An Attack on a Modified Niederreiter
Encryption Scheme

Christian Wieschebrink

Federal Office for Information Security (BSI),
Godesberger Allee 185-189, 53175 Bonn, Germany

christian.wieschebrink@bsi.bund.de

Abstract. In [1] a Niederreiter-type public-key cryptosystem based on
subcodes of generalized Reed-Solomon codes is presented. In this paper
an algorithm is proposed which is able to recover the private key of the
aforementioned system from the public key and which is considerably
faster than a brute force attack. It is shown that the example parameters
proposed in [1] are insecure.

Keywords. Public key cryptography, McEliece encryption, Niederre-
iter encryption, error-correcting codes, generalized Reed-Solomon codes,
Sidelnikov-Shestakov attack

1 Introduction

The McEliece [2] and Niederreiter [3] encryption scheme are the most well-known
code-based public key cryptosystems. Their security rests on two intractability
assumptions: on the one hand it is difficult to decode an arbitrary linear code,
on the other hand it is difficult to recover the structure of the underlying code
from an arbitrary generator matrix which forms the public key in these sys-
tems. Indeed, the general syndrome decoding problem was shown in [4] to be
NP-complete. Moreover there is practical evidence, that it is hard for random
instances, too. Several quite sophisticated algorithms to attack the decoding
problem were published (for example [5,6]), but their running times remain ex-
ponential.

The hardness of the structural problem crucially depends on the kind of
codes being used. The original Niederreiter scheme made use of generalized Reed-
Solomon (GRS) codes. A polynomial time algorithm reconstrucing the code pa-
rameters from an arbitrary generator matrix was found afterwards by Sidelnikov
and Shestakov [7]. Therefore the original Niederreiter scheme is completely bro-
ken. On the other hand McEliece proposed Goppa codes for his scheme. Up to
now no efficient way is known to compute the parameters of these codes from
the public key.

In [1] Berger and Loidreau propose a variant of the Niederreiter scheme which
is intended to resist the Sidelnikov-Shestakov attack. The idea is to work with
a subcode of a GRS code instead of a complete GRS code in order to hide its
structure. In this paper we develop an attack on the modified system which is

feasible if the subcode is chosen too large. It can be considered as a generalization
of the Sidelnikov-Shestakov algorithm.

The rest of the article is structured as follows: after having presented the
Berger-Loidreau variant in detail in Sect. 2 we describe the basic attack in Sect.
3. In Sect. 4 we show how to speed up this attack considerably and in Sect. 5
we give some results of a test implementation.

2 The Modified Scheme

First of all let’s recall some basic facts about generalized Reed-Solomon codes.
In the following let F' be a finite field.

Definition 1. Letm,k,n e N,k <n,a = (a1,...,a,) € F", z = (z1,...,2,)€
(F\{0})™, where the oy are pairwise distinct. The generalized Reed-Solomon
code (or GRS code) GRS, k(e x) is a linear code over F given by the generator
matriz

xl x2 DY xn
r100 Tolla ... TnpQn
Ga,x =
-1 -1 —
xlo/f J?Qag s mnaﬁ 1

Consequently GRS, (o, z) consists exactly of those words ¢ in F™ which can
be written ¢ = (z1f(a1),...,2nf(arn)) for a polynomial f(z) € Flx] with deg f
< k. GRS codes allow efficient error correction. Given x and « one can apply the
Berlekamp-Massey algorithm which can correct up to | 25 | errors in polynomial
time. (For details see [8,9].) In context of cryptography it is always assumed that
GRSy, (o, x) has full length, i.e. n = #F and char F' = 2. For a fixed GRS code

GRSy, (o,) the parameters o and x are not uniquely determined:

Proposition 1. Let o, x be defined as above. Then
GRS, k(a,z) = GRS, k(a1 + b, ..., ac, +), (cx1,...,c20))
for all a,b,c € F, a,c # 0.
Proof. See [9]. O

It follows for example that two of the «; can be chosen arbitrarily. Each of
the different parameters for a given GRS code is equally suited for the above
mentioned decoding algorithm.

