vector to
the players he is not in dispute with, and via another player to those players he
is in dispute with. Then the players pairwisely compare their vectors by using
universal hash functions [CW79]. As universal hash with key k ∈ F , we use
the function Uk : F` → F , (s(1), . . . , s(`)) 7→ s(1) + s(2)k + . . . + s(`)k`−1. The
probability that two different vectors map to the same hash value for a uniformly
chosen key is at most `/|F|, which is negligible in our setting with F = GF (2κ).

Protocol DC-Broadcast.
1. Private Computation: The following steps are executed in parallel for

every sender PS ∈ P \ X :
1.1 PS sends s(1,S), . . . , s(`,S) to every Pi with {PS , Pi} /∈ ∆.
1.2 For every Pi with {PS , Pi} ∈ ∆ (but Pi /∈ X), the smallest player Pi′

with {PS , Pi′} /∈ ∆ and {Pi′ , Pi} /∈ ∆ forwards s(1,S), . . . , s(`,S) to Pi.2

We call Pi′ the proxy of Pi.
2. Fault Detection: The following steps are executed in parallel for every

verifier PV ∈ P \ X :
2.1 PV selects a key kV ∈R F for a universal hash function Uk and sends it

to every Pi with {PV , Pi} /∈ ∆.
2.2 Every Pi with {PV , Pi} /∈ ∆ sends the values hS,i =

UkV
(s(1,S), . . . , s(`,S)) for every PS to PV .

2.3 PV broadcasts a bit “accept” or “reject”, indicating whether for every
PS ∈ P\X , the hash values hS,i of each Pi with {PV , Pi} /∈ ∆ are equal.

If every verifier PV ∈ P\X broadcasts “accept” in Step 2.3, then the protocol
succeeds and terminates.

3. Fault Localization: The following steps are executed for the smallest
PV ∈ P \ X reporting a fault.
3.1 PV selects S, i, j such that PS /∈ X , {PV , Pi} /∈ ∆, and {PV , Pj} /∈ ∆,

and hS,i 6= hS,j , and broadcasts S, i, j, hS,i, hS,j , and k = kV .
3.2 We denote the proxies of Pi and Pj by Pi′ and Pj′ , respectively (if

no proxy exists, we set i′ = i, respectively j′ = j). The players
PS , Pi, Pj , Pi′ , Pj′ all compute and broadcast a hash value with key k of
their vector s(1,S), . . . , s(`,S), denoted as hS , hi, hj , hi′ , hj′ , respectively.
The protocol fails with E being the first pair (PV , Pi), (Pi, Pi′), (Pi′ , PS),
(PS , Pj′), (Pj′ , Pj), or (Pj , PV), where hS,i 6= hi, hi 6= hi′ , hi′ 6= hS ,
hS 6= hj′ , hj′ 6= hj , or hj 6= hS,j , respectively.

Lemma 1. If DC-Broadcast succeeds, then with overwhelming probability, for
each sender PS ∈ P \ X , all honest players in P hold the same vector
s(1,S), . . . , s(`,S), which is the vector of PS if honest. If the protocol fails, a new
dispute pair E is localized. The protocol communicates O(`n2 + n3) and broad-
casts O(n) field elements.

Proof. In order to prove that all honest players output the same vector
s(1,S), . . . , s(`,S) when the protocol succeeds, consider two honest players Pi and
Pj . As both Pi and Pj are honest, {Pi, Pj} /∈ ∆ holds, and Pi and Pj have
mutually exchanged universal hash values in Step 2. Hence, with overwhelming
probability, a difference in the vectors would have been detected and the proto-
col would have failed. It follows immediately from the protocol that when PS is
2 The existence of such a player Pi′ for PS′ /∈ X and Pi /∈ X follows by a counting

argument.

honest and the protocol succeeds, then all honest players receive the vector di-
rectly from PS . When the protocol fails with dispute pair E, then one can verify
by inspection that the two players in E disagree on a value they have privately
exchanged, hence either of the players must be faulty. And as players in dispute
do not communicate with each other, the localized dispute pair is new. ut

3.2 Verifiable Secret-Sharing

The protocol VSS1D allows every dealer PD ∈ P \ X to verifiably 1D-share `
values s(1,D), . . . , s(`,D) resulting in each player Pi ∈ P \ X holding the shares
s
(1,D)
i , . . . , s

(`,D)
i for each dealer PD. The correctness of these sharings is verified

by letting every player take on the role of a verifier PV and inspect a random
linear combination of the sharings of each dealer PD. For privacy reasons, each
such random linear combination is blinded with a random 1D-sharing, i.e., every
dealer PD 1D-shares additional n blinding values s(`+1,D), . . . , s(`+n,D).

Protocol VSS1D.
1. Private Computation: Every dealer PD ∈ P\X selects n random blindings

s(`+1,D), . . . , s(`+n,D). Then, PD 1D-shares s(1,D), . . . , s(`+n,D), i.e., for every
m = 1, . . . , `+n, PD picks a random polynomial f (m,D)(x) with f (m,D)(0) =
s(m,D) and f (m,D)(i) = 0 for every i with {PD, Pi} ∈ ∆ (the Kudzu-shares),
and sends the share f (m,D)(i) to every player Pi with {PD, Pi} /∈ ∆; every
player Pi with {PD, Pi} ∈ ∆ sets his share s

(m,D)
i = 0.

2. Fault Detection: Every verifier PV ∈ P \ X selects a random challenge
vector (r(1,V), . . . , r(`,V)). Then, DC-Broadcast is invoked to let every verifier
PV ∈ P \ X distribute his vector among the players Pi ∈ P \ X . Then the
following steps are executed for every verifier PV ∈ P \ X (we suppress the
index V and denote the challenge vector (r(1), . . . , r(`))):
2.1 For every dealer PD, the random linear combination f (∗,D)(x) of his 1D-

sharings is defined as f (∗,D)(x) =
∑`

m=1 r(m)f (m,D)(x) + f (`+V,D)(x).
Accordingly, for every dealer PD, every player Pi with {Pi, PD} /∈ ∆ and
{Pi, PV } /∈ ∆ sends to PV his share s

(∗,D)
i on f (∗,D)(x), i.e., s

(∗,D)
i =∑`

m=1 r(m)s
(m,D)
i + s

(`+V,D)
i .

2.2 For each dealer PD ∈ P \X , the verifier PV checks whether the received
shares s

(∗,D)
i define a correct 1D-sharing for PD, i.e., whether there

exists a degree-t polynomial f̃ (∗,D)(x) with f̃ (∗,D)(i) = s
(∗,D)
i for every

i with {PV , Pi} /∈ ∆ and {PD, Pi} /∈ ∆, and f̃ (∗,D)(i) = 0 for every i
with {PD, Pi} ∈ ∆ (Kudzu).3 PV broadcasts a bit “accept” or “reject”,
indicating whether or not the the above checks succeed for all dealers.