Proposition 2. Let o,z be defined as above and u := (uq,...u,) where u; :=
z; [0 — a;j)~t. Then the dual code of GRS, i(c, x) is given by

GRS",k(a’m)J_ = GRSn,n—k(aau) .

Proof. See [9]. O

Proposition 2 will be helpful later for reconstructing x if « is known.

The Berger-Loidreau modification of the Niederreiter public-key scheme works
as follows (we present the dual version of the scheme given in [1], which has the
same security, see [10]):

Key creation: Let n = #F, k € NS and a small [€ N=F be given. Alice
chooses a random GRS code GRS, ;(o,x) with generator matrix G, 5 and a
random (k —[) X k—matrix A over F' of rank k —[. Then her public key is given
by T := A - Gq 4. The secret key is (o, z). (A must be kept secret, t00.)

Encryption: To encrypt a message m € F*~! Bob chooses a (secret) vector
e € F" of Hamming weight < | 2% | and computes the cipertext ¢ := mT + e.

Decryption: Using («,x) Alice applies the decoding algorithm to ¢ getting
mT. By multiplying this with a right-side inverse of T' she gets m.

3 The Attack

We fix some additional notation. For a (k x n)—matrix T' = (¢; ;) let E(T') be
the echelon form of T and <7T> the code generated by 7. The i—th row of
T is denoted by t;. Given a permutation 7 : {1,...,n} — {1,...,n} let Ty
denote the matrix (Z; r(;)), i.e. the columns of T are permuted according to .
Analogically for v = (vy,...v,) € F" we define vy := (vr1),.. . V). If T'is
a generator matrix of GRSy, 1 (o,) then obviously T is a generator matrix of
GRSy k(ar, zr).

Now let T be the public key of the aforementioned encryption scheme. Clearly
T is a generator matrix of a (k — [)—dimensional subcode of GRS, ; (e, z). Our
aim is to find the parameters a and z (or equivalent parameters, see Proposition
1) where only T is given. The attack consists of two steps. In the first step (which
is the more expensive one) the permutation of the field elements « is calculated.
In the second step x is recovered.

Let ¢ €<T>. Recall that ¢ can be written in the form

€= (xlf(al)w'-vxnf(an)) ’ (1)

where f € Flz] with deg f< k — 1. Now let d €<T> be another codeword,
d= (z19(a1),...,xng(ayn)). Foralli=1,... n we then have
¢ _wiflaa) f

di wiglou) E(ai) 7

unless d; = 0. The main idea of the attack is based on the following

Proposition 3. Let T be the generator matriz of a (k —l)-dimensional subcode
of GRSy k(a,z) and E(T) := (t; ;) = [1x—1|A] the echelon form of T. Then for
each pair (i,b) € {1,...,k — [} there are polynomials P;(z), P,(z) € Flx] of
degree <[such that

M _ (aj — ab)P'i(aj) (2)

o (o — i) Py(ay)
forall j=1,...n with t,; # 0.

Proof. For given i, b let ¢;,t; the respective rows of E(T'). Since E(T') is in echelon
form both rows contain (at least) k—I!— 1 zeros, and there are (at least) k—1—2
positions where ¢;, t, have common zeros. Let a1, ...,ax—j—2 € {1,...,k —1} be
these positions. According to the properties of a GRS code there are polynomials
fi(z), fo(x) € Flx] of degree < k — 1, s.t.

(tes - rten) = (@1 felon), ..., xnfelan))

for ¢ = 4,b and they must have the form
fila) = (x —) - H T—aa,) |

-
fo(z) =(x— ;) - H (z — ag,)

with P; and P, having degree [at most. So for all j =1,...,n with ¢, ; # 0 we
have

tij _ filey) (o — op)Pi(ay)

thy folay) (a5 — i) Pylay)

O

Note that P;, P, in the above proposition may have common factors, so these
polynomials are not unique in general. Since P; and P, have low degree we
can now try to reconstruct the coefficients of both polynomials. If we do so for
different rows t; of E(T) it is possible to recover the a; as we will see below.

First of all we need a simple

Lemma 1. Let f(z) = ngg be a rational function over F with deg P,Q) < i € N,
P, Q relatively prime and Q monic. Let x1,...,x2:41 € F be pairwise distinct
values, for which f is defined. Then the coefficients of P and Q are uniquely
determined by the pairs (xj, f(x;)),j = 1,...,2t + 1 and can be computed in

polynomial time.

Proof. Let P,(Q be another pair of relatively prime polynomials over F with

flz) = QE ;, deg P, @ < iand @ monic. Then we have P(x;)Q(z;) = P(z;)Q(z;)

for j =1,...,2i+ 1. Since PQ and PQ are polynomials of degree < 2i it follows
PQ = PQ. According to our assumptions P and @ have no common divisiors,
so we have Q|Q and analogically Q|Q. Q and @ are monic, so Q = Q. It follows
P = P immediately. This shows the uniqueness of P and Q.

Now let P(x) = p;z’ + -+ + p1x + po, Q(x) = ¢;z* + -+ + 10 + qo. As the
f(z;) are defined, we get

f(xj)(hﬂv; + 4 flrp)a; + f(z5)q —pw; —--—=p1xj —po =0

for j =1,...,2i+1. This yields a (inhomogenous) linear system in the unknowns
@iy ---q0sDis - - - » Po, Which can be solved with O(i%) operations in F. The solution

space may have dimension d > 1. In this case the unique solution polynomials
P, @ in the above sense have both degree less than i. To find them one has to
compute the element of the solution space with ¢; = ¢;—1 = -+ = ¢;_(4—2) = 0,
¢i—(a—1) = 1. Obviously this can be done in polynomial time, too. a

Now consider (2) again. We're fixing an arbitrary b, for example b = k—1 =: r,
and put } 3
Pi(z) = (x — ay) Pi(x), Qi (x) := (z — a;) Pr-(x) (3)
i ()
3iw) "
coefficients of P; and ;. These polynomials have degree < [4+ 1 so according
to the lemma above we need to know 2! + 3 pairs (¢, gi(a;)) to do so. The

gi(aj) = :—j are given, but the a; are unknown. The strategy is now to guess the

1

and g;(z) = for ¢ = 1,...,7 — 1. The first step is to reconstruct the

Q)

values a4 1, - . ., aryo1+3 (for example) and sieve out the wrong guesses. W.l.o.g.
we assume that ¢, ,41,..., % 42143 all are nonzero (otherwise we can choose a
different set of 21 + 3 indices i1, ... 9243 € {r+1,...,n} with ¢;,,... i, , #0
and guess the values o, , ..., o, ,) and that a1 = 0, ;.42 = 1 (by Proposition

we calculate relatively prime P/, Q; of degree < [+ 1 with g—: = g; for i =

i

1), s.t.in fact only oy, . . ., @ry2143 have to be guessed. Given the pairs (a;,

1,...,7 — 1 by solving the appropriate linear systems, see Lemma 1. Note that
P; and @; may have a nontrivial common factor, so in general P; # P} and

Q; # Qr. However, if the guess was correct then the following conditions hold:

C1. The P/ (x) have a common linear factor (namely (z — «;)).
C2. There is a sequence aq, ..., a,_1 of pairwise distinct elements of F' different
from the ayy1, ..., ary2i43, such that (z — «;) divides @} (z), and the least

common multiple of the (2_(;’))

divides P,(x)).

has degree <[(the least common multiple

If there are two distinct polynomials P, P;* with degree [+ 1 then Q7 = Q, and

Q= Qj (assuming that these polynomials are monic), and condition C2 can be
replaced by

* * Q’TU z — e
C3 Let Q = gcd(,L7Q]) Then WJ(C),)Q(JC)) = (x—aw), w = 1,...,7”— 1 fOI'
pairwise distinct a1, . .., a,.—1 different from o411, . .., @pyo43 (it is Q = P,).