If all verifiers PV ∈ P \ X broadcast “accept” the protocol succeeded and
terminates.

3 Note that any linear combination of Kudzu-shares is Kudzu.

3. Fault Localization: The following steps are executed for the smallest PV

reporting a fault in Step 2.2.
3.1 PV broadcasts the index D of PD whose polynomial f̃ (∗,D)(x) does not

define a correct 1D-sharing.
3.2 Every player Pi with {Pi, PD} /∈ ∆ and {Pi, PV } /∈ ∆ broadcasts his

share s
(∗,D)
i .

3.3 If the broadcasted shares define a 1D-sharing for dealer PD, then
PV broadcasts the index i of a player Pi with {Pi, PV } /∈ ∆ and
{Pi, PD} /∈ ∆ who has broadcasted a different share s

(∗,D)
i in Step 3.2

than he has privately sent to PV in Step 2.1, and the protocol fails with
E = {PV , Pi}. Otherwise, when the broadcasted shares do not define a
correct 1D-sharing for dealer PD, then the dealer broadcasts the index
i of a player Pi with {Pi, PD} /∈ ∆ who has broadcasted a wrong share
s
(∗,D)
i and the protocol fails with E = {PD, Pi}.

Lemma 2. If VSS1D succeeds, then with overwhelming probability, the values
s(1,D), . . . , s(`,D) of each dealer PD ∈ P\X are correctly 1D-shared. If the protocol
fails, then the localized pair E = {Pi, Pj} is new (i.e., E /∈ ∆) and either Pi or
Pj (or both) are corrupted. The privacy of the inputs of the honest players is
guaranteed through the whole protocol (even if the protocol fails). The protocol
communicates O(`n2 + n3) and broadcasts O(n) field elements.

Proof. In order to prove the correctness, first consider a dealer PD, an honest
verifier PV , the (by PD supposedly correct 1D-shared) values s(1,D), . . . , s(`,D)

and the blinding value s(`+V,D). Assume that the sharing of one of the values
is not a correct 1D-sharing, i.e., the shares of the honest players (including the
Kudzu shares) lie on a polynomial of degree higher than t. Then there are at
most 2κ(`−1) (out of 2κ`) challenge vectors (r(1), . . . , r(`)) ∈ F` such that the
sharing of s(∗,D) =

∑`
m=1 r(m)s(m,D) + s(`+V,D) is a correct 1D-sharing, i.e.

the polynomial defined by the shares of the honest players is of degree t. As
the verifier PV chooses his challenge vector uniformly at random and gets the
correctly linearly combined shares from all honest players (an honest verifier is
in dispute with no honest player), the probability of him not detecting the fault
is at most 2κ(`−1)/2κ` = 1/2κ. Thus the probability that the protocol succeeds
in case of at least one faulty sharing (from any dealer) is negligible.

The privacy of the inputs of the honest players follows from the fact that
up to t shares give no information about the secret and from the fact that the
reconstructed linear combinations are blinded with a random value chosen by
the dealer himself (for every verifier a different one) and are so (for every honest
dealer) statistically independent from the dealers secret.

If the protocol fails, then the localized dispute pair consists of two players
who have publicly disagreed on a value they have privately exchanged in some
previous step (or a value computed from such values), therefore it is obvious,
that at least one of them is corrupted. As only players who are not in dispute
with each other communicate privately, the localized dispute is a new one. ut

We present a protocol for reconstructing sums of correct 1D-sharings. Con-
sider a set PD ⊆ P \ X of dealers and a set PR ⊆ P \ X of recipients
and the actual dispute set ∆. Every dealer PD ∈ PD has verifiably 1D-
shared (with the actual ∆) ` summands s(1,D), . . . , s(`,D) with the polynomials
f (1,D)(x), . . . , f (`,D)(x). We denote the share of f (m,D)(x) for player Pi ∈ P
by s

(m,D)
i . Note that s

(m,D)
i = 0 when {PD, Pi} ∈ ∆ (Kudzu). The values

s(1), . . . , s(`) to be reconstructed are defined as the sums of the above summands,
i.e., s(m) =

∑
PD∈PD

s(m,D). Each of these values is implicitly shared (as Shamir-
sharing, not as 1D-sharing) with the polynomial f (m)(x) =

∑
PD∈PD

f (m,D)(x);

we denote the (implicitly defined) share of each player Pi ∈ P by s
(m)
i = f (m)(i).

Protocol Reconstruct1D.
1. Private Computation: For every m = 1, . . . , `, every player Pi ∈ P com-

putes his sum share s
(m)
i =

∑
PD∈PD

s
(m,D)
i , and sends it to every PR ∈ PR

with {Pi, PR} /∈ ∆. Every PR ∈ PR checks for each m = 1, . . . , ` whether the
received shares lie on a polynomial f̃ (m)(x) of degree t. If so, it follows that
f̃ (m)(x) = f (m)(x), and PR reconstructs s(m) = f̃ (m)(0).

2. Fault Detection: Every PR ∈ PR broadcasts “accept” or “reject”, indicat-
ing whether he could reconstruct all values s(m) for m = 1, . . . , ` in Step 1. If
all recipients broadcast “accept”, then the protocol succeeds and terminates.

3. Fault Localization: The following steps are executed for the smallest
complaining recipient PR ∈ PR.
3.1 PR broadcasts the index m of the polynomial f̃ (m)(x) he could not

reconstruct.
3.2 Every player Pi with {Pi, PR} /∈ ∆ sends to PR his summand shares

s
(m,D)
i for every dealer PD ∈ PD with {Pi, PD} /∈ ∆.

3.3 PR verifies for every Pi with {Pi, PR} /∈ ∆ that the provided sum-
mand shares add up to the previously provided sum share, i.e.,∑

PD:{Pi,PD}/∈∆ s
(m,D)
i = s

(m)
i .4 In case of a fault, PR broadcasts the

index i of the bad player Pi, and the protocol fails with E = {Pi, PR}.
3.4 PR broadcasts the index D of a dealer PD ∈ PD such that the received

shares s
(m,D)
i do not define a correct 1D-sharing for dealer PD, i.e.,

there is no degree-t polynomial f(x) with f(i) = s
(m,D)
i for every i with

{Pi, PR} /∈ ∆ and {Pi, PD} /∈ ∆, and f(i) = 0 (Kudzu) for every i with
{Pi, PR} /∈ ∆ and {Pi, PD} ∈ ∆.

3.5 Every player Pi with {Pi, PR} /∈ ∆ and {Pi, PD} /∈ ∆ broadcasts his
summand share s

(m,D)
i .