The advantage of C3 is that it is straightforward to check from an algorithmic
point of view, while C2 is more complicated (but also can be checked in polyno-
mial time). So we always assume first that there is such a pair P}, Pr, which is
the case with high probability. Condition C1 can be verified easily, too, by the
Euclidian algorithm. If the guess was right we can reconstruct the parameter
a = (ag,...,ay) of the GRS code from the P, Q}: o, can be reconstructed
from condition C1 and the values «aq,...,a,_1 can be derived from condition
C3. 41, .., Qpry2p4+3 are given so it remains to find the o, 49144,. .., an.
Suppose «;,,...,®; _, belong to the unknown values. Choose a permutation
m:{l,...,n} = {1,...,n} with 7(j) = ¢; and w(i;) = jfor j=1,...,7r—1 and

n(b) =bforb=r+1,...,r+2[+3. Let 8 := (B1,...,05n) := (Qx(1)s- -+ Ur(n))-
The matrix T is a generator matrix of a subcode of GRS, (5, xx). Since the
Oi = a;, i =r+1,...r+ 2l 4+ 3 are given, the f1,...5,-1 — and thereby the
Q- - -, 04, —can be determined exactly the same way as described above when
working with E(T) instead of E(T). This process can be repeated for different
suitable permutations until all «; are found.

We summarize the complete procedure in Algorithm 1. It makes use of the
function getAlpha which is defined in Algorithm 2.

Algorithm 1 Reconstruction of «

Input: Generator matrix T of a subcode of GRS, (o, z) of dimension r = k — [
Output: Set B of candidates for «

1: B—1
2: ﬂl —0
3Z 62 «— 1
4: for all (B, ..., Bass) € (F\{0,1})**! with §; pairwise distinct do

5 I—{1,....,r=1,r,r+204+4,...,n}
6: repeat

T b« min(r — 1, #I)

8: for j —1,...,bdo

9: i; < least element of I
10: I — I\{i;}

11: end for

12: for j—1,...,bdo

13: m(j) «— j

14: (i) «— j

15: end for

16: for j—b+1,...,ndo
17: ifj;é’il,...,ib then
18: () — §

19: end if

20: end for

21: calculate T

22: vi=(Y1y. -y vr—1) < getAlpha(fB, ..., LBouts, Tx)
23: if v # NULL then

24: for j —1,...,bdo
25: Oé»;j — 5

26: end for

27: end if

28: until I =@ or v = NULL
29: if v # NULL and au,...,a, pairwise distinct then

30: B — BU{(ai,...,an)}
31: end if
32: end for

33: return B

Algorithm 2 getAlpha(f, ..., Bauts, T)

Input: (r X n)-matrix T over F, [31,...,Baut+s € F pairwise distinct
Output: (a1,...,ar-1) € !

1: (ti,5) < echelon form of T’
2: fori—1,...,7r—1do
3: calculate relatively prime P (z), Q; () € F[z] with degree < I+1 and Q)] monic

and .
Pr(B) _ tir+s

Qi (Bj) trry
forall j=1,...,20+3
4: end for
5: if the P/ (z), Q; (x) satisfy conditions C1 and C3 then
6: Q — ged(Q7,QF) with 4, j such that ¢ # j and deg P = deg P; =1+1
7.
8

for i «— 1,...,r71*d0
: o — root(ﬁm)
9: end for
10: return (ai1,...,Qr—1)
11: else
12: return NULL
13: end if

Once the set of candidates B is given is remains to check for each o’ € B if
thereis a x = (z1,...2y), s.t. <I'> C GRS, (¢, z). (We know that there is at
least one such «'.) This can be done using Algorithm 3.

According to Proposition 2 the dual code of GRS, x (o, z) is also a GRS code
G = GRSy n—r(a,2’). Let g be a row of the canonical generator matrix of G.
Since each row vector ¢ of T' is an element of GRS, (e, x) the inner product
t - g is equal to zero. That’s why 2/ = (z,...,],) has to be a solution of the
linear system

tipada) + .. +tiaodal =0, i=1,....r, j=0,....n—k—1.

If such a 2’ is found, the vector z can be calculated with help of Proposition 2.

Let’s analyze the running time of the above algorithms in the worst case.
First consider the function get Alpha. It is dominated by the computation of the
echelon form in line 1, which takes O(r?n) operations in F, and the for-loop
in lines 3—4. In each step of the loop a linear system with O(l) equations and
unknowns has to be solved, which can be done with O(I%) operations. Verification
of C1 and C3 and computation of the «; takes O(rl?) operations at most. This
yields a total running time of O(r?n + r13) for Algorithm 2.

The main loop in lines 4-32 of Algorithm 1 is run % € O(n?*1) times.

(We assumed n = #F'). The inner loop in lines 6-28 is called {%—‘ times.

Since in practice 3 < r < 27" we can assume that this value is bounded by a

constant. With the above result we get a total running time of O(n?*1(r2n+ri3))

Algorithm 3 Reconstruction of x
Input: T = (v;;), B as in Algorithm 1
Output: (a,2') s.t. <T>C GRS, x(a,)

1: while B # () do

2: (a1, ..., an) < arbitrary element of B

3: X « solution space of the linear system in z1,...,z, given by

Um, 1012 + Vm 202T% 4+ + V), = 0

forj=0,....k—landm=1,...,r

4: if dim(X) > 0 then

5: (z1,...,Tn) < arbitrary nonzero element of X

6: fori«—1,...,ndo

7 x) — (25 [T, (i — a;)) "t

8: end for

9: B+~

10: else

11: B — B\{(a1,...,an)}

12: end if

13: end while

14: return ((1,...,an), (z1,...,2}))

operations in F. Note that the procedure can be optimized by computing the
echelon forms E(T) for a fixed set of suitable permutations 7 in advance instead
of computing them in each call of get Alpha. In this case we get an upper bound
O(r’n + n2H1r3).

In Algorithm 3 the main loop is run #B times, and the dominant step in
each loop is the linear system. It has n unknowns and (k — 1)r equations so it
takes at most O(n2kr) operations to find a nontrivial solution. We get a worst
case complexity of O(#B - n?kr) operations. In general #B is expected to be
quite small so that Algorithm 3 is feasible.

In [1] an attack on the cryptosystem is given, which uses the original Sidelni-
kov-Shestakov attack as a black box algorithm. Its average running time is lower
bounded by £2(n*!) operations, so for practical choices of n, k, [the attack given
here is much faster.

4 Refinement of the Attack

The above algorithm can be improved if there are two rows in the echelon form
E(T) = (t;;) which have more than k — ! — 2 zeros in common. Suppose the
i-th and the b-th row, i # b, have k — [— 2 4+ s zeros in common positions. It is
0 < s <. With the same argument as in proof of Proposition 3 there are two
polynomials P*(z), Q*(x) € Flx] of degree <[l — s+ 1 (instead of [4+ 1) s.t.

ti; P*(ay)

thy Q*(aj)

forall j =1,...,nwitht,; # 0. So to find these polynomials only 2(I—s+2)—1 =
2(1—s)+3 of the a; have to be known according to Lemma 1, and the number of
guesses which have to be made is reduced by a factor O(n?*). To check whether
the guess is correct we make use of the following

Definition 2. Let S be a (finite) set, n,k € Non > k and v = (v1,...,v,) €
S™w = (wr,...,w) € S*. We say that v dominates w, if

#{ilvi = s} = #{jlw; = s}
for all s € S.

Obviously for given v € S, w € S* it can be checked with O(n) operations
if v dominates w.

Let J C {1,...,n} be the set of those j, where ¢;; # 0 or ¢,; # 0. For
v € F with v # 0 we define J =: co. Suppose the elements of F' are ordered

in some way. If the guess of the «; is correct then the vector (g:—g?{;)ve r has

to dominate the vector (Ebj)jes- In this case it may be possible to reconstruct
2J
some of the (not yet assigned) «; : suppose the function f(z) := ggi; takes the

value 0 € F U {oo} for exactly one v € F, f(y) = d, and there is a j € J with
Yii = §. Then o = 7. If we can find at least 2s additional o; with t, j # 0 this

ty,j
way we can try to compute relatively prime polynomials P} (z),Q% (z) € F[z] of
degree <1 +1fori' € {1,...k—1}\{3,b} with

7

Wy Qo) @

forall j =1,...,n with ¢, ; # 0. Of course the right polynomials have to comply
with conditions C1 and C2 / C3. This allows us to reconstruct the remaining «;
as seen above.