3.6 If the broadcasted summand shares define a correct 1D-sharing for
dealer PD, then PR broadcasts the index i of a player Pi who has broad-
casted a different value s

(m,D)
i in Step 3.5 than he has privately sent

4 Note that the Kudzu-shares s
(∗,D)
i with {Pi, PD} ∈ ∆ are 0 and do not contribute

to the sum.

to PR in Step 3.2, and the protocol fails with E = {Pi, PR}. Oth-
erwise, when the broadcasted summand shares do not define a cor-
rect 1D-sharing for PD, then PD broadcasts the index i of a player
Pi who has broadcasted a wrong share s

(m,D)
i , and the protocol fails

with E = {Pi, PD}.

Lemma 3. If the values s(1,D), . . . , s(`,D) of each PD ∈ PD are correctly 1D-
shared (for the actual ∆), then the following holds: If Reconstruct1D succeeds,
then the privacy is guaranteed and every value reconstructed towards an honest
recipient lies on the degree t polynomial defined by the (at least t + 1) shares
of the honest players. If the protocol fails then the localized pair E = {Pi, Pj}
is new and contains at least one corrupted player. The protocol communicates
O(`n2) and broadcasts O(n) field elements.

Proof. As an honest verifier is not in dispute with any other honest player, he
will receive at least t + 1 shares of the honest players, which uniquely define
a degree t polynomial. If the shares received from the corrupted players lie on
this polynomial, he will reconstruct the right secret, otherwise the interpolated
polynomial will be of degree higher then t and the protocol will fail. The rest
follows (along the lines of proof of Lemma 2) from inspection of the protocol. ut

3.3 Generating Random Challenges

The following protocol allows the players to generate a publicly known (i.e., to
the players in P \ X) challenge vector s(1), . . . , s(`), or the protocol fails, if one
of the sub-protocols fails, and outputs a new dispute pair E = {Pi, Pj}:

Protocol GenerateChallenges.
1. Every player Pk ∈ P \ X selects a random summand vector s(1,k), . . . , s(`,k).
2. Invoke VSS1D to let every Pk verifiably 1D-share his summand vector.
3. Invoke the protocol Reconstruct1D (with PD = PR = P \ X) to reconstruct

the sum sharings
∑

Pk∈PD
s(1,k), . . . ,

∑
Pk∈PD

s(`,k) towards every Pj ∈ PR.

Lemma 4. If GenerateChallenges succeeds, then with overwhelming probability,
the generated values are uniformly distributed. If the protocol fails, then the local-
ized dispute pair E = {Pi, Pj} is new and contains at least one corrupted player.
The protocol communicates O(`n2 + n3) and broadcasts O(n) field elements.

3.4 Upgrading 1D-Sharings to 2D-Sharings

We present a protocol for upgrading sums of 1D-sharings to 2D-sharings. The
given 1D-sharings must be for the actual ∆; the correctness of these sharings is
implicitly verified in the upgrade protocol and must not be a priori guaranteed.
The protocol outputs correct 2D-sharings or it fails with a new dispute pair E.

Formally, we consider a set PD ⊆ P \ X of dealers, where each dealer PD ∈
PD has (for the actual ∆) 1D-shared ` summands s(1,D), . . . , s(`,D) with the
polynomials f (1,D)(x), . . . , f (`,D)(x). We denote the share of f (m,D)(x) for player
Pi ∈ P by s

(m,D)
i . Note that s

(m,D)
i = 0 when {PD, Pi} ∈ ∆ (Kudzu). The values

s(1), . . . , s(`) to be 2D-shared are defined as the sums of the above summands,
i.e., s(m) =

∑
PD∈PD

s(m,D). Each of these values is implicitly shared (as Shamir-
sharing, not as 1D-sharing) with the polynomial f (m)(x) =

∑
PD∈PD

f (m,D)(x);

we denote the (implicitly defined) share of each player Pi ∈ P by s
(m)
i = f (m)(i).

Protocol Upgrade1Dto2D.
1. Private Computation: The players first jointly generate a sharing of an

additional randomly chosen value s(`+1). Then, all `+1 sharings are upgraded
to 2D-sharings, and the correctness is verified with destroying the privacy of
this blinding value.
1.1 Every dealer PD ∈ PD picks a random summand s(`+1,D) and 1D-

shares it among the players with polynomial f (`+1,D)(x), resulting in
every player Pi holding a share s

(`+1,D)
i .

1.2 For every m = 1, . . . , ` + 1, every player Pi ∈ P \ X computes his sum
share s

(m)
i =

∑
PD∈PD

s
(m,D)
i , and 1D-shares it with the polynomial

f
(m)
i (x), such that f

(m)
i (j) = 0 for {Pi, Pj} ∈ ∆ (Kudzu). We denote

the share-shares as s
(m)
ij . The 1D-sharing of detected players Pi ∈ X is

the constant-0 sharing (all share-shares are Kudzu).
2. Fault Detection: In order to verify the correctness of the resulting shar-

ings, the players jointly generate a random challenge vector (r(1), . . . , r(`)) ∈
F` using the protocol GenerateChallenges. Then, the correctness of the 2D-
sharing of the random linear combination

∑`
m=1 r(m)s(m) + s(`+1) will be

verified (in parallel) by every player PV ∈ P \ X . We denote the linearly
combined polynomials by f(x) =

∑`
m=1 r(m)f (m)(x) + f (`+1)(x), respec-

tively fi(x) =
∑`

m=1 r(m)f
(m)
i (x) + f

(`+1)
i (x).

The following steps are performed in parallel for every verifier PV ∈ P \ X :
2.1 Every Pj with {PV , Pj} /∈ ∆ computes and sends to PV the follow-

ing linear combinations of his share-shares for every i = 1, . . . , n with
{Pi, Pj} /∈ ∆: sij =

∑`
m=1 r(m)s

(m)
ij + s

(`+1)
ij .

2.2 PV checks for each i = 1, . . . , n, whether the received share-shares sij

define a valid 1D-sharing for dealer Pi, i.e., there exists a polynomial
f̃i(x) with f̃i(j) = sij for every j with {PV , Pj} /∈ ∆ and {Pi, Pj} /∈
∆, and f̃i(j) = 0 (i.e., Kudzu) for every j with {Pi, Pj} ∈ ∆,5 and
broadcasts a bit “accept” or “reject”.

2.3. PV checks that the first-level sharing f̃1(0), . . . , f̃n(0) is a valid Shamir-
sharing of degree t and broadcasts “accept” or “reject”.

5 Observe that in this case f̃i(x) = fi(x).

If all verifiers PV broadcast “accept” in Steps 2.2 and 2.3, the protocol suc-
ceeded and terminates.

3. Fault Localization: The following steps are executed for the smallest
complaining verifier PV .
3.1 If the reported fault was in Step 2.2, i.e., PV observed that one of the

second-level sharings is not a correct 1D-sharing, the following steps are
executed:
3.1.1 PV broadcasts the index i of the invalid second-level sharing.
3.1.2 Every Pj with {Pj , PV } /∈ ∆ and {Pj , Pi} /∈ ∆ broadcasts sij .
3.1.3 If the broadcasted shares define a correct 1D-sharing, then there

exists a player Pj with {Pj , PV } /∈ ∆ who has broadcasted a
different value than he has privately sent to PV in Step 2.1. PV

broadcasts his index j, and the protocol fails with E = {PV , Pj}.
If the broadcasted shares do not define a correct 1D-sharing, the
owner Pi of this second-level sharing broadcasts the index j of
a player Pj (with {Pi, Pj} /∈ ∆) who has broadcasted a wrong
share sij 6= fi(j), and the protocol fails with E = {Pi, Pj}.

3.2 If the observed fault was in Step 2.3, i.e., PV could correctly interpolate
each second-level sharing f̃1(x), . . . , f̃n(x), but the interpolated values
f̃1(0), . . . , f̃n(0) do not define a valid (first-level) Shamir-sharing of de-
gree t,6 then the following steps are executed.
3.2.1 For every dealer PD, the random linear combination f (∗,D)(x) of

his 1D-sharings is defined as f (∗,D)(x) =
∑`

m=1 r(m)f (m,D)(x) +
f (`+1,D)(x). Accordingly, for every dealer PD, every player Pi

with {Pi, PD} /∈ ∆ and {Pi, PV } /∈ ∆ sends to PV his share
s
(∗,D)
i on f (∗,D)(x), i.e., s

(∗,D)
i =

∑`
m=1 r(m)s

(m,D)
i + s

(`+1,D)
i .

3.2.2 PV checks for every player Pi with {PV , Pi} /∈ ∆ that∑
PD:{Pi,PD}/∈∆ s

(∗,D)
i = f̃i(0).7 If the check fails for some Pi,

then PV broadcasts i, and the protocol fails with E = {PV , Pi}.
3.2.3 PV broadcasts the index D of PD such that the received shares

s
(∗,D)
i (for every i with {Pi, PD} /∈ ∆ and {Pi, PV } /∈ ∆) do not

define a correct 1D-sharing.
3.2.4 Every Pi ∈ P with {Pi, PV } /∈ ∆ and {Pi, PD} /∈ ∆ broadcasts

his share s
(∗,D)
i .

3.2.5 If the broadcasted shares define a correct 1D-sharing for dealer
PD, then PV broadcasts the index i of the player Pi with
{PV , Pi} /∈ ∆ who has broadcast a different share s

(∗,D)
i than

he has privately sent to PV in Step 3.2.1, and the protocol fails

6 Note that f̃i(0) = fi(0) for every i, i.e., f̃i(0) is the linear combination of the values

that Pi did indeed 1D-share as his shares s
(m)
i in Step 1.

7 Note that the Kudzu-shares s
(∗,D)
i with {Pi, PD} ∈ ∆ are 0 and do not contribute

to the sum.

with E = {PV , Pi}. If the broadcasted shares do not define a cor-
rect 1D-sharing for dealer PD, then PD broadcasts the index i of
a player Pi with {PD, Pi} /∈ ∆ who broadcasted a wrong share
s
(∗,D)
i , and the protocol fails with E = {PD, Pi}.

Lemma 5. If Upgrade1Dto2D succeeds, then with overwhelming probability, the
upgraded sharings are correct 2D-sharings. If the protocol fails, then the localized
pair E = {Pi, Pj} is new and contains at least one corrupted player. The privacy
of the shared values is guaranteed through the whole protocol (even if it fails).
The protocol communicates O(`n2 + n3) and broadcasts O(n) field elements.

Proof. Along the lines of the proof of Lemma 2. ut

3.5 Information Checking with Dispute Control

An information-checking (IC) scheme allows a sender to deliver a message to
a recipient in such a way that the recipient can later forward the message and
prove its authenticity to a designated verifier. More precisely, an IC-scheme for
a sender PS , recipient PR, and verifier PV , consists of two protocols:8

IC-Distr: The sender PS delivers the message m and some authentication tag y
to PR and some checking tag z to PV .

IC-Reveal: The recipient PR forwards m and y to PV , who uses z to verify the
authenticity of m, and either accepts or rejects m.

Our information-checking protocol is a variant of the information-checking
protocol of [CDD+99] with two modifications. First, our IC-Distr protocol may fail
in case of a fault; then, a dispute among two of the three players is identified.9

Second, our protocol supports authenticating long messages m = (m1, . . . ,m`) ∈
F` without additional costs.10

For authenticating m = (m1, . . . ,m`), a random degree-` polynomial f(x)
with f(i) = mi for i = 1, . . . , ` is chosen, then the authentication tag is y =
f(0) and the verification tag is a random point z = (u, v) with f(u) = v and
u ≥ `. One can easily verify that this approach satisfies completeness, secrecy,
and correctness (with error probability `/(|F| − ` − 1)) as long as the tags are
computed as indicated. In order to ensure that the sender computes the tags
correctly, we use a cut-and-choose proof: The sender generates and distributes
κ independent tags, and the verifier hands half of them to the recipient, who
checks them. The concrete protocols are given in the sequel:

8 In [RB89,CDD+99], a different notation is used. They denote the sender as “dealer”,
the recipient as “intermediary”, and the verifier as “receiver”.

9 In our context, the IC-scheme will be used only by triples of players with no a priori
dispute among them, so the identified dispute will be a new one.

10 The costs in the scheme of [CDD+99] grow linearly with the size of the message.

Protocol IC-Distr.
1. Private Computation: The sender PS , holding message m =

(m1, . . . ,m`), selects uniformly at random κ authentication tags
y1, . . . , yκ ∈R Fκ, κ elements u1, . . . , uκ ∈R (F \ {0, . . . , `})κ, and com-
putes v1, . . . , vκ such that for each i ∈ {1, . . . , κ}, the ` + 2 points
(0, yi), (1,m1), . . . , (`,m`), (ui, vi) lie on a polynomial of degree `. PS sends
the message m and the authentication tags y1, . . . , yκ to PR and the verifi-
cation tags z1 = (u1, v1), . . . , zκ = (uκ, vκ) to PV .

2. Fault Detection:

2.1 PV partitions the index set {1, . . . , κ} into two partitions I and I of
(almost) equal size, and sends I, I, and zi for every i ∈ I to PR.

2.2 PR checks whether for every i ∈ I, the points
(0, yi), (1,m1), . . . , (`,m`), zi lie on a polynomial of degree `, and
broadcasts either “accept” (and the protocol succeeded) or “reject”.

3. Fault Localization: If PR broadcasted “reject”, the protocol fails and:
3.1 PR selects i ∈ I such that the verification tag zi received from PV does

not match with the message m and the authentication tag yi received
from PS , and broadcasts i and zi.

3.2 PS and PV broadcast zi.
3.3 If the zi-s broadcasted by PS and PV differ, then E = {PS , PV }. Other-

wise, if the zi-s broadcasted by PR and PV differ, then E = {PR, PV }.
Otherwise, E = {PS , PR}.