If there are not enough § s.t. f(y) = 6 can be solved uniquely, then at least
we can extract a list of candidates for each «;, j € J, which consists of all v with
fly) = fbj . We can then choose a sufficient number of short candidate lists and
try to solve (4) with the different possible assignments for the «;.

What can we do now, if a pair of rows in E(T") with more than k—[—2 common
zeros does not exist? In this case we can try to find such a pair in the echelon form
of an equivalent code of <T>C GRS, k(c,x). Let w: {1,...,n} — {1,...,n} be
a permutation. Remember that due to the definition of GRS codes the matrix T
is a generator matrix of a subcode of GRSy, k(ar,). So we can replace T by T
for distinct permutations 7 and look for rows in the echelon form F(T) which
have more than k — [— 2 common zeros. When such a pair is found we apply the
above method which eventually finds a set of candidates for «,, which can easily
be transformed to a set of candidates for a. When choosing the permutations
we can restrict ourselves to those 7 which satisfy (i) > k — [for at least one
i€{l,...,k—1}, since otherwise E(T) differs from E(T) only by the order of

rows.

ting _ Piloy)

Note however that such a pair of rows does not necessarily exist in any equiv-
alent code. For example the subcode C can itself be a GRS code of dimension
k — 1. As such it is a MDS code and any pair of rows in the echelon form can
have k — [— 2 common zeros at most. But for random instances there should be
a good chance of finding a pair at least for small s.

The improved approach is summarized in Algorithms 4 and 5.

We try to give a rough estimate for the running time of Algorithm 5. The main
loop in lines 12-30 is run O(n?(=*)+1) times. Solving the linear system in line 13
takes O((l—s)?) operations. If the condition in line 15 is passed (verification takes
O(n(l—s)) operations) the for-loop in lines 21-28 is called O(max;{B;}**) times
at most. Each loop takes O(r?n +ri3) operations. Since max;{B;} <l—s+1 we
get an upper bound O(t; +n2¢=)+1((1 =) +n(l—s)+ (1 —s+1)>(r*n+rl3)))
for the complete algorithm, where ¢; is the (undetermined) running time of
Algorithm 4. Here we assumed that the condition in line 15 is always passed,
which won’t be the case in practice. The average running time should be well
below the given bound.

Note that there are still several possibilities to improve the presented algo-
rithms but for the sake of clarity we didn’t include them here.

Algorithm 4 findPermutation(T, s)

Input: (r x n)-matrix T as in Algorithm 1; s € N<!
Output: (7,1,b) s.t. i-th and b-th row of E(T) have r + s — 2 common zeros

1: S « set of all permutations 7 € S,, with (i) > r for some i € N="
2: repeat

3: m < random element of S

4: S — S\{n}

5: calculate E(Tx)

6: for all (i,b) € {1,...,7}* with i < b do

7 if rows ¢ and b of E(Tx) have r + s — 2 common zeros then
8: return (,1%,b)

9: end if
10: end for

11: until S =0
12: return NULL

5 Experimental Results

Algorithms 4 and 5 were implemented in JAVA (with some minor modifications)
and executed for different instances of the encryption scheme. We always chose
s such that [— s = 1. Table 1 shows some example running times on a 2.6 GHz
Pentium 4, 512 MB system. In particular we see that findPemutation performs
well for small s.

Algorithm 5 Reconstruction of «, improved version

Input: Generator matrix 7' of a subcode of GRS, (o, z) of dimension r = k — I,
s € Nt
Output: Set B of candidates for «

(m,1,b) «— findPermutation(T,s)
if (m,i,b) = NULL then
return NULL
end if
compute (t;;) = E(Tx)
(a1y...,an) < i—th row of E(Tx)
(b1,...,bn) < b—th row of E(T%)
B+—10
B1 <0
H /62 — 1
: find pairwise distinct i1,...,420s)13 s-t. bi; # 0 for all j
: for all (Bs, ..., B2q—s)+3) € (F\{0,1})* with 3; pairwise distinct do
compute relatively prime P*(z), Q" (z) € F[x] with deg P*(z), Q" (z) <l—s+1
s.t.
Pr(B5) _ ai;

Q*(B5) by

—_ e e
W= Oo Y

forall j=1,...,2(l—s)+3

14: ¢ (F)ie(1,....n},ai0 or b; 20

15: if (g:—m)vep dominates ¢ then

16: I<—{7‘+1,...,n}\{il,...,ig(l,S)Jrl}

17: find pairwise distinct g _s)44,- -, 42043 € I with b;; # 0

18: for j —2(l—s)+4,...,20l4+ 3 do

19: Bj — set of all v € F\{B1,..., Baq—s)4a} with 500 = 350

20: end for ’

21: for all (B2—s)+4, - -, P2143) with pairw. distinct 8; € B; do

22: for alla € {1,...,r —1}\{b} do

23: compute relatively prime P (z),Qj(z) € F[z] with degree < [+ 1
s.t.

Pi(2) _ ta,

Qi(x) by

forall j=1,...,204+3

24: end for

25: if the P, Q7 suffice conditions C1 and C2/C3 and a, can be computed
as in Algorithms 1,2 then

26: B — BU{a}

27: end if

28: end for

29: end if

30: end for

31: return B

Table 1. Perfomance for different key parameters

running time
n | k|l|s findPermutation| total
32 (16|3|2 3 sec <1 min
64 |132(3(2 2 sec 16 min
64 (40|32 2 sec 16 min
64 |132(4(3 2 min 18 min
128(64(4(3 20 min 5 h 44 min

6 Conclusion

In [1] the values n = 256, k = 133, [= 4 are given as secure example parameters
for the modified Niederreiter encryption scheme. It is claimed that ~ 22090 exe-
cutions of the Sidelnikov-Shestakov algorithm for a structural break are needed
in a brute force approach. However the above results suggest that these choices
for the modified Niederreiter encryption scheme are highly insecure. Extrapolat-
ing the data above we estimate that an optimized implementation of the above
attack can break such a system in a few days or even hours on a PC.

The encryption scheme is not completely broken though. To thwart the attack
n and [should be chosen sufficiently large. However this has other drawbacks. A
large n leads to large public keys and a large [causes bigger message expansion.
It is unclear if the parameters can be chosen in such a way that it has higher
efficiency and security than the McEliece cryptosystem.

References

1. Berger, T., Loidreau, P.: How to mask the structure of codes for a cryptographic
use. Designs, Codes and Cryptography 35(1) (2005) 63-79

2. McEliece, R.: A public-key cryptosystem based on algebraic coding theory. DSN
Progress Report, Jet Prop. Lab., California Inst. Tech. 42-44 (1978) 114-116

3. Niederreiter, N.: Knapsack-type cryptosystems and algebraic coding theory. Prob-
lems of Control and Information Theory 15 (1986) 159-166

4. Berlekamp, E., McEliece, R., van Tilborg, H.: On the inherent intractability of
certain coding problems. IEEE Transactions on Information Theory 24(3) (1978)
384-386

5. Brickell, E., Lee, J.: An observation on the security of McEliece’s public-key cryp-
tosystem. In: EUROCRYPT ’88. Number 330 in Lecture Notes in Computer Sci-
ence, Springer-Verlag (1988) 275-280

6. Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words
in a linear code: application to McEliece’s cryptosystem and to narrow-sense BCH
codes of length 511. IEEE Transactions on Information Theory 44(1) (1988) 367—
378

7. Sidelnikov, V., Shestakov, S.: On insecurity of cryptosystems based on generalized
Reed-Solomon codes. Discrete Math. Appl. 2(4) (1992) 439-444

10.

11.

12.

Gabidulin, E.: Public-key cryptosystems based on linear codes (1995)
http://citeseer.ist.psu.edu/gabidulin95publickey.html.

MacWilliams, F., Sloane, N.: The Theory of Error-Correcting Codes. North Hol-
land (1997)

Deng, R., Li, Y., Wang, X.: On the equivalence of McEliece’s and Niederreiter’s
public-key cryptosystems. IEEE Transactions on Information Theory 40(1) (1994)
271-273

Garey, M., Johnson, D.: Computers and Intractability. A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company (1979)

Overbeck, R.: A new structural attack for GPT and variants. In: Mycrypt 2005.
Number 3715 in Lecture Notes in Computer Science, Springer-Verlag (2005)