Protocol IC-Reveal.
1. The recipient PR sends the message m and the authentication tags yi for

i ∈ I to the verifier PV .
2. The verifier with verification tags z1, . . . , z` accepts m = (m1, . . . ,m`) if

for any i ∈ I, the points (0, yi), (1,m1), . . . , (`,m`), zi form a polynomial of
degree `; otherwise, he rejects m.

Lemma 6. If IC-Distr succeeds and PV , PR are honest, then with overwhelming
probability PV accepts the message m in IC-Reveal (completeness). If IC-Distr
fails, then the localized pair E contains at least one corrupted player. If PS and
PV are honest, then with overwhelming probability, PV rejects any fake message
m′ 6= m in IC-Reveal (correctness). If PS and PR are honest, then PV obtains
no information about m in IC-Distr (even if it fails) (privacy).

Proof. Completeness: If the cut-and-choose proof is successful, then the proba-
bility that at least one of the remaining authentication tags is valid is at least
1 − κ/2κ. Correctness: The probability that an corrupted receiver can produce
at least one correct tag for a message m′ 6= m is equal to the probability, that
he can guess at least one verification point zi, which is less than κ/(2κ − `− 1).
Privacy follows from the fact that the verification tag is statistically independent
from the message. ut

3.6 Upgrading 2D-Sharings to 2D∗-Sharings

The following protocol upgrades ` 2D-sharings to 2D∗-sharings. We denote the
2D-shared values by s(m) (for m = 1, . . . , `), the shares of each player Pi ∈ P by
s
(m)
i , and P ′

js share-share of s
(m)
i by s

(m)
ij .

Protocol Upgrade2Dto2D∗.
1. For every triple of players Pi, Pj , Pk ∈ P with no dispute among them (i.e.,
{Pi, Pj} /∈ ∆, {Pi, Pk} /∈ ∆, {Pj , Pk} /∈ ∆), the protocol IC-Distr is invoked
for the message m = (s(1)

ij , . . . , s
(`)
ij) with sender Pi, receiver Pj and verifier

Pk. The message is not really sent, as Pj already holds it. Furthermore, these
up to n3 parallel invocations are merged when it comes to fault-detection
and fault-localization: Every player Pj broadcasts one single bit in the fault-
detection, indicating whether he observed a fault in one of the instances
he acted as recipient. Then, the smallest player Pj that reported a fault,
broadcasts i and k, indicating the instance i, j, k in which he observed the
fault, and fault-localization is invoked only for this instance.

Lemma 7. If the 2D-sharings to be upgraded are correct (for the actual ∆) and
the protocol Upgrade2Dto2D∗ succeeds, then the upgraded 2D∗-sharings are with
overwhelming probability correct. If the protocol fails, then the output pair E
is new and contains at least one corrupted player. The privacy of the shared
values is guaranteed through the whole protocol (even if it fails). The protocol
communicates O(n3κ) and broadcasts O(n) field elements.

3.7 ABC-Protocol

The following protocol allows every player Pk ∈ P \ X to prove that for every
m = 1, . . . , `, the (for the actual ∆ correctly) 1D-shared value c(m,k) is the
product of the (for the actual ∆ correctly) 1D-shared values a

(m)
k and b

(m)
k . This

ABC-protocol is inspired by the corresponding protocol of [CDD+99].
The intuition of the ABC protocol is the following (where we denote the

factors as a and b and the product as c): The prover shares a random a and
c = ab, i.e., (a, b, c) is a multiplication triple, and proves for a random challenge
r, that the shared triple (ra+a, b, rc+c) is a correct multiplication triple. This is
achieved by first reconstructing ã = ra+a, and then verifying that z = ãb−rc−c
is a sharing of 0. For the sake of efficiency, we parallelize this ABC-proof for
many triples and amortize the verification. Instead of reconstructing the sharing
of each ã, we ask the prover to send the (alleged) values ã to every player; who
then verify that a random linear combination of these sharings reconstructs to
the linear combination of the alleged values. Analogously, instead of verifying
each z to be zero, the players reconstruct a random linear combination of these
values, which must be zero.

Protocol ABC.
1. Every player Pk ∈ P \ X selects for each m = 1, . . . , ` a random a

(m)
k and

computes c(m,k) = a
(m)
k b

(m)
k .

2. Invoke VSS1D to let every Pk ∈ P \ X verifiably 1D-share a
(m)
k and c(m,k)

for m = 1, . . . , `.
3. Invoke GenerateChallenges to generate one random challenge r.

4. Every Pk ∈ P \X sends ã
(m)
k = ra

(m)
k +a

(m)
k for m = 1, . . . , ` to every Pi ∈ P

with {Pk, Pi} /∈ ∆.
5. Invoke GenerateChallenges to generate ` challenges r(1), . . . , r(`).
6. Invoke Reconstruct1D with PR = P \ X to publicly reconstruct âk =∑`

m=1 r(m)
(
ra

(m)
k + a

(m)
k

)
for k = 1, . . . , n.11

7. Every Pi ∈ P \ X checks for every Pk with {Pi, Pk} /∈ ∆ whether âk =∑`
m=1 r(m)ã

(m)
k , and broadcasts the index k of a player Pk for whom the

check failed, respectively ⊥ if all checks succeed. If at least one player Pi

broadcasts k with {Pi, Pk} /∈ ∆, then the protocol fails with E = {Pi, Pk}
for the smallest such Pi (and the accused Pk).

8. Invoke Reconstruct1D with PR = P \ X to reconstruct z(k) =∑`
m=1 r(m)

(
ã
(m)
k b

(m)
k − rc(m,k) − c(m,k)

)
for k = 1, . . . , n. Note that ã

(m)
k

is a constant known to all players Pi with {Pi, Pk} /∈ ∆,12 hence z(k) is a
linear combination of 1D-shared values, as required by Reconstruct1D. Note
that when this reconstruction succeeds, then every player PV ∈ P \X recon-
structs the same vector (z(1), . . . , z(n)).

9. Every player PV ∈ P\X checks whether the reconstructed values z(k) = 0 for
every Pk ∈ P \ X . If this check fails, then Pk is corrupted, and the protocol
fails with E = {Pi, Pk} for all Pi ∈ P (i.e., Pk is in dispute with every player).

Lemma 8. If all triples (a(m)
k , b

(m)
k , c(m,k)) are correctly 1D-shared for the ac-

tual ∆, then the following holds with overwhelming probability: If ABC succeeds,
then the checked triples (a(m)

k , b
(m)
k , c(m,k)) are correct multiplication triples, i.e.

c(m,k) = a
(m)
k b

(m)
k for every m = 1, . . . `, and their privacy is preserved. If the

protocol fails, then it localizes a new dispute pair E containing at least one cor-
rupted player (respectively localizes single player who is corrupted). The protocol
communicates O(`n2 + n3) and broadcasts O(n) field elements.

Proof. In order to prove correctness, assume that there is at least one (incor-
rect) triple (a(m)

k , b
(m)
k , c(m,k)) (of player Pk) such that c(m,k) 6= a

(m)
k b

(m)
k . Then

11 Note that the 1D-sharing âk belongs to dealer Pk. Formally, Reconstruct1D requires
every value to be reconstructed to be the sum of one 1D-sharing of each dealer in
PD; hence, we implicitly assume constant-0 1D-sharings for the other dealers, and
set PD = P \ X .

12 Note that Pk is the owner of the 1D-sharing of z(k); hence, the share of every player
Pi with {Pi, Pk} ∈ ∆ is Kudzu, and he does not need to know the constant ã

(m)
k .

there is at most one (out of 2κ) challenge r ∈ F such that (ra(m)
k + a

(m)
k)b(m)

k −
rc(m,k) − c(m,k) = 0. If (ra(m)

k + a
(m)
k)b(m)

k − rc(m,k) − c(m,k) 6= 0 then there are
at most 2κ(`−1) (out of 2κ`) challenge vectors (r(1), . . . , r(`)) ∈ F` such that the
sum z(k) =

∑`
m=1 r(m)

((
ra

(m)
k + a

(m)
k

)
b
(m)
k − rc(m,k) − c(m,k)

)
= 0. So pro-

vided that the values a
(m)
k , b

(m)
k , c(m,k), a

(m)
k , c(m,k) for m = 1, . . . , ` are correctly

1D-shared, the challenges are random, and in Step 4., player Pk sent the correct
ã
(m)
k = ra

(m)
k + a

(m)
k for m = 1, . . . , ` to every Pi ∈ P with {Pk, Pi} /∈ ∆, the

probability of the false triple not being detected is at most 2/2κ, which is negli-
gible. As with overwhelming probability the values a

(m)
k , b

(m)
k , c(m,k), a

(m)
k , c(m,k)

for m = 1, . . . , ` are correctly 1D-shared and the challenges are random, it is
now sufficient to show that the probability of Pk sending at least one false
ã
(m)
k 6= ra

(m)
k + a

(m)
k to at least one honest verifier Pi in Step 4 and not be-

ing detected (by Pi) in Step 7 is negligible. This holds because for a false ã
(m)
k

there are at most 2κ(`−1) (out of 2κ`) challenge vectors for which the check in
Step 7 does not fail. ut

4 Preparation Phase

The goal of this phase is to generate cM random 2D∗-shared multiplication triples
(a, b, c) (one for each multiplication gate) and cR random 2D∗-shared values (one
for each random gate). We wastefully generate cM + cR random multiplication
triples and use only the first factor for the random gates.

The generation of the cM + cR multiplication triples is divided into n2 seg-
ments, each of length L = d(cM + cR)/n2e. The computation is non-robust, and
its correctness is verified at the end of the segment. In fact, the segment will
consist of several stages, each with a private computation and fault-detection.
As soon as a fault is reported in a fault-detection procedure, the corresponding
fault-localization is used to localize a new dispute to be registered in ∆, and the
whole segment has failed and is repeated.

Protocol PreparationPhase.
Set ∆ := {} and X = {}, and for each segment (of length L) do the following
steps. If any of the invoked sub-protocols fails, then include the localized pair
E = {Pi, Pj} in ∆, i.e., ∆← ∆ ∪ {Pi, Pj}, and repeat the failed segment.
1. Generate 2L correct random 2D-sharings

(
a(1), b(1)

)
, . . . ,

(
a(L), b(L)

)
:

1.1. Every player Pk ∈ P \ X 1D-shares L randomly selected pairs(
a(1,k), b(1,k)

)
, . . . ,

(
a(L,k), b(L,k)

)
∈ F2 among the players. We denote

the distributed shares of a(m,k) by a
(m,k)
1 , . . . , a

(m,k)
n .

1.2. Invoke Upgrade1Dto2D with PD = P \ X and ` = L to upgrade the im-
plicitly defined sum sharings of

∑
Pk∈PD

a(1,k), . . . ,
∑

Pk∈PD
a(L,k) to 2D-

sharings, resulting in L correctly 2D-shared random values a(1), . . . , a(`).
The same for b.

2. Multiply the L pairs
(
a(1), b(1)

)
, . . . ,

(
a(L), b(L)

)
, resulting in L correctly 2D-

shared products c(1), . . . , c(L):
2.1. Every player Pk ∈ P \ X computes for every m = 1, . . . , L the product

c(m,k) of his shares a
(m)
k and b

(m)
k . Note that the product c(m) = a(m)b(m)

can be computed as a weighted sum of these values c(m,k) (namely La-
grange interpolation); accordingly, we will compute a sharing of c(m) as
weighted sum of sharings of c(m,1), . . . , c(m,n).

2.2. Invoke VSS1D to let every player Pk ∈ P \ X verifiably 1D-share his
values c(1,k), . . . , c(L,k).

2.3. Invoke the protocol ABC to have every player Pk ∈ P \ X prove that for
every m = 1, . . . , L, the value c(m,k) he shared in Step 2 is indeed the
product of his shares a

(m)
k and b

(m)
k , which are implicitly 1D-shared as

part of the 2D-sharings of a(m) and b(m), respectively.
2.4. Invoke the protocol Upgrade1Dto2D with PD = P \ X to upgrade the

sharings of the weighted sums
∑

Pk∈PD
λkc(1,k), . . . ,

∑n
k=1 λkc(L,k) to 2D-

sharings, where λk denotes the Lagrange coefficients.13

3. Invoke Upgrade2Dto2D∗ to upgrade all 3L 2D-sharings to 2D∗-sharings.

Lemma 9. With overwhelming probability, the protocol PreparationPhase gen-
erates cM + cR correctly 2D∗-shared random multiplication triples (a, b, c) with
c = ab; the secrecy of the triples is preserved. The protocol communicates
O((cM + cR)n2 + n5κ) and broadcasts O(n3) field elements.

Proof. In order to show the correctness first consider one execution of the Steps
1.–3. for one segment of length L. (Note that the dispute set ∆ remains un-
changed through Steps 1.–3.) If the execution succeeds, then with overwhelming
probability, the triples

(
a(1), b(1), c(1)

)
, . . . ,

(
a(L), b(L), c(L)

)
are correctly 2D∗-

shared (because of Lemma 2, 5, and 7), and c = ab holds because of Lemma 8
for each triple (a, b, c). As there are n2 segments and the adversary can provoke
less than n2 executions to fail (in total), he has less then 2n2 attempts to intro-
duce a segment with a false triple. Because n is at most polynomial in κ, the
probability that a false triple is not detected is negligible.

Privacy follows from the privacy of the invoked sub-protocols. Some of them
do not guarantee privacy in case of a failure, but in such case all generated values
are discarded and completely new shared values will be generated. ut

5 Input Phase

The goal of the input phase is to provide 2D∗-sharings of cI inputs.
We set the upper bound on the number of input gates of a segment to L =

d cI

n2 e and limit each segment to contain only input gates of the same player.

13 Note that the sharings of detected players PD ∈ X are not considered in the Lagrange
interpolation; however, as their shares are 0 (Kudzu), this omission does not falsify
the outcome.

Protocol InputPhase.
For each segment, the following steps are executed to let the dealer PD ∈ P \
X verifiably 2D∗-share his L inputs s(1), . . . , s(L).14 If any of the invoked sub-
protocols fails, include the localized pair E = {Pi, Pj} in ∆, i.e., ∆ ← ∆ ∪
{Pi, Pj}, and repeat the segment.
1. PD (unverifiably) 1D-shares the input values s(1), . . . , s(L).
2. Invoke Upgrade1Dto2D with P = {PD} to upgrade the 1D-sharings of

s(1), . . . , s(L) to 2D-sharings.
3. Invoke Upgrade2Dto2D∗ to upgrade the 2D-sharings of s(1), . . . , s(L) to 2D∗-

sharings.

Lemma 10. With overwhelming probability, the protocol InputPhase computes
correct 2D∗-sharings of cI inputs, where the privacy of the inputs of the honest
players is preserved. The protocol communicates O(cIn

2 + n5κ) and broadcasts
O(n3) field elements.

Proof. In one execution of Steps 1.–3., the probability of success in spite of a
false sharing is negligible. As there are at most n2 +n segments and less than n2

repetitions, the adversary has at most 2n2+n independent attempts to introduce
a segment with a false sharing, hence his success probability is negligible. The
privacy is guaranteed even in case of failure (and repetition) of some segment.

ut

6 Computation Phase

The computation of the circuit proceeds gate-by-gate. First, to every random
and every multiplication gate, a prepared 2D∗-shared random triple is assigned.

Given the 2D∗-sharings of the multiplication triples and of the inputs, all
values to be computed (and to be opened) in the computation stage are com-
pletely determined. We therefore call the values shared in the preparation phase
and in the input phase the base values of the computation. All base values are
robustly shared with 2D∗-sharings.

It turns out that the value of each gate can be computed as linear combination
of such base values. This is trivial as long as the circuit only consists of addition
and random gates. For a multiplication gate, the players publicly reconstruct two
sharings (both linear combinations of base values), such that the value of the
multiplication gate is a linear combination of base values, where the coefficients of
the linear combination depend on the two reconstructed values [Bea91a]. Hence,
the whole computation phase consists only of a sequence of reconstructions of
publicly known linear combinations of base sharings. More precisely, the gates
are evaluated as follows:
14 If the dealer PD is detected, i.e., PD ∈ X , then the players take the all-zero shar-

ing of 0, i.e., every share is 0 and every share-share is 0 (Kudzu). Note that no
authentication tags are needed because all share-shares are Kudzu.

Input Gate: Assign the corresponding 2D∗-sharing of the input to the gate.
Random Gate: Assign the 2D∗-sharing of a of the assigned multiplication

triple (a, b, c) to the gate.
Addition Gate: To both summands, a linear combination of base sharings was

assigned. Assign to the gate the sum of these two linear combinations (which
is again a linear combination of base sharings).

Multiplication Gate: To both factors, a linear combination of base sharings
was assigned. We denote the corresponding values by x and y, and denote the
assigned multiplication triple by (a, b, c). The players reconstruct dx = x−a
and dy = y − b towards every player in P (both dx and dy are represented
as known linear combination of base sharings), and assign to the gate the
linear combination dxdy + dxb + dya + c (i.e., a linear combination of the
2D∗-sharings of a, b, and c, all three of them base sharings).

Output Gate: The players reconstruct the assigned linear combination of base
sharings towards the designated output player.

Now, we are left with the problem of opening known linear combinations of
base values towards designated players. For every multiplication gate, we need
2n reconstructions (one towards every player), and for every output gate, we
need 1 reconstruction. Hence, in total we need to reconstruct 2ncM + cO linear
combinations of 2D∗-sharings. This job is, as usual, divided into n2 segments,
each with at most L = d(2ncM +cO)/n2e reconstructions. Each reconstruction is
processed non-robustly, and at the end of the segment, the players verify that no
fault has occurred. In the non-robust reconstruction the receiver either obtains
the right value, or he observes a fault, stops the further processing of this segment
and only joins again in the fault handling procedure.

Protocol ComputationPhase.
For each segment with L reconstructions, the following steps are executed. If in
a segment a fault is detected in Step 2., then Step 3 is executed to localize a
new dispute pair E, which is included in ∆, i.e., ∆ ← ∆ ∪ {E}, and the failed
segment is repeated.
1. Private Computation: Execute the following for each output operation.15

Denote the designated output player with Pk, the publicly known linear
combination for the output operation with L, and the 2D∗-shared base values
used in the linear combination with s(1), s(2), Furthermore, we denote the
share and shares-shares of Pi by s

(m)
i , s

(m)
1i , . . . , s

(m)
ni , respectively, and the

polynomial used for the second-level sharing of s
(m)
i by f

(m)
i (x).

1.1 Every Pi with {Pi, Pk} /∈ ∆ sends his linearly combined share si =
L(s(1)

i , s
(2)
i , . . .) to Pk, who receives a message in F ∪ {ε}.16

15 All output operations at the same level in the circuit can be executed in parallel.
16 It is legal for an honest player Pi to send the empty message ε to Pk, namely when

Pi has observed a fault in an earlier gate. Hence, Pk must accept the empty message
as valid.

1.2 If Pk received all shares si he was supposed to get (i.e., there was no
empty message ε), and the received shares lie on a polynomial f(x)
of degree t, he computes the output value as s = f(0); otherwise Pk

observes a fault and aborts the segment, i.e., for the rest of the segment,
Pk only sends empty messages.

2. Fault Detection: Every player Pi ∈ P \ X broadcasts the index qi of
the first failed reconstruction operation, respectively ⊥ if he successfully
completed the segment. If all players broadcast ⊥, then the evaluation of
the current segment succeeded

3. Fault Localization: Execute the following steps for the player Pk with
the smallest qk, for the failed reconstruction operation with index qk:
3.1 Every player Pi with {Pk, Pi} /∈ ∆ sends the polynomial fi(x) =
L(f (1)

i , f
(2)
i , . . .) and all share-shares sji(x) = L(s(1)

ji , s
(2)
ji , . . .) to Pk.

3.2 If for some Pi with {Pk, Pi} /∈ ∆, Pk did not receive si in Step 1.1, or the
provided polynomial fi(x) is inconsistent with si (i.e., fi(0) 6= si), then
Pk broadcasts i, and the fault localization terminates with E = {Pk, Pi}.

3.3 Pk identifies two players Pi, Pj with {Pk, Pi} /∈ ∆ and {Pk, Pj} /∈ ∆,
such that fi(j) 6= sij ,17 and broadcasts (i, j, sij , fi(j)).

3.4 Both Pi and Pj broadcast a bit indicating whether or not they agree with
the values broadcasted by Pk. If Pi (respectively Pj) disagrees, the fault
localization terminates with E = {Pk, Pi} (respectively E = {Pk, Pj}).

3.5 As both Pi and Pj agree with sij respectively fi(j) as broadcasted by
Pk, and as fi(j) 6= sij , either Pi or Pj delivered a wrong value to Pk. Pj

can use the information checking scheme to prove to Pk the correctness
of sij . However, there are no authentication tags for sij itself, but sij

is computed as a publicly known linear combination L of base sharings,
for which authentication tags exist (one authentication tag for all share-
shares xij of each segment), respectively which are Kudzu and hence
publicly known. Hence, Pj executes the protocol IC-Reveal for revealing
the provably correct share-shares xij of every base sharing x, and if
Pk accepts all invocations and the linear combination on the share-
shares yields sij , then Pk broadcasts i and E = {Pk, Pi}, otherwise, Pk

broadcasts j and E = {Pk, Pj}.

Lemma 11. If all base values are correctly 2D∗-shared and all multiplication
triples are correct and random, then with overwhelming probability, the circuit
evaluation as described above is correct, robust and private. The protocol com-
municates O((cIn

2 + cMn2 + cRn2 + cOn + n4)κ) and broadcasts O(n3) field
elements.

Proof. Once the base values are correctly 2D∗-shared, the computation phase
is purely deterministic. An honest player will never reconstruct a wrong secret:
17 The existence of such a pair (Pi, Pj) is guaranteed due to the correctness of the base

2D∗-sharings.

He receives shares from all players he is not in dispute with (otherwise he does
not reconstruct at all), hence there are at least t + 1 correct shares from the
honest players which prevent him from reconstructing a wrong value. Hence, the
adversary cannot falsify the outputs of honest players, he can only prevent them
from reconstructing. In this case, a fault is detected, a new dispute is localized
and included in ∆, and the segment is repeat till eventually all honest players
reconstruct all their outputs.

In order to argue about the privacy of the protocol, we observe that share-
shares xij are revealed only when Pi and Pj disagree on some value sij , hence
either Pi or Pj is corrupted. By revealing these values, the adversary obtains no
additional information. ut

7 The New MPC Protocol and Conclusions

The new MPC protocol consists of the three described phases:

Protocol MPC.
1. Invoke PreparationPhase to prepare cM + cR random 2D∗-shared multiplica-

tion triples.
2. Invoke InputPhase to provide 2D∗-sharings of the cI inputs.
3. Invoke ComputationPhase to compute and reconstruct the outputs towards

the specified players.

Theorem 1. A set of n players communicating over a secure synchronous net-
work, can evaluate an agreed function of their inputs securely against an un-
bounded active adaptive adversary corrupting up to t < n/2 of the players with
communicating O(cIn

2+cMn2+cRn2+cOn+n5κ) field elements and broadcast-
ing O(n3) field elements, where cI , cM , cR, cO denote the number of input gates,
multiplication gates, random gates, and output gates, respectively.

Note that for large enough circuits, the costs for simulating the O(n3) broad-
cast invocations are dominated by the normal communication costs, such that
the overall communication complexity is (up to a constant factor) the same as
the one of passively secure MPC protocols [BGW88].

However, for very small circuits, the O(n3) broadcasts are dominating
the overall costs. Note that even in this case, our protocol is substantially
more efficient than the most efficient previously known protocol for the same
model [CDD+99], which broadcasts Ω(n5) field elements per multiplication.

Acknowledgments

We would like to thank Micha Riser for the fruitful discussions, and the anony-
mous referees for their helpful comments.

References

[Bea91a] D. Beaver. Efficient multiparty protocols using circuit randomization. In
CRYPTO ’91, LNCS 576, pp. 420–432, 1991.

[Bea91b] D. Beaver. Secure multiparty protocols and zero-knowledge proof systems
tolerating a faulty minority. Journal of Cryptology, pp. 75–122, 1991.

[BGP92] P. Berman, J. A. Garay, and K. J. Perry. Bit optimal distributed consen-
sus. Computer Science Research, pp. 313–322, 1992. Preliminary version in
Proc. 21st STOC, 1989.

[BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In Proc. 20th
STOC, pp. 1–10, 1988.

[CCD88] D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure
protocols (extended abstract). In Proc. 20th STOC, pp. 11–19, 1988.

[CDD+99] R. Cramer, I. Damg̊ard, S. Dziembowski, M. Hirt, and T. Rabin. Efficient
multiparty computations secure against an adaptive adversary. In EURO-
CRYPT ’99, LNCS 1592, pp. 311–326, 1999.

[CDG87] D. Chaum, I. Damg̊ard, and J. van de Graaf. Multiparty computations
ensuring privacy of each party’s input and correctness of the result. In
CRYPTO ’87, LNCS 293, pp. 87–119, 1987.

[CW79] L. Carter and M. N. Wegman. Universal classes of hash functions. Journal
of Computer and System Sciences, 18(4):143–154, 1979. Preliminary version
in Proc. 9st STOC, 1977.

[CW92] B. A. Coan and J. L. Welch. Modular construction of a Byzantine agreement
protocol with optimal message bit complexity. Information and Computa-
tion, 97(1):61–85, 1992. Preliminary version in Proc. 8th PODC, 1989.

[DS82] D. Dolev and H. R. Strong. Polynomial algorithms for multiple processor
agreement. In Proc. 14th STOC, pp. 401–407, 1982.

[GHY87] Z. Galil, S. Haber, and M. Yung. Cryptographic computation: Secure fault-
tolerant protocols and the public-key model. In CRYPTO ’87, LNCS 293,
pp. 135–155, 1987.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game
— a completeness theorem for protocols with honest majority. In Proc. 19th
STOC, pp. 218–229, 1987.

[HM01] M. Hirt and U. Maurer. Robustness for free in unconditional multi-party
computation. In CRYPTO ’01, LNCS 2139, pp. 101–118, 2001.

[HMP00] M. Hirt, U. Maurer, and B. Przydatek. Efficient secure multi-party compu-
tation. In ASIACRYPT ’00, LNCS 1976, pp. 143–161, 2000.

[PSL80] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence
of faults. Journal of the ACM, 27(2):228–234, Apr. 1980.

[PW92] B. Pfitzmann and M. Waidner. Unconditional Byzantine agreement for any
number of faulty processors. In Proc. 9th STACS, LNCS 577, 1992.

[RB89] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols
with honest majority. In Proc. 21st STOC, pp. 73–85, 1989.

[Sha79] A. Shamir. How to share a secret. Communications of the ACM, 22:612–613,
1979.

[Yao82] A. C. Yao. Protocols for secure computations. In Proc. 23rd FOCS, pp.
160–164, 1982.

